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CHAPTER O

?rbcesses with independent increments. had been introduced
by de Fimnett in 1929, Their sample p:ath 'prOpe'rties were studied

Most commonly, ror inference problem we use xl.xz,...,
; e Lrkae Band

independent and identically distributed ra.né.om' variables,
However ror a process {X(t),t >0}, X(t) mutually independent
ror t » Omay not be userul model, is discussed by Kallianpur
(page-u-:,m by- means or two examples, or which one shows that
X(t) does not have realizations in C[ 0,1] induced by the
distribution of X{(t) and the other, shows that there is no

measurable process equivalent to X(t). A process with stationary
and independent increments (SIIP) may be treated as a contimuous
caser analogue or partial sums orX independent and identically

distributed random variables,

In Chapter 1 we study derinitions, relationship with
infinite divisibility, representations or characteristic
runction or SIIP, relaticnship with martingales. Further we
discuss Markov property. We also discuss construction of SIIP,
Chapter 2 includes sample _path properties, decomposition of
SIIP, Finally we discuss strong law of large numbers and
central 1limit theorem ror SIIP. Chapter 3 consists of discusse=
ion about Kac statistic which is analogous to Kolmagorov-



Smirnov statistic. We also include sequential estimation proce-
dures ror the processes which belong to the exponential class
oY stochastic processes, Further we discuss Cramer-Rao type
inequality, a gemral rorm or an erriciently estimable para=

meter Function and a general Yorm of an erricient estimator,

Ultimately we study an estimaticn of cancrial meweG which occurs

in the representatiun or a characteristic Yunction cf SIIP.

The processes with uncorrelated increments (Docb,page 99 ),
processes with ortnogona.l increments (Docb,page 99 ), processes
with interchangeable increments {Vat~c4, page 38 ), processes
with cyclically intcrchangeable increinents (TG-VJ\.;‘, page 37 2
may be treated as a genralization oX SIIP, Discussion about
the distributions oX supremum orX SIIP is available in Takncs,
Recurrence properties oI processes with independent increments
are discussed by Kingman (1964). Relationship or SIIP with
extremal processes and subordinators is discussed by Kingman
(1973 ). Applications of SIIP to .queues, insurance risk,
dams are discussed by Prabhu (1980). Inrerence about Levy
processes wnich can be taken as a special case of SIIP is
discussed by Akritas (1981,1982). Inference about gamma and
stable processes .is studied by Basawa and Brockwell (1978,

1980)., Sequential Probability ratioc test is discussed in



Gnhosh (1970), V-mask ror a negative binomial process is

discussed by Muddepur (1974). These topics are not discussed

in tnis disseration.



1.1 Introduction

Tnis chapter includes derinitions and examples of
peculiar processes, We also include an example of a process
witn stationa'ry and independent increments (SIIP) defined on
a probability space ( (0,1],IB ,P). Moreover tnhe relationship
or SIIP with infinitely divisible characteristic function is
studied, Which is helpful in obtaining a general farm ef the
characteristic Iunction of SIIP and its two representations
namely, Levy=Khintchine representation and Kolmogorov's
representation. Further we discuss construction cf SIIP,
finite dimensional distributions, mean, variance, covariance
rfunction. In the last section relationship :_:E SIIP with
martingales and Markov process is studied. Finally we discuss,
under certain conditions SIIP holds strong Markov property.

l.2 Derinitions and preliminaries

let 7] denote the set or non-negative integers ar a

finite interval or [0,=).

Derinition L t A stochastic process {X(t),t €3} defined on

a probavility space (8 , IF,P).with values in { R, IB) is

selx.ld to be a process with independent increments, ix ror

every positive integer k > 2 and {t]_,tz,... .tk} € 7§ yduch ek

otk -<¥, the random variables
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Xt - X(@ )y X(t,)= X(tq),eea,X(t, ) =X (8, ;)

are independent.

Derinition 2 t A stochastic process { X(t), t £} derined

on a probability space ( @ ,F,P) with values in ( R, IB)

is said to be a process with stationary increments, if

J_ (Xt an) -x(5)) = [ x(n))

Tor every h such that t, t+h €] .

It is clear that ir { x(t), t e:']} is a process with
independent increments pdas=ssing stationary increments, then

ror every positive integer k > 2 and { Tatos eee ,tk} e J

L ( x(tz)-x(tl) $ oo 3 x(tk) - X(tk_lj)

= L(X(t2+h)-X(tl+h), eee WX(t +h)-X(t, _+h))
Ior every h such that {tl+n’ tz""hp see ’tk+h} £ ’J .

An example of a process with SIIP on probability space
(:+ , B,P) in which 2% is (0,1], B is the Borel field on
(0,1] and P is the Lebesgue measure is given below. To

provide such an example, Tirst we prove a lemma which we

need.,



Lerma 3 ¢ Let { Fpo n 21} be a sequence of distribution
runctions. Then there exists a sequence { Z , n> 1} oz
independent random variables on (%t , B, P), such that zZ,
nas Fn as its distribution Zunction for all n 2 1.

Proof ¢ We discuss the proof in the rollowing three steps.

Step 1 t We generate a sequence {X , n > 1} of independert
and identically distributed Bernoulli random variables with

E>{x1 =1} =% o

Suppose 4
Fn(x) =0 iz x< O
=3 iz 0 x<1

For iixced n > 1 divide the interval (0,1] into 2"
subintervals of length 2™ ecach and J=th subinterval will
be

IL?) = ( (3-127%, 527

Tor J = 1,2,000p 2% . Define for w et and n2 1

281 (on)

xn(w) =1 ifwe Y In

=0 otherwise.



1.4

Now we show that { X,on21 } are independent and identically
distributed Bernoulli random variables with Fn given in
(1.2-1) . Clearly

P{xn=o}=9{xn=1} = 3

Tor every n y 1. To show that X s are independent, let

us evaluate .

P{Xl Hxl, XZ =x2’ s ,xk =xk}.
Clearly

PIX, =)0 X, Kpy see » X =X } = 2={k+1) (1,2,2)
On the other hand

' : ~(k+1
P{X =} P{Xymx,} oon B{x, =} =270 (1.2.3)
Therelore

P{x1=x1,x2=x2,. . .,xk=xk} =P{x1%} P{x2=x2} . ..P{Xk=xk}.
(1.2.4)
The relationship (1.2,4) holds ror any k and all possible
combinations (xl.xz,...,xk). Hence Xi,Xéi..., are independent
random variables,
Step 2 1 We construct a sequence orf independent and identically

distributed random variables on (3t , IB, P) with unirorm

distribution on (0,1).
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Arrange the sequence { X,» n2 1} defined above in a

double array as follows ¢

X110 Xz oo

le’ X22, see

X0 an, cee

DeTine Tor w € 3t

U 0) = I, 27N X W) . (1.2.5)

Since the series (1.2.5) is dominated above Ior everyw

by a convergent geometric series, Un converges almost
surely. Hence ror every n > l,Un is a limit of measurable
runctions, so that Un is a random variable. Since the
variables in the difrferent rows are independent and
identically distributed random variables, { -Un’ nxl }

are independent and identically distributed random variables.

Clearly

P{X g =Xy, seep Xy =% }= 278,

ror a11 2% possible values of the vector (xl,xz,...,xk) .
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Let
k -i
Spk = i%1 ¢ Xni ¢

Then S, assumes the P possible values j2"'k k

»0£ <27 -1

and

P{s, =32 F}=2" rorogyg 251 . For any
x, 0 £ x@.l there are [ka] +1 values orf J such that
0 < 32“‘ < x,in which [ka] denotes integes part or 2.

Hence

[ka] +1

$x} =
nk 2k

P{ s

Clearly, S, (w ) series of non-negative terms increases to

J (@) Tor every & e 2t as k tends to infinity and hence

{5, &€ x} decreases to {u,<x} as k tends to infinity.
dence

1im
P{U, £ x} = }rw P{s, < x}

k
lim ]2 x!+1
k-

2

X

Thererore U, = is unirormly distributed over (0,1). Thus
{ U,n2l } is a sequence or independent and identically
distributed random variables, with common distribution

wilich 13 uniform un(O,l).
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Step _:2 i In order to prove the result ror general F,, defime

Ior every n 2 1

Y () =inr [x3: F (x) 2u] zor 0Cuc 1
7
=0 otherwise .
Let Z, (w) = Y, (Un(u:)) » Hence Zn(n:) is IB measurable.
For 0<u<l, Y (u)<xir and only if u ¢ F (x), therersre

Zn is a random variable and

P{z, < x} = P{u, < F(x}}

Fn(r) . (1.2. 8

]

Thererore (1.2..8) yields that Z  has distribution Zunction
Fn. Since Ul’ U2,... are independent random variables, lemma

rollows,

The rollowing theorem gives an example of SIIP defined

on (% , B, P) .

Theorem &4 3 Let { Xn, n21l } be a seqQuence or independent
and identically distributed random variables on (2%, IB,P)
naving common distribution normal with mean zero and unit
variance. Let gys g,y -+« be an arbitrary complete

ortnonormal sequence in _;? fo,T] and

%
Gy(t) = of gy(t) du, 3 =1,2,0uusy
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Then ror each t, O £ t < T the series

35y Gj(t) Xy (1.2.7)

converges almost surely to a random variable W(t) which

nas stationary and independent increments,

Proor : To snow that the series (1.2.7) converges almost

surely, it is surricient to snhow that var (Gj(t) Xj)

T
_ 1
converges. Since X. s are standard normal variables

3
£ var(ey(e) X) = 5,65 (¥) . (1.2.8)

Let us evaluate OfTIfb t](u) du to obtain (1.2.8), where
|
I(O,t](u) is an indicator runction. Since I(O,t](u) is in

LZ(O,T) and 81185000 Torms a complete orthonormal sequence

we get

To,e1™ = 4y 250 &)
where

2

é.jt =0ngj(u) I(O’t](u) du .
Hence

OfTI%O,t](u) du =0fT(j§:1ajt gj(u))z du

¥ ;: ? it 2 u)du
OJIJ-i et %kt gj(u)gk(



=j§1k§1a3t a . O.IE gj(u)gk(u) du

1

J

2
J
éT . (u) I(O,t](u) du

]
nMS

T K2
= I GS(t
& HOR

T
g 2
Since Of I(O,t](u) du = t s the series (1.2.8) converges.

Denote ;£ G,(t) Xy = W(t), then W(t) is normal random
variable Zor every t € ¢J rollows rrom the ract that W(t)
is a limit oY sum of normal variables.Clearly expected
value or W(t) is zero. Let us obtain the covariance rfunction,
Cov (W(t),W(s)) for 0« s, t<T.

Now

Cov (W(t), W(s))

o3

=jil kgl Gj(t) G, (s) Cov (X,, X,)

d z Gd(t) G.(s) (1.2.9)

On the other hand

OJI I (u) I, (w) du

T -
=o/ (2 25 85(u)) (2 g (W) au
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© oo T
=37 k&) 2y bkg gj(u) gk(u) du

= 321 335 %3

w T
- B 10 gyl wl. [Ty al
= Jgi G,(t) Gy(s) . (1.2.10)
Using (1.2,9) and (1.2.,10) we get

T
Cov (W(t), W(s)) = Of Is(u) It(u) du

min(s,t)
du &
0

= min (s,t). (1.2.11)

From (1.2.11) and the ract that W(t) has normal
distribution with mean zero and variance t, it can be
seen that the increments are independent. lloreover
distribution o W(t)-W(s) for s < t is normal with mean
zero and variance (t-s). Similarly the distribution of
W(t+h) - W(s+n) with O € s+h, t+h < T is normal with mean
zero and variance (t-s). Thererore the increments are

stationary. Hence the theorem.
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Now we give an example or a process with independent

increnents which does not poesess Stationary increments.

Let {X(t), t > 0} be a process with independent
increments having distribution or X(t) normal with mean
zero and variance t. Define new groesgs  Y(t) Tor t 2 0

as rIollows ¢

2

Y(t) =t° + X(¢t) .

To show that the increments Y(s)’Y(t)-Y(s) for

0 £ s £ t are independent, let us evaluate

P{Y(s) < ¥, Y(£) - ¥(s) < v}
= P{X(s) < y; -s%, X(t)- X(s) ¢ y, =t 5%
= P{X(s) < y; -s%,} P{X(t)=X(s) < y, =t* 457}

= P{¥(s) < y;} P{Y(t) - ¥(s) < v,} .

Hence {Y(t), t 2 O} is a process with independent increrents.
Clearly the distribution or an increment Y(t) = Y(s) is normal

witn mean (t2 - 52) and variance (t~s). On the other hand

distribution of Y(t-s) is normal with mean (*t:—s)2 and variance

(t-s), which implies thot

[ (r(e=s)) £ [ (X(t) = ¥(s) ).
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dence {Y(t), t > 0} is a process with independent increments

but the increments are not stationary,
.Next we give an example or a process with stationary but
not or independent increments.

Let {Xn, n > 1} be a sequence or independent
2nd identically distributed random variables, with common

distribution unirorm on (0,1).

Define

W

) .

n

Falt) = i&) T(0,53(%3)

I(O’t](,)denotes indicator ?unction. Then {Fn(t),o < t <1}
is a continuous time stochastic process.

Let us consider the distribution orf the increnments

Fn(t) -Fn(s) and Fn(t+h) - Fn(s+h)

sucn that 0 ¢ s < £ < 1 andocses, t+h < 1. By derinition

F (t) =F (s) = jgi I(s,t] X5

Hence
n nl n-nl
P{F,(£)-F,(s) = n} = (n,)(t-8) (1-t+s) . (1.2.12)
Similarly
n ny n-n,
P{F, (t+h)-F (s+h)=n;} = (n3)(t=s) (1-t+s) +(1.2.13)
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The relations (1.2.12) and (1.2.13) yields that the process
{Fn(t). 0¢ tg 1} is a process with stationary increments,

’

To snow that the increments are not independent, we

obtain the joint distribution of the increments
) Fn(s) and Fn(t) -Fn(s) for 0 s<tgl.

Let us obtain

PLF,(s) = my, Fp(t)-Fy(s) = n,}

= nllnzl.?én-nl_nz)_; s (t‘s)nz (1-t)n—n2-n2.(l.2.l4)

On the otner nand product orf marginal probabilities

P{Fn(s) = nl} P{Fn(t)-Fn(S) = n2}

N= n -
Py ey 1 () (t-s) 2i1tes) 2 (1.2.15)

g |
Using (1.2.14) and (1.2.15) clearly the increments are not

independent.

1.3 Construction ot SIIP .,

Tne theorem discussed below gives a relationship between
SIIP and infinitely divisible distribution, by means of this
theorem,characteristic rfunction and its representation can be
studied. |
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DwTinition 5 : . distribution F is inrinitely divisible ix
cnd only ir ror each n it can be represented as the

distribution or the sum

Sn = xl.n + Xz.n * ses + xn.n

o n independent random variables with a comnmon distribution
F « Equivalently the characteristic Yunction @ is inrinitely

divisible if tnere exists a characteristic function ‘l’n(u)

such that
g(u) = [ v (w]"

Ior every n p 1.

Theorem 6 ¢ Ir { X(t), t e} is a process with stationary
and independent increments, then X(t)-X(s) ror t.,s e 7]
such that t < s has an infinitely divisible distribution

Tor every t 2 O,

Froof : For any positive integer n, X(t)-X(s) can be written

as

n
«X(s) = ¥ Y,
X(©)x(s) = £ Y,

k=1 .
where Y, = x(s-a--ﬁ (t=s) ) - XFs+ = (t-s) ) , ror
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t Y, .» k=1,2,...,n} are independent and identically
distributed random variables, which follows from the ract .
that increments are stationary and independent. Hence the

proor,

Theoren 7 ¢+ Let {X(t), t e T} be a SIIP with P(X(0)=0)=1
such that ¢@(u) the characteristic function orf X(t) is

continuous at ¥+ = 0, then rTor every u

pe(u) = [ ¢, () 1®.

Proof We can write,

X(t+s) = X(t+s)-X(s)+ X(s).

Since the increments are independent X{t+s)=-X(s) and X(s)
are independent., Using the fact that the increments are

stationary we get

L (x(t49)

Hence Tfor u real,

X(s)) = GK(EN

Be oo (W) = B (w) By, (1.3.1)
wWe obtain,

;ig ¢s+t(u) = ;fg ¢S(u) ¢t(u)

B, (u) (1.3.2)
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Sinilarly

lim lim

s¥ ¢t(u) = s+0 ¢t_s (u) ¢S(u)
thererore

28 P = () . (1.3.3)

Hence Trom (1,3.2) and (1.3.3) it can be seen that . (u)
is continuous Zor all ¢ > O, A measurable solution to

(1.3.1) 15" @y (u) = [ ¢;(u) J® (oresuas , page 304).

Hence the theoren.
Since ¢l(u) is non vanishing (Chung,page 239)it

s

oan be expressed as
i IR )

¢(u) = exp {t log @y(u) }

=exp {t¥ (u) } . (1.3.4)

The function Y(u) is called the exponent function of

the process,.

I the assumption that the characteristic function of
%(t) is continuous at t = 0 is dropped, then the theorem 7
nced not hold, This we illustrate in the following example,

Let { X(t), t > 0} be a SIIP having. characteristic
runction [ ¢§ (u) ]t. We define a process Y(t) = X(t)-a(t),

for non-random runction a(t) given by



L.17

a(t) =0 1f t =0
=1 if t > O,

A process {Y(t), t > 0} is a process with independent.
increnents,which we are going to prove in the lemma 13.

The characteristic function of Y(t) will be

pr(w) = exp { -ia(t) }o¥w)
= exp { -ia (t) }[ ¥ (",
Thererore,

si(u) 4 [aXw) 1%,

Without loss or generality, let {X(t), t e} be-a SIIP
having P(X(0) = 0) = 1, Since the distribution or X(t) is
infinitely divisible, the characteristic function g (u) of
X(t) possesses Lévy-Khintchine representation (Doob,page 130).
Hence

lux 1+x2

log B,u) = iu a(t)+_[ ("1~ —) ¥ ‘dc'(t,x)(-lojé)

G(t, ) is monotone nondecreasing, right continuous, bounded

function in x, with lim G(t,x) = O and a(t) is a constant,

X=* =0

Lert hand side of (1.3.5) is continuous sthererore a(.) is

contimious,
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On the other hand, rrom the theorem 6 we get

$.(u) = [ () 1°.

Hence
log p,(u) =t log ¢ (w)
- ) . - 2
ux ux, 1
log ¢, (u) = t[iua(l) +_°j°' (et -1..1--—2-);( '::2: 4G (1,x)]{1.3.6

Therefore using (1.3.5) @and (1.3.6) one can write

a(t) = t.a and
G(t,x) =t G(x).
So (1.3,5) becomes

2
L
i“’:z) :: 4G (x). (1.3.7)
+*

Ir Var{ X(t)) is finite then Kolmogerov's representation

" log ¢t(u) = iua t +t_£ (eiux-l-

holds for v.bt(u), and it is given below

log ¢ (u) = luat+t L(eiux—l;iux) %2 dH(x) . (1.3.8)

a is a real constant and H(.) is a bounded nondecreasing

function, in view of the Ifollowing lemna.

Lerma 8 ¢ Ir Var (X(t) ) is Tinite,

7 (1+x®) a6(x) is rinite.

- OO
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Proor : Using (1.3.4), qbt(u) can be written as

Bo(u) = ¥ ¥

It follows from (1.3.7)
¥(u) = i‘va+ fm(ei J L )_14-_: dG(x).

- 1+x x

It follows rrom (1.3.7). iHote that if Var(X(t)) is finite
then ¥(u) is twice difrerentiable at O and the second
derivative ' (0) is of the type

0<-¥ (0) = 111_1,"6 - 5_11—2 [¥ (2h)-2¥ (0 )+ ¢ (-2h)]

2
[ . . >4
- 1'111-?0 1 f (ezl‘h.)f'_._ e-ZI.hx' -2) 4G (x)
2h - b'd
lin 1 2 ldox
= w0~ L ( - ) (21) xz 4G (x) .
e oin hx

lim

=1%o S (5 *(14x3) 4G (x) < = .

Using Fatou's lemma (Loeve, page 125) the result follows,

We give the relationship between the two representations

below

H(x) = fx(l-n-yz) dG(y) , xe R

- O

a = a+fmde(Y) .
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Conecrsely

ve illustrate below IXor some processes beth the representations

or characteristic function,

Example 1 3 Let {X(t), t > 0} be a Brownian motion process
(Hoel et. al,,page 123) with characteristic function

¢t(u) = exp{t(iuu_% uzoz)}.

In the Levy-Knintchine representation a ay and
G{x) = O iz x< 0

=02 it x> 0 .

Similarly in the Kolmogorov's representation

a =} and
d(x)= 0 irx< 0

= & irx20.

Example 2 ¢+ Let { X(t), t 2 0} be a Poisson process
(Hoel et.al.,page 96) with characteristic fumction of X(t) as

pp(w) =exp{ 1% (et 1)} .
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Thererore
log ¢, (u) = t A(et-1)
= iut A + 7 (eiux lux) 1+y2 )

z -c 1+x2

2
Thererore in the Levy-Khintchine representation

a= -zland. G({x) =0 if x< 1

=4 ir x21.

Similarly in the Kolmogorov's represantation
a =) and H(x) =0 i x< 1

=3 if x2 1.

Example 3 ¢ Let Xl, 2rs ey be independemt and identical \y
distributed random variables with distribution function F(x)}

and N($) be a Poisson process possessing mean l‘t. Fur-thar

we assume N(t) and xl, xz,..., are independent then compound

Poisson process X(t) (Doob, page 419)is given by

N(t)
x(t) = j§1 xj .

Characteristic function or X(t) is given by

u(3) = e Lre () -B}

where h{u) = f e dF(x) .
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Hence

log gbt(u) = At h(u) - At

- iut A [ -% 5 dF(x) +_tf:(eiu3&'— 25 or (x),

- 14X 1+

Thererore in Levy Khintchine representation

a=rf Xyar(x)

l-l-x2

X .2
and 6= J—24= ar(y).
_oo(1+y)

Similarly in Kolmogorov's representation

a = A .Fx dF(x)

- 00

and H(x) = S 1 y% &(y).

In particular i F(x) =0 ror x< 1
=1 Tfor x21
we get Poisson process,

Example 4 1 A process {X(t), t 2 O} with stationary
independent increments having P(X(0}=0)<}1s said to be
gamma process ir probability density function of x(t) is

f(x,t,n) = -l: expf-yxpx"™ if x>0
| B r(t) »

u>0

= 0 otherwise

( Ghosh,page 203).
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The characteristic function of x(t) is

-t
; u
¢.t(u) = [1-1 u] .

Liow we write

u=iu
log gbt(u) ==t log (
. iux  ~=ux
v e 2d:ac +t [ (elux-l-—)-— dx.
0 1 +x 0 1+

S50 making the proper identirication of a and G(,) we get

[
a =
0 1+x2
and G(x) =0 Tor x< 0
x ~uy
= [ LS gy for x > 0 .
0 1+y°

Sinilarly in Kolmogorove'srepresentation
a= ¥ and G(x)=0 Tor x < O
J'ye Ydy Tor x>0,

We.discuss below -8 glieorem which is a partial converse

or the theorem 7.
Theorem 9 : Let ¢1(u) be an infinitely divisible characteristic

runction then
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(1) ¢t(u) = [¢1(u)]t is a characteristic Tunction ror
every t 2 0, hence qs,c(u) is itself an infinitely divisitle

characteristic function,

(2) There exists a stochastic process {X(t)i, t > 0}
derined on some probability space satisrying the rollowing

conditions,

(i) x(t) has ¢t(u) as its characteristic Tfunctiong

and (ii) {x(t), t > 0} is a s1IP,
Froor : (1) Since ¢1(u) is an inrinitely divisible characteristic
runction Ior a positive integer n

¢1(u) = [¢(u)]nr

for some characteristic runction ¢(u). Using the property that,

-jl(u) is non vanishing, we can write

n
¢1('I.1) = [exP{ % log ¢1(u)}] .
So , ¢(u) = exp { %1 leg ¢ (W)} .
Ir m is any positive integer then
[ g(u) 1" = exp { 3 Log $,(u) }is a
characteristic function., As 7 tends to t,
exp { % log ¢1(u)} tends to [ ¢1(u)]t Tor every u. Clearly

. t
[(f)l(u)]t is continuous at u = 0. Thererore [¢l(u)] is a
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characteristic rfunction rollows rrom Levy:s contimuity
theorem (Loeve, page 191), Since ror every n 2 1,
[ﬁl(u)] is characteristic runction. We decduce that
[3,(u]*® is inrinitely divisible.

(2) Let for zrixed Kk, {to,tl,...,tk} c [0, =) such
that 0 = to < tl < t2""’ < tk' Suppose 1’Y2”"’Yk
are 1ndependenttrandom variables, defined ror {tl,tz,...,tk}
with [¢l(u)] i "i-1 .5 the characteristic Punction or Y,.
We denote the joint distribution function or

2""’tk- In order

to establish the existence or a stochastic process in view

(Yl ,Y1+Y2' sany Y1+Y2+-o o Yk) by Ftl’t

or Kolmogerov's existence theorem, (Yeh, page 14) we need

to show that the ZTamily

{F [{tystoreeesty} c [0,2),k 21}

tl,tz,...,tk
satisries the two consistency conditions, symmetry and
compatability.

of

For any permutation t_ t ""'ta 1 tl,tz,...,tk

C!l’ 052 k
the ordered arrangement O £ tl < tz,..., <t remains
the same ,hence symmetry rollows.

To snow compatability let us consider for rTixed choice of
{tO’tl"“’ti-l’ti-rl’""tk} c [0,») sach that

0 = to < tl | SEPRAIN < ti—l < ti*] QU 4 tk' We can derine
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lnd:. “d = sae .
pendent random variables Yl'Yz’ b Yy 0¥+ 0¥ oy W Ys

such that the characteristic runction of Yﬁ is

t -t
[py(w)] m o=l on M=1,2ye0esi=lyit2,. 00Kk}

and the characteristic function of Yi+Yi+1 is given by

t. =t
[ ¢1(u)] i+l “i-l .

Derine

Yl+ f2+ ...+Yj, then

S.j=
lim Fo & & (xl,x ,...,xk)
1Pty 2

b Jadd

= lin P{Sl_(_ "1'325-"2""'31:-‘-"1:}

Xy

P{s £X)55, £ XpreeesS; 5% Xy 555548 xi+l,..Sk<_xk}

Since Sl, Sz"“'si-l'si+1""’sk can be derined by using

independent random variables
LD PIIRIR S RASALI TS RAFPOLLLLE L
derfined as above ror {tO’tl""’ti-l’ti+1’""tk} c (0,=).

Hence

lim F
X,

i

1’t2'°"’t (xl’xz....’xk)- - T, -:’ sl e

= Ft]-’tz' seae ’ti—l’tl+l. .e e ’tk(xl’xz’ . o..xi-l’xi-'.l, . 'xl{) .
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and compatability holds,

Thererore there exists a stochastic process {x(t),t >0}

with its characteristic function

¢, (u) =[g, (w)]".

To show that the increments are independent we use the

ract that for 0O < tl < t2

L(xltl), %(t,)) = L 1Y+,

For 11,12 real we obtain
)s_v(llx(tl) + 1(X(t,)-X (%))
",L(,( L-1,) X(tl) +1,X(x))

= L((ll-lz) Y+ 1, Y,) .
Thererore L(X(tl) ,x(tz)-)((tl)) = L( YIYZ)'

Since Y, and Y2 are independent X(tl) and X(‘l:z)-x(tl)

L ]

arc independent.

Hence, in general x(-tl),x(tz')—x(tz),..,x(tk)-x(tk_l)
are independent and the process (X(t), t 2 0} is a process
with independent increments, The characteristic function

or an increment X(t)=X(s) for 0 ¢ s < t and
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{s,t} c [0,%) 15 given by [¢1(u)]t—s.

Thererore the increments are stationary, Hence the

procr,

In the above theorem ir the assumption that $y(u) is
infinitely divisibility is dropped, [¢,(u)]* need not bve
characteristic Yunction for non-integer t, is illustrated

in the rollowing example,

Example : Let X be a rendom variable taking values -1, 0 ,1

with probability 52-, g' and -S— respectively, The characteristic

function of X is

#(u) = %[54-4 cos (u)l.
Since the distribution has finite support ¢(u) is not
inrinitely divisible. I possible let [o(u) ]':;" is a
characteristic function, then there exist@ & ¢h&racteristic

function ¥{(u) such that

o) = [ v(wl’ .

Since, ¢{u) is a characteristic functicn of three point
distribution, v(u) cannot be even the characteristic
runction of a two point distribution, ¥(u) can not be the

characteristic Tunction of a degenerats random variable

1 -
Hence [¢(u)]3 can not be a characteristic function,
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Example (1) Let ¢(u) = exp {- % u? 02} be the characteristic
2

runction of N(O, 02), tnen [$(u)]*® = expl- % u? oo t} is a

characteristic function or the increment X(t+s)=X(s) having
distribution N(O,czt). We know that X(tl) ,x(tz)-x(tl), ceeny
are independent normal r.v.s, thererore (X( t_L) yeo .,X(tn)) is
a multivariate normal, 50 {x(t),t > 0} is a Gaussian

process (Doob,page 7Tl). Tne covariance function will be

Cov(X(t), X(s)) = cg , B t .

So {X(t), t > 0} is a Brownian motion process.

-1
Example (2) Let #(u) = [1-i <] so we can obtain

t -
[3(u)] =[1-i -lf— ] ¥ a characteristic function of
X(t+s)-X(s). Distribution of X(t+s)-X(s) is gamma with
1 (X(0)=0)=1 and having probability density runction

t - u)sct-l
i(x, t , u) = —= irx >0
(Ip » ) I'(t)
t >0
r>o .
= 0 otherwise.

Thus {X(t),% > 0} is a SIIP.
Example (3) Let ¢(u) = exp { a],u]‘s} then,

[¢(u)]t = explat Iulﬁ} will be a characteristic runction of
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stable process (EBreiman, page 318). Distribution
or the increment X(t+s)-X( s ) is stable with parameters
« and g . So {X(t),t > O} is a stable process with

staticonury and independent increments.

It is orf much importance to know the finite dimensional
distributions oI a process. The lemma proved below gives the

Iinite dimensional distributions or a SIIP,

Lemna 10 . Finite dimensgional distributiorsof SIIP are
deternined by the distribution or X(1); ir P(X(0)=0)=1 and

¢t(u) is continuous at t = O Tror every u real,

Froof ¢ To prove the lemna it surrices to obtain

¢t11:2.....1: (U sups e oo puy )= Elexp{ zllu X(t5)}]
O U uyseessu € RBoand 3,850t € ]
=B [exp{i(u1+u2+. . .+un)X(tl)
*i(uyre oot JIX(EX(5) ]+ ceiu [X(t )=x(t ;)1}]
by Cuyugheesty) By g (ugteesig) edy (),
Using theorem & we get

t
=[¢1(u1+u2+. . .+un)] 1[¢1(u2"" . .+un)] .. .[%(%)]n Thl.

Hence the proof,
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Lemna 1, I {X(t),t€}} is a process with independent
increments and E!X(t) |2 < tien
Cov(X(t),x(s)) =var(X{t A s)).

t As stands ror min (t,s).
Procf Let s < t €, then

Cov(X(t),x(s)) = Cov(X(t)~X(s)+X(s),X(s)
= Cov(X{t)=X(s),X(s))+Var(X(s)),

covariance term vanisnes due to independence of increments.
Hence

Cov(X{t),X(s)) = Var(X(s)) rfor s < t,

similarly
Cov(X(t),X(s)) = Var(X(t)) Tor t < s.
Hence the proor.

Lemma 12 Let {X(t),t € J } be a SIIP with finite mean and

variance, then

E(X(t))

]

m, +ml t
where m, = E(x{(0)) and m = E(x(1)) - o .

Similarly Var(X(t)) = 0%(y)

2
2 (0) )2 and
where oy = E(X(0 ~m

Ead

ci = B(x(1)-u))%= o2 .
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Froof : Derine r(t) = E(X(t)-X(o)) then for every {t,s}c:ir,
(t +s) = E(X(t+s)-X(0))
= E(X(t+s)-4(s))+E(X(s)=X(0)).

Since L(X(t-l's)-x(s)): L(X(t)) due to stationary increments:
Ve get |

f(t'l'S) = f(t)+ f(S) . (10309)
A bounded solution to (1.3.9) is given by

(t) =t (1),
Thus we deduce

E(X(t)-X(0)) = t E(X(1)-X(0))
whiich implies that

E(X(t))=n,  + mt .
similarly let

g(t) = Var(x(t)-X(o)).

a Var{X(t))-2 Cov(X(t),X(0))+ar(X(o)).

Using lemma 11 we get

2 2

o O
.

2
=0x(t) T

We can write
g(s+t) = Var (X(t+s)=X(o))

= Var (X(t+s)=X(s) +X(s)=X(0)).
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In view orf independence or the increments X(t+s)-X(s) and
AX(3)=X(o) we get

g(s+t) = Var(X(t+s)-X(s)) + Var(x(s)-x(o)),
Since L(X(tfs)-X(S)) = J\'(X(t)) ’ |

g(s+t) = g(t) + g(s). (1.3.10)
Hence a bounded solution to (1.3.10) will be

g(t) =t g(1)

da(t) = 95 + t¥ar(X(1)-X(0))

= oo+ t (Var(x(1)) = o2)
= og + £ of .

Zence the proor,

IT P(X(0)=0)=1, then E(X(t))= mt wnich is a monotonic
runction or t and Var(X(t))= c{ t, which is a nondecreasing
runction orf t,., Some properties or process with independent

increments,we summarize in the Jenma given below.

Lemma 13 Ir {X(t), t €J} is a process with independemt
increments, then so is
(1) -x(t) te T
(ii) X(T)-X(T=-t) © 0<&t¢T, T fixed};
(111) x(t)-~ a(%t) t ey,
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a(.) is any runction or t € T

(iv) X{t+c) = x(c) te 'j » © constant.

“1r00Y (i) Define

Consider Al’Az subsets or state space orf X(t) and ty <t
such that {tl’tz} c 7, then

2

P{Y(tz) - Y(tl) € Ay, Y(tl) €A }

= P{-[X(t,)-X(£)] € A, X(t;) € A}
= P{—[X(tz)—X(tl)] > Azl -X(tl) € Al}

Hence {.Y(t),t €T} is a process #ith independent increments.
(ii) Define

Yo () = X(T)=x(T-t).

Let Al,Az be as above and tl > 't;2 such that

{tl,tz} c [0,T], then
P{ Yo () & A, Yp(t)) = Yy(t;) € 45}

T {X(T)-X(T—tl) €A, x(T)-x(T-tz)-X(T)
+ X(To-tl) e A2}

= P{X(T)-X(T-t,) & Ay, X(T=t,)-X(T=t ) e A}
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Since (T-tl,T) and (T—tl, T-t,) are nonoverlapping we get
=P{X(T)-X(T-t;) e A} P{X(T—t,)-X(T-t;) € 4}

=P 1 - :
{YT(tl) > Al} P1YT(1:2) Yl(tl) £ az} .
Thererore {IT(t), 0 ¢ t £ T} is a process with independent

increments,
(iii) Derine
Ya(t) = X(t)-a(t).
Then for t; < t, such tnat {t,,t,} € 7 and 4,4, chosen
as above,we evaluate
P{Ya(tl) < %y Ya(tz) < x2}
=P{X(ty) -alt,) £x;, X(t,)=X(t))=al(t,)+ alty)< X}
P{x(t,)-a(ty) <X} PEX(E,)-X( )-alt,)+ a () <x,}
B{Y_(t;) ¢x } PIY_(£,)-¥ (t1) < x5 },

Thererfore
tYa(tl), tef } is a process with independent increments.

(iv) Y?t) = X{t+c)=X(c) can be snown to have independent
increments for any ¢ constant; using similar argument used
in (ii). Hence the prcox.

It is proved in (iv) for c constant Y®(t) is a process

with independenmt increments, however with rsoce assumptions
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_ab?ut Leencinuity, ¢xX sample paths (iv) nolis ir c© ic

r o =

replaced:hy -stopping Limgs, Tnis is established in theorem 21.

1.4, xelationsnip witn wartingales nd larkov process.

Derinition 14 ¢ A prosess {X(t),0<t < =} is called a

mar$ingale iz E(|X(t)|) <= ror all t » O and ir ror all 0 {s<t,

E(X(t)|x(x), 1 < s) = X(s) almcst surely (Breiman,page 300).

Tnecrem 15 5 Ir {X(t), O &t <=} is a process witn independent
increients with IXinite expectation ror all t 2 O thenrs

{x(t) - B(X(t), O« t < =} is a marting-de.

Irosr. withous loss or gensrality let us assume E(X(t)) = O.

Ir E(X(t)) is non-zero, we subfrzct E(X(t)) rrom X(t).

{x(t)-E(x(t)), 0 £ t « =} is a process witn independent .
*
increments rollows rrom lemma 13 (iii). For 0 ¢ s & t

EQX()1X(t), T & s )
= E(X(%)=X(s) + X(s)|X(T), £ s)
= E(X()=X(8) |X(1), 1< §) + B(X(s)|x(1), 1< s).

since X(t)-X(s) is independent or X(t), T £ s we deduce

B(X(E) 14(t), 1€ s) = E(X(t)-X(s)) + X(s)

= X(s) witn probaoility one.



Hext th..rew relates a crecess having independent

-narements with tlarkov priocess.

Derinition 16 : A process {X(t), t > 0} is calléd Harkov

witnh state space SeIB ir X(t) € S, t >0, and ror any
3¢S, t, 120,

P(X(t+ 1)e B{X(s),s ¢ t) =P(X(t+ 1) eBjX(t))
wita probability one (Breiman, page 319).
Tneorem 17. & process {X(t), t > 0} naving independent
increments is a lMarkov process.

Frooxr, For any t2 0,X(t) can be expressed as a sunm or
independent randonm variables as rollows., We consider

O =to A tl”"'s. tn at and dexrine
Yk = X(tk)-X(tk_l) . k.-=1’2’ s e e ’n.

n -
Tanen X(t) =52 Y, - Tne random variables Y. 5¥,,...,Y, are
indepenicnt rollows rrom the conditions c¢r the theorem. In
order to veriry thxt the process is Markov it is enough to

show ror any B subset or state space

P(X(tn) eB]X(tl) ,x(tz) pass ,X(tn_l)}

= P{x(t ) € B|x(¢,_;)}
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witn provability oae (Breiman, page 319).For any Borel sets

C,D let us obtain
P{X(tn_l) eC ,'Yn £ D]Yl,YZ,...,Yn_l}
=-.E{IG(X(tn_l)) ID{Yn) IYl,Yz,...,Yn_l}
= I (x(t, 1)) E(In(Y ). (1.4.1)

Sinilarly we evaluate

P{x(tn__l)e C, Y € Dlx(tn_l)}

B{Io(x(t 1)) I(Y )| x{t, )}

= I(x(t_;)) E(I,(Y)) . (1.4.2)

Using (l.4.1) and (1.4.2) we deduce that

P{xu:n_l) eC, Y ¢ D]Yl,YZ,.. Y, 5}
= P{:{(tn_l) eC, Y ¢ Dlx(tn_l)}.
rarticularly ro_r Ae BXIB
P{X(t,_1),Y, ) €AlYy Y ,..Y, )
= P{(X(t, _4).Y,) € Alx(t ,)}.

TnereIrore ror B € IB
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PAX(t 1) + Y € BlY,,Y ,..,Y, o}

=P{X(t, ) + Y e Blx(t )} .

Hence

PX(t ) € BIY,2Y 50e0,Y o }=P{X(t) € B]x(t _;)}(1.4.3)

Since tne orield generuted by {Yl’YZ”"’anl} is same as

tnat or tx(tl).x(tz),...,x(tn_l)}, (1.4.3) becoaes
P{x(t ) eBIX(t}X(t,) o0, X(t, 1) }=P{x(t ) eB | X(t, ;)].

Hence the tneorem,

An example illustrating that the converse or tne theorem 17
does not nold is given below,

Let 1Kn.1;21} be a sequence cr independent identically
distributed unirorm rundom viariables over (0,1),

Perina

n
Fn(t) = 351 I[O’t](xj)

JTh& L) = ir X. g |0,t
where I[O'tJ(XJ) 1 b} 3 [ ’ ]
=0 otherwise.
Tnen { F (£),0 £t & 1} is a continuous time stochastic process.

Mcreover it satisries Markov property . IY  1is veriried as

Trollows.
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Cnoose 0K tl < tz’f“<tk < 1, and denote

Falty) = vy ElYy) ~(t, ;) = Ts 352K, -

dow we obtain

P{Fn(tk)ﬂnlpn(tj) i=1,2,...k=1}

ni Tr b n-m
E ek eyt l(t -t) 2o (-t ) K-t
) :——HT“ o —":1'“ }'2 Tl  n-mr,
_1“2';‘. Tyt (nemer e ty 7t mtg) Ceel (b -t o) (1-t, )
T n-n
(nemer, )t (tk"‘tk.]_) (1“tk) .
Y (n-r) ! (n-tk—i)n-m+ £y ! rlu I‘Z,-..,rk>0 Zl ry=m<n

= PtFn(tk) = ml Fn(tk—l)} .

Tnus we deduce {F_(t), 0$t & 1} is a larkov process. The
pl'ocess {Fn(tj’ 0t £ 1} does not poscess an independent

incredents is snown in sectien 1.2, exaaple 2 .

A S:i2 with additiuvncl assurpptions regarding sample paths
(beys strong Mlarkov property. In order to prove tnis, the

necessary results are included below.

Derinition 18 s For any process {X(t),te€"]},2 randon veriable

t* > U will be calleu 2 stopping timeé 1I 10r every t20C,

{t'¢ t} e TF(X(¥), TL t)
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F(X{1), 1& t) is the o rield generated by random

variables (X(;), 1€ t) (Breiman, page 268).

ot . * . . 2.
euna 19 ¢ I t7  is 2 stopping time corresponding to the

Luwna 19

process {X(t), t eJ} then

= K » k=l 4P kB . -
th= 5 ix =t g S Lk 01 (1L.4.4)

is a stopping time ond ror Be IF{X(s)|s <t },
BN {t_ < t} e F((s), s < t).

Eroer.For =< t ¢ S, from derinition or t,

Je I (X(s),s¢S ). (L.4.5)

8Six

» *
n < 't} = {t s
Since IF (X(s), S< -f-l-)c F(X(s), 8stT ).

*

{tn_<_ t} eF (X(s), s<t) .

Tnus we can say t; is a stopping time., Now, Ircm tne ract

that t'C ¥, we get B e T (X(t),t s £ ), implies tnat

B e TF(X{t),t < t:q). We have B n{t*;1 <t} e F(X{g),s ¢t) taercrore,
" n{t; Ct}e Bﬂ{t*s, %}Em(x(s), s t). Hence tne proor,

Deriaition 20 : D([a,b)) is the class or all runctions

X(t),a £ t < b, which nave only Jjump discontinuities and waich

are right continuous (Breiman, page 299).



Licxt theorem proves tnnt {X(t),t > O} posseses strong Warkov

property, under certain conditions.

Incorem 21, For {X(t),t2 0} a 3IIP wity sauple patns ia D([0,»)),
ir t* ic any stopping tiue, then {X(z+t)=X(t"), t20} nas

the s:me distribution as th.t or {X(t),t 20} and is independent
or T(t),t <€)

Froor. We discuss the procr in two csetos as rollows

St-p 1 : Here we considsr t* +to be discrete, taking countable
number or valuea {r }. Considering Ashnseeshy €18

. * r}
tl’tz""tj 20 and B e IF (X(t),t £ t ) we obtain

-

PtY(tl) sAl.Y(tz) £ AZ,...,Y(tJ) € A,,B}},

[=.2] * =
=kilP{Y(tl) eayseeo¥lEs) €450 = BB} s (1,4.0)

e

where _ -

Y(t

i

Furtnermore, we ncte tiint

) = X(xg ot ) = X(t%) ..

-

* * .
{t'=)ni{tertnBe{t=xl}ne.
* - %
Since w € {€'= rk} N B implies thaot w E{t £ rk}ﬂ{t =rk} i B,
W [oVe

#*
(= qlnselt ¢ g} n{t =g} ns.



1,43

tt*= T ,B} e Fix(t), g T},

Thercerore (1l.4.6) becomes

018

P{Y(tl) Elﬁ’oo-,:{(tj) £ Aj,t* = TK,B}

k=1

=kz’.11-"{}£(tl+tk)-x('rk) € Al,...,X(tj-n-rk)-X('tk)a Aj}

X Pi‘t* = TK’B }.
= P{x(tl)e A ...,xu:j) € Aj} LP(B). (1.4.7)

Cnocsing B = 2(l.4.7) bacomes

P{Y(tl) a:.xl,...,Y(tj) e;;j}= P{x(ty) .‘:.A.l,...,.\'(tj) eaj} .
st.p 2 Ir t'  is not discrete tnen we use ‘t:l derined by

(lo'{".h)c Derine
yn(n) = Xttt + tn } =X (tn).

Rererring to lemaa 19 and taking Be F(X(t),t ';‘_t; ), by the

similnr arguments used in step 1 we get
PAY (£1)¢ Xp5eees ¥ (£5) < xJ..B}

=P{X(ty)< xl,...,x(tj) < xJ.} p{B}.

Tne sample pa2ths are in D([0,=)) yield,zor every w and t
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X(t#t )= X(t ) ~ X(tst ) —X(£ ). Tnis implies

Yn(t) ~ Y(t) as n-= ror every w and t,, Tnus ot

cvery continuity peint (JL‘L,Xz,. ..,xj) or distributicn runction

I Y(tl)'Y(tz)"“'Y(tj)’ we conclude

P{Y(tl) <xl,...,Y(tJ.) <xJ.,B}
=P{x(t1)<xl,. ..,X(tj)< xj}P(B) . (1.4.8)

The relatizn (1.4.8) nolds zor any BeIF(X(t), t & t* ),
tacrerore, {X(t), t 2 0} is independent or F(X(t), t < t* ).

d:cnce the procr,

Tne conditions ror sasple paths or SIIP to be in DO ,oo))

are given in tne next chapter,



CHAPTER 2

2.1 Introduction

In this chapter we discuss centering of SIIP and its
sample path properties. We also discuss the decomposition
of SIIP into contimuous and discrete components which are
independent, The cogponénts are independent 2nd the continuous
coaponent is a Gaussian process. Finally we dicuss

characterization of Wiener process and Poisson process.

2.2 Sample path properties
Below we include results which make possible to choose

a non-random runction a(+) such that the sample_function o
{X(t)=a(t), t > 0} P0OS8€SS some continuity properties.

Any Tunction a(*) of sucn type is called a centering
function and {X(%)- a(t),t 2 O} is called a centered process.
Moreover {X(t)-a(t), t > O} is a process with independent

increments (lemma 13, chapter 1).

Lemma 1: If {X(t), t 2@} is a process with independent
increments, then a non-random Tfunction a(t) can be chosen
in such a manner that X(t) -a(t) has no discontinuities oI

second kind (or jump discontinuities).
Proor 3 Let X(t) and %(t) be two identical copies taken on
the same probability space such that X(t) and X(t) are

.independent or each other. Derline
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X" (t) = x(t) = X(t) for all t > 0.

Let qbt(u) and qbs’t(u) be the characteristic functions of
X(t) and X(t)=X(s) respectively. Hence h_b(u) = |¢t(u)'|2

and hs't(u) = Igbs’.t(u)l:2 will be the characteristic functions
oT x*(t) and xf(t)-x*(s) respectively. CJ.eérly 0« ht(ﬁ) <1
and for 0 < s <t

h,(u) = h_(u) hy y(u) (2.2.1)

implies that ht(u) is a monotonically non-increasing and
bounde'd. function of t. Thererore hg ofu) and h, ofu) exist
Ior t 2 0. To complete the proor we need to show that

lim X(t+n) = X(t+0) and lim X(teh) = X(t-0) in probability.
h+0 hyO

Using the relation

ht_'_o(u) = g—i-_[g hs(u).

we show the existence or X(t+0). ht_'_o(u) being a limit of

C,.p\. ‘\:t t -

inrinitely divisible characteristic runction/, it is also

inrinitely divisible characteristic function (Chung,Page 24h) .
So it is nonvanishing and we can choose 6> O such that
ht-n-O(u) >0for |u| <&, which implies that ror all |u] < $
there is s, > t such that hs(u) >0 ror t < s <s,. I

t <'sl < s, from (2.2.1) we get
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h, (u)
h (u) = 1
S, S, hszluj *
Tharerore
h_ (u)
lim h (u) = 1lim S
S =
s,+t  S1%2 S+t Syt —lr)—hsz m 1.
Thus ror every € > O ,
lim P{|X*(52)- X*(sl)| >e} =0,

sl+t,s2 +t
We deduce

X*(s) = X*(t +0) in probability as s +t .

Similarly existence of X (t-0) can be proved. Using
lemma 3 or Gihman [2] et.al. (page 384) Tfor a symmetric

process

P{ sup  |x*(s) = X*(t+0) | > ¢}
t{s<t+§

<2P{ | X" (t=O-X (t+0) | > € } . (2.2.2)

Allowing 46— 0 in (2.2.2) we conclude X*(t) has only
jump discontinuities with probability one, Thus ror
almost all fixed w, , X(t,w ) = X(t, wo) has no
discontinuities of second kind. So a(t) = X(t, W )

can be considered as centering function.



We consider for further discussion the process to be in
D([0,=))that is the class of all functions {X(t), t > O}

which have only Jump discontinuties and wnich are right

continuous,.

Definition 2 ¢ A process {X(t), t > 0} with stationary

and independent increments satisXying the following
conditions (a) and (b) is called a Levy process.

(a) X(t) is continuous in probability that is, Zor every
€ »0
P{|x(s)| > e} =0 a t -0,

(b) There exist left and right limits X(t™)amd X(tV),
further X(t), is rignt conmtimous.

Next lemma gives the conditions Tor continuity oI

X(t) in probability. -

Lemma 3 Let {X(t),t >0} be a SIIP such that @.(u) the
characteristic runction or X(t), is continuous at t =0

Tor every u, then X(t) is continuous in probability.
Proof Let us assume that P(X(0)=0)=1l, hence
X(t+s) = X(t+s)=X(s)+X(s)-x(0) .

Using stationary independent increments property, we get

L()((t-l-s) = 1(~x(t) + X(s))



and

¢t+S(u) = ~¢t(u) ¢S(u).
Thererore

Lin gy, () = Un g o).

Since ¢(u) =1 we can write

Py (u) = li Bips () o (2.2.3)

Similarly

i{g ¢ (u) = Lim &, _g(w) g, (1)

Gy (u) = Lin b (1) - (2.2.4)

From (2.2.3) and (2.2.4) it follows that ¢, (u) is

continuous in t. Thererfore

lim ¢ (u) =1
st0 S

which implies that X(s) =0 in distribution as s —~ O hence

X(s) = O in probability as s —~ O.

Since
fx(sN = J(£)-X(t=5))= [(x(4s)-X(s)) -

1t can be seen that
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X(t+s) = X(t) in probability as s—=0 and
X(t-s) =X(t) in probability as s = 0.

Lenma & If {X(t), t 20} is a Levy process then

P{IX(t)=X(t-0)| >0} =0
ror all t > 0,

Eroaf Since X(t) is continuous in probability for € >0,
P{|X(t) - x(t=-0)] > €}

=1im P{[X(t)-X(t=h)] > e} =0,
h-0

Thererore xYor every n » O

P{|X(t)-X(t- 0)| > 2}=0 .

But
p{ T, {Ix(e)-x(t0)1>2}
= P{[|X(t)~x(t-0)| >0}

= 0 .
Hence the proof.
Derinition 5 A process {x(t),t 2 0} is said to have no

fixed discontinuity et t, 2 0, if Tor € > 0,

lim P(IX(£)-X(t )] > €) =0 .
t=t,
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Next, theorem proves that a process can be centered so
that, the number of points or fixed discontinuity is at most

countable, First we prove a required lemma,

Lenta & Let X.L,X sees be independent and identically

distributed random variables,
Ir (XX = int {e lpik -x | 2e} < e}
ror random variable X, then xn converges to X in probability

as n tends to inrinity, if and only irf d(x’xn) converges to
zerc as n tends to infinity.

Proof If d(X,Xn) converges to zero, then

d(x.‘. )g,l) <§ VvV n ),nou). rnich means

a = 12r{e|P{|x-xn| >e}<e} s .

Thererore there exists € such that e, <a,+n where

n > 0. Suppose an< § , then p can be taken ;‘E-—an— ’
hence
§ =8,
€y 4 a, + n = a, + >
-2,
- 2
< 6 o

Thererore for every n 2 n,

P{IX-X, | 2 8} SPLIX-X,] 2 ) S &n<s s
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which impiies that, for every n > n,

Pllx-x_1 2 6} <6
Thus xn =~ X in probability as n =« ,
Conversaly it Xn -~ X in probability we get

P{Ix-xnl 2 €} ¢§-forevery n > n (&) .

Thererore, for € 2§
P{jx-x | 2e} <8 < (2.2.5)

and for €< § we get
P{IX-X | 2 6} <PEIX-X,] 2 €} <5 (2.2.6)

Thus rrom (2.2.5) and (2.2.6)

P{IX—)&JZG} L6
Hence d(X .xn) -0, if X, ~ X in probability as n—=e ,

Theorem 7 Let {X(t), t 2 O} be a process with independemt
increments. Then there is a function a(*) defined for t 2O,
such that Z{t)=X(t)-a(t) has at most countably many points

of rixed discontinuity.
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Prool Suppose O < S1 £ 85 ... a@re such that, s < t and

S, = e 3ince the increments arc independent,

:j£’1 ( X(sjﬂ) —x(sj))
is a series of independent random variables, Therefore

X(£)X(5;) = 2, (R(s4,0)-X(5 ) + (X(£)X(549) )

8]
T
s
nr

Using theorem 2.8 (Doob, page 119) we conclude .

1im (X(sn) - a(sn))

n—-o

exists and finite with probability ome for some {a(sdin2 1]}
as centering constants. Thererfore if Z(sn)=X(sn)- a(s n)

then

lim z(sn)

I =™

exists and is finite with probability one.

Hence
Z(sn) ~+ 2(t = 0) in probability as s, ¢+ t and

Z(sn) - Z(t + 0) in probability as s, + t .

Dezine, a(X ,X ) = inf { e |P{IX-X,| > €} < e}, then from
* [

lemna 6, for each t 2 0 , random variable Z(t) is a point
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oY a coumplete metric space, so that the random variables of
the Z(t) process define a function £(t), Tor t > O with the
valuss in this metric space. Since Z(t+0) end Z(t -0)exist,
thererore £(t+0) and £(t=0) exist ror t 20, '

Let
= {tlz(t+0) - 2(t-0)|2 L }.

If t e T(n) and 2(t=0) exists then an interval can be
obtained such that t is the right end point of an interval
contalning t but no other point of T(n). Thus a set of
intervals each contéining a single point of T(n) and all -
points of this set are contained in the intervals and the
set or non~overlapping intervals constituting [0,) can be
cbtained. Since the set of disjoint intervals is at most
enumerable, T(n) is atmost enumerable. Hence the proof.

We discuss bclow a theorem regarding tfxe boundedness oI

saxple functions of X(t).

Tneorem 8 Let X(t),t 20} be a centeredsepprable process

with independent increments. Then almost all sample Yunctions

0T the process are bounded for ¢ <t £ 4.

proor Let m(t) be a median oI x(d)-X(t). Consider
c¢s s dand s, 4 t, then every limiting value of the
n =

sequence {m(s )} is a median oX x(a)-X(t=0). Far c{t £ d m(t)
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is bounded in t thererore |m(t)] ¢ k. Let

2(t) = X(t) - X(c) #+m(t) c < t < qd, clearly {Z(t),t > 0}
]

15 process with independent increments and median of

Z(d)-Z(t) is zero, If Yl,YZ'-oc are independen‘t random

variables and X, = Y- +Y +"""'Yj and iy Xn - xk have

3= t1T2
zero median tnen using theorem 2.2 (Doob,106) we write,

P{ pax X.(0) >2 } < 2P{X (w) 22 } »
195.1'1 50 22 b e {x (w) 22 }
Hence, for 3> 0 and ¢ = to< 1:1,...,< tn< d,

P{max Z(ty,»)2 X }<2P{z(d,w) 21 }.
1<J<n
This implies
P{max X(td.w ) - X(c,w) 22 +k}
1L Jj<n
¢ 2P{ X(4,wv )=X(c,w ) 21 } (2.2..9)

Relation (2.%.7) is true for all finite subsels {t j} of
[c,d}.Since {x(t).,£>0} is sepérable, we write

r{ sap X(t,w)-X(c,0) 2 A+ k}
c{tgd :

¢ 2P{X(d,u )= X(cu) 22 } | (2.2.9)

oimilarly ror -X{(t) one can write
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P{ sup X(c, u)-X(t, 0) Dr+k
CStS_d ’ ) (t )_"’}

& 2P{X(e, w)=X(d, w) 22 } , (2.2.8)

Hence from (2.2.,8) and (2.2.6) it follows

P{c;&le(c, w)=X(t, w)| 2a+k}< 2P{|X(c, w)-X(d, w) |2}

(24.10)
Put Var(x(c, w)-X(
X(c, =X(a,w
B{[K(e, 0)-X(d, 0)| 23} ¢ s T2 )
A
_ .2|c-d|
12 )

ThererXore Zor surriciently large A

P{|X(c, w)=-X(d, w)] 212 } can be made arbitrarily

small, Hence the proof.

2.3 Characterization of Wieper and Poisson processes

This section is devoted to characterization of Wiener
process and Poisson process,
Theorem 9 én indeperdert increment process tx(t),t > 0}

with P(X(0)=0)=1 is ifiener process having continuous mean

a(t) and continuous covariance function qa(min (s,t)),

02 (0) = 0 if X(t) is continuous for almost all w.
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Froof Let tnk, k = l,2,...,mn be a subdivision or the
interval (s,t) into subintervals of equal length; such

that
m

L P{x(t, ) x(t 1)] > % } < %

. (2.3.1)
k=1 ny_

For X(t) continuous and possesing independent increments,
choice of such subintervals is possible due to theorem 4,
of Gihman [2] et. al-,(page 188).

DeZfine

xnku x(tnk) - X(tnk-l) and

=

X, = iz ¢ =

=0 otherwise.

n
Let X = 'x“ xﬁ then

nl
5 1
P (X} 4 X(t) - X(s)} E PLIX(t, )-X(s, 1> g}
1

Hence X' converges in probability to X{t)=X(s) as n tends
n

to infinity. (2.3.2)

1 2 '
' = =V
Denote a_ E(Xnk), g ar(Xnk)
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We discuss the proor in two cases as follows

Case (1) lim oﬁ < o | (2.3.3)

n<+wx

Using (2.3.3) it follows that, there exists a subsequence

nJ. such that::“qi = 02 { =, Por further discussion we |
rx '
express Xln. as
J
mn:l
X'=a' +I" (X} -ayy ) (2.3.4)

By central limit theorem (X]:1 - %'1 ) converges in distribution

to normal random variable X with mean zero and variance d2
]

From (2.3.2) it can be seen that converges in probability.

Hence al'1 converges to a limit say a. Therefore

J
X(t)-X(s) = a+X . (2.3.5)

Hence the proof.

Case (ii) lim oﬁ -,
n +o

For any ¢ > Qs q, °can be chosen such that

2
-C .
kﬁl

To exhibit the choice or Uy, let

' C : " o]
= [ = and = [ 1.
qn [ min o ] qn 1‘1‘-4@\; 02
1ckem Ty 1Kam Tk
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Lx] denctes integral part of x.

Then "
L 2 ¢X %'n o
k=1 nk k=1 <Y °*
Define
min{a>q.;;| 92 >c}.
Then Q-1
Q -—
n 2 n 2
kﬁlonkzc-and kil Unl:é‘c'
Henc
ence Q
c £ £t 0 <+ ig .
k=1 nk
Q n
Therefore Z cﬁ - C asn—~<,

. q '
Using the central limit theorem we get in (Xnk - a'nk)

converges in dJ.strJ.butlon to a nor'mal random variable.

- """ r‘) - ."’-.‘,— o

oA

A

PR

le {exp(luli )}l 'L 1:|.m | JI exp {lu (x“k-ank)}T' .

-u2c2 } .

¢

Hence

n-’

= exp{

Since ¢ is an arbitrary

lim E{exp(iu X )} = 0»
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which contracticts (2.3.2) . Herce case'(ii) carmot hold.
Thererore X(t)-=X(s) has a normal distribution and

a(t) = E(X(t)), ¢(t)=Var(x(t)).

Theoren 10 Let {X(t),t > O} be a Levy process with
P(x(0)=0) =1. I? almost all sample functions are step

functions with Jjump 1, then X(t) is a Poisson process,

Proof Suppose ror each n

Sit <t -.u(t S_t
g n Ty

n
be subdivision of an interval [s,t].

We denote
= X(t, ) - X(¢ ).
x“k e Dy
Define
' m if =0 or l
xnlc xnk xnk
=1 if xn > 1.
Therelore, k

I‘ = 2 x .
nop1 %%
P{ sup )é.;ﬁ > 1} = 0 rollows from the fact that the jumps
lek<mpy
of X(t) are of size 1. We need to evaluate

' mn—l
P{x’ A X(t)=X(s)} = REop(xnK >1)
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tc show that Xn converges to X(t) -X(s) in probability.

Slearly
On=} k=1
P{ sup X, 1} = I T P{X <1} p{x_ >1}
1<k<m Ny =C j=0 I3 g
mn
2};50 P{xn >1} T P{x.n <1}
J=0
m
- r. P{ >1} [1-P{ supx >1}]
X, 18&n,
Thus LR
B Nelx,, »1} ¢ Plswp x tH1T 511
2‘.‘\1-’}{ 21 <Psupx =F{sup
k=0 '\ ] P ckem g éiki"{?’k
Hence
xn ind X(t) - X(S) as n—~o °* (2.3.6)

lim Eexpl-ax;l}

n-—ox

E exp{ -a[X(t)-X(s)]}

= lim %‘Eaxpi-af }
n-~o k=1 0y

- 1n T [P, ) a8, em(-a)]
n-— o K= 1 k

wnere Pnk = P{xnkﬂ} =P{}'§1 2 1} .
- lim 11 [1- P, (1- exp(=a))]

n-— oo b=

£ ,}.i-";oklitl exp { -Pnk(l-e:q:(-a))}

= lim  exp {-Pn(l-exp(-a)} (2.3.7)

n-~«
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m
Where P = tRp

k=1 nk !
Hence (2.3.7) reduces to

ei-<«mw-%x] Loxp {~(leexp(~a)) 1im P_} .
o n —o« n

Since X(t) is continuous in probability a g > 0 exists such

that Itl -tzl <

P{ X(t,) = X(t))| = 0} = P{IX(t )-x(t,) < ¥}>0.
(2.3.8)

Thererore

P{x(t)-x(s) =0} >0

and max P =0 as n - < due®stochastic contimity or
1(k(mnnk
X(t)., Note that

P{x(t)-x(s) =0} =P { % nk

m

n
= I'(1-P ).
k=1( nk)

Thererore

m
-1og P{X(t) -X(s) = 0} = kﬁi‘ ~log (1- Py ).

Clearly o
o mn 1 2837 nye

g Ske2 X (2.3.9)
£ P < -log P{X(t)-X(s) =0} ¢ + . 3.

k=l Ty k..l nk ..<.1. lgaﬁnPnk

Taking limit as n —« in the relation (2.3.9) we get
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lim n
n- e k1 Pk = —log P{xX(t)-x(s) = 0}.

Tnus (2.3.7) reduces to

E( exp {=a (X(t)-X(s))})= exp {P(1-exp(—ax))}.

Hence the proor.

2.4, Deconposition ox a process.with independent increments.

In this section we study the decomposition of a separable
and stochastically continuous process with independent increnents
into a continuous anl discretz ccaponent, Moreover, a continuous
ccuponent is independent of each ¢X thne remnaining componentse
Further we show that the ccntinucus component is a Gaussian
ProCeS53.

Let {X(t), t 20} be scparable and stcchastically conti-
nucus process with independent increuments, de zlsce assune that
3 is tne range or X(t). Denote A, = {x: |x]| > €} and /Ai’o—field

cY 3crel sets containea in A. Then

X(,4) =T (X(s+0) —X(s=0)) I, (X(540)-X(s=0))
€ s\t A (2.4.1)

I, (.) is an inaicator runcticn. Tnus
£

£ () = X(t)=x(t,a.) (2.4.2)
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will be a procsss obtained rrom X(t), arter discarding thea
JU.l.3 oI size excecding €, We prove a leniaa wnicn is helprul

in .btaining Jeccuwsiticn ox X(t).

Lewaa 11 ¢ IY (X (t), .t) O} is a prrcess derined in (2.4.2)
thun rer every € >0,

E(|x.(£)]1%) < =,

Fro-r, Let Xur cacn n

= t ase =
0 tnox Nl < tnn t and

5 0 n Fak = Fa(en)) = O

Derine

Yok = xe(tnk)'xe(tn(k-l))
ir Ixs(tnk)'xa(tn(k-l))l L 2e
=0 «therwise.,
n xS
In crder to snew that kgl th cenverges in prcoability, let
us uvvaluate
X () AS x,} = £ P{X, =0}
P{X _(t =- K = .
€ kel K kel

Clexly
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Py UE X = Obmrl) B [x (5 )X (5 qy) 1> €

1¢ksn nk I<ken
n k-l
B kﬁljzl U (8 )% (i gay)] & 26 by

Pl [XE(tnk)-Xa(tn(k_l))l > 2& }

2 EetIx ()X (b q)) 1> 26k

=k§1P{ lxs(tnk)-xe(tn(k_l)l >2¢}

[1—1—-{“ sup _ll X (£, =X (£ 5200 | >2¢H.

Taus,

n
kilp ”xa(tnk)"xe(tn(k-l))l > 2¢}

sun A
< P{ R plXe (L) =Xe (B )? 1> 26} x

-l
[1- P{ lj@xe(tnk)-xa(tn(k-lm 25”(2.4.3)

Since X(t) is stocnastically centimucus, Xe(t) is stochastically

continueus (Gikonnan [1],et.akespage 257) waicn inplies that

P{ 12.‘1%‘.{ nlxe(tnk)-xe(t (k1) ) > 2¢},
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tends zers as n tends te inrinity. Thererore allowing n —~ o,

rignt nand side or (2.4.3) reduces to zerc. Thus

S lin g 2.4.4

Cleurly every tevia in the lexrt nond side of (2.4.4) is less
thun or equal tc¢ 2e in absclute value, Furthur we show that

1 Var(X k) is counvergent, sugpcse it pessible ¥ Var(X )

k— k=1

dees not counverge. Derine

Y, = fgk,:.f.(f_nﬁl .
nk —~
S qVar(x )
Tnen kxl Y nk will ecnverge in distributicn to a ncraal variate

witn nean 0 and variance 1, Therexore

}I_in kl k)c:‘/j';.l ar(x )+ E(xnk)}
/l_- J et =3 u?} du (2.4.5)
2n

and

f

n
lin o; o n
oo Pl ¥ € = ,/k’il Var(X,) + L E(X )}

1.2
M - 00
The relaticns (2.4.5) and (2.4.6) centradict the boundedness
n

er kEl xnk which rollcows rrem the relaticn (2.4.4), Hence



- 2423

iE1 er(xnk) is cunvergente. Using Cnebysnev’s inequality

we write
v ( §:1 xn’)
n n ‘ ar k1 nk
PU G X1 B M 28} < 32 y

n n .
Tnererorukél > S E(Knk) is bceunded in probability wanicn

n
iaplies that B(kglxnk) is bcun%ed. Hote that
n 2 R 2
E(lkilxnkl)_u(zxk)

n n 2
= Var (ZXy) + (B (X))

Hence <(} X |2) is bcundei, Sincz
[ k=l nk ? i e -

E(x. 1) ¢ B 5]z x ]2
€ = n—e k=1"nk .
We get E(ll{e(t)lz) (e,
Let { €, } iencte a sequence whicn lecreases to 0.
Furtner we lenote the set of x such that g < [x| e, 5 by o,
rer k=2,3,... and &) be tne set of all x , sugn that [x| > Eq»
Thne jrocesses x(t,Al)r... X (t,8,and xit)_gi& x(t,aa)
ar: wutually inde,endent (Giknman [1], et al., page 260).

ferecver x(t,Aa) is stochastically coentinucus as X(t) is
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stecnastically ¢.ntinmu.us (Gj_khmgn {1) et.al., page 257).

How we prove the theoren regarding Jdeconposition of X(t).

Tne.ren 12 3 If {X(t), t2 0} is a separable and stocchastically
contimuius process with independent increments, then there is

a2 czntinucus prccess Xo(t) such that

X(t)= X (t)+ X(t’Al)+j°§2[x(t,Aj)-ss(x(t,Aj)]

Pro:f, We can express X, (t) as
1
1\

- I ) | .
Xel(t) k:‘.‘__z x(t,Ak) + xeml(t) (2.4.7}

The terms cn right hand side o (2.4.7) are independent

wnich yields

n
kEZVar (x(t,ak)

) & Var (X, (t)).
1
n
3inca Var(xel(t)) is rinite k£2 Var (X(t,8,)) ccnverges as
n -« , Tnen a subsequence {nk} with n =1 can be chosen

sucil that

oo 1
_gk Var (X(T,Aj)) s %

n
Kk
In crder to show that 322 [x(t,Aj)- E(X(t,aj))]

Cenverges unirormly witn probability cne as k=, we ubtain

Irer T« o3,
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P{0<t< T IJ n +1 [X(t’A )-E(X(t,A ))]‘

nk

_ [x(t,a, )- E(X(t,a, ))JI > }
J=2

Ny 4
< P{0<t< T !)_=>1:;;1[x(t,aj)-E(X(t.Aj))]I > "]l:g' }

rlkq-].
KT L L
s Hnp zf:lnl‘)l' |J I[x( » 8)=E(X(L 8 N1y L =}

ma—.w

i Dy vl
llm i E - LY 2 ;_. 2.4.8
s K (] j%ixw .AJ.) E(x(T,Aj);JI )g 2 (2.448)

Tne relation (2.4.8) rollows due tc Kolumogorov’s inequality
(Giknman [1] et.al., page 119). New WS cbdtain

: el
lin P{Os.it;_p'l'l ;%[x(t,a ) -8 (X(taNh > —1;}
1
< .
2
Thnererore,
v nk+1 e
p{ s;b I;j [X(t,A )-E (X(t.Aj))]h kz}
i,
L 2

Since c).?. i is cinvergent, in view cI Bercl=tgntelli
k=l kz

tncorem (Giknman [1] et.al. Page 112) it rollows that
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k+l
P2 IX(6,80) = w(X(E,80) 12 Ll?}s 3

= aval

3 £2 [X (t,Aj) - b(X(t,Aj))]
c:nverges unircrmly witn prebability one, FPurther we show that

n
X, (8) = 57 [X(t,8,) ~(X(t,05)]

¢'.nverges unirernly with probability cne to X (t). Ncte

that x(t,aj) i3 a stochastically comtinucus and

.

-~ 2
OZ“& <B(l X(¢,a,) {€) <=

Trercrore in view ¢r theorem 6 (Giknman [1] et.al..page 72)

wa get
£ B(K(£,8,)) = &(XE,05)).
Tne jrocess Xel(t) -jﬁz [x{t,aj)- E(x(t,aj))]

dces n.t nave Juips o size exceeding enk in absclute value,

Therexrore
r!k
lin - - L y

= xo(t)

unir rinly with prebanility (ne and Xo(t) is cuntinuceus with

P bability cne. Thus we get
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X(t) = X_(t) + X(t,a)) +3§2[X(t,Aj)-E(x(t,Aj)].
Since xal(t) -ng[x(t,aj)-E(x(t,Aj)]

is indelendent of each <I the processes X(t,AJ) Tor j=l,2,.«.y

and Xo(t) being a linit orx

' n .
xeltt) - ZolX(taa)) E(x(t ,a4))]

is independent cr eacn or X(t., Aj). How we show that

E(|1X,(t)]?) is rinite. Note that
ke (8) = X (8) 4,3, [x(ts a9)- E(Xa4)3] &

Since tne terns on tne lert hand side are independent and

E(1X,_(£)]°) <= we get
1

E(1X,(8)[?) < = .

X (t) beiny a linit or process with independent increments,
it is a process witn independent increments, Ir P(Xo(0)=0) =1
then in view of lemna 9  the process {X(t),t 2c} is a
Gaussian process.

2.5. gtrong law or large numbers and Central limit theoren.

[n tnis secticn we study tne limiting benaviour oxr SiIP,

theorem liscussed below is a strong law oI large numbers 10T

b

SIIP.
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Ineorem 13 ; Let {X(t), t > 0} be a separable SIIP sucn that
E(X(t)-X(0)) = 0, Then

P{ 1im -}L.t&)-=0}= 1.

Proor. Let [t] denote the integer part or t. Tnen .clearly

e [t] |
x([t})-x(0) =j=21[xu)-ma-1)]

[t]
= I Y.
j=1 J
where Yj = X(3)-X(3-1)3 J=1,2,...,lt]. Since X(t) is a SIIP,
{Y ;)'J >1} is a sequence or independent and identically
distributed random variables witn mean E(Yl) . In view or

'streng law of large numbers’ ror independent and igentically

distributed random variables, we get

{t]
lim _J':E.L.fi._=s(y.) =0 (2.5.1)
t-.;‘o L.t] J . L ] [ ]

with prubability ane. Nute that X(t) is SIIP hence

b (o SUR L k()= D= Ty X =X

JEANES - EhE <
sup
Ir Z - o ® s 8
(3) J._(_1_'&_.”1]}{(1:) x(3)| then Z;,2,9 are

independent and identically distributed random variaoles,
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Thererxure
. t]
lim 1 -
z 2(3) = w(z(1 2.5.2
t_,xmal-w (2(1)) (2.5.2)
with probability cne. Similarly
[t]-1 .
lim _ 1 __ "E z(3) = E(z(1)) Nt (2.5.3)

t= [t ](-{-—17 J=1
with probability one, Subtracting (2.5.3) rrom (2.5.2)

we pget

i '[%r_r z([t]) ~ o

to

witn probability one. e express

x()=x(0)  x(e)-x({t]) [e] X([t])-x(0)  [t]
I = Lt] X T + ItT X T (2.5.4)

Using (2.5.1) and (2.5.3)' we get rorm (2.5.4)

%_j:mw _L)i(gl = tlimcp —-L-)— = 0 with probability one.

The ¥ollowing is a versicn or central limit thecrem ror SiIP.

Theorem 14 : ir {X(t),t 20} is a fIIP with E(X(t))=p t and

Var(Xx(t)) = 02 t; where p and g are real rinite cunstants,

Then

X(t)- ot X 2 1 2
~ = exp (=% du» as t —~ e,
Pl———sxp " L & ewlg ¥lapa
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Proor.Let us assume P(X(0)=0) = 1. Derine

sz}[(j)-}{(j—l) j=l,2'll" .

Thnen we can write

P

t
X(tt]) =.LZ] Yj ]

(2.5.5)
J=1

wnere [t] is a integer part or t. Since {X(t), t20} is

a SIIP, {Yj, j > 1} is a sequence or independent and
identically distributed random variables.Clearly

2
E(Y.) = o andVar(YJ.) =g

Using central limit tneorem we can say

X({t]) =-p [t}
I [ ] -6
oy (2.5.6)

converges in distribution to a normal variable with mean O

and variance 1. Note that {X(t),t >0} is a SIIP so we have

LOx(e)= x([+3) = [(x(e-[t]).
Using Chebyshev'’s inequality we get
2
[X(e-[e]) = pG=LeD] (e={x])

. 2 elg
g vt azat

Allowing t - o in (2.5.7), it can be seen taat

L

(2.5.7)
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T O
Lo olt -

(2.5.8)

X(t-[t]) = p(t-[t])

—
-

in probability, Thererore
o

converges to O in distrioution, as t ==,

‘le express

x(t)= ot x([t])=_e[t]) a\)ft] s x(t-{t])-p(t-{t])
o7 o [[F] * T .

Since \/ T— increases to 1 as t—* , we can say

X(t) - pt

o |t
converges in distribution to a normal variable with mean U

and variance 1 as t = o ,



Inis cnapter is deveted to inference regarding SIIP, In
s-me situstions discussed in section {3.2), sample size is a
rzndom variable. In order to test the gecdness ox rit xXor the
Lcivl with tne help of a sample or random size, a statistic
:n2logous to Koloogorov=Sairnov statistic is sugzested by H.Kac.
we trcat tnis as an application or a SIIP. Further we obtain
an asymptutic distribution <r a Kac statistic. Next we include
scquentizl estimation procedure for multidimensicnal stochastic
processes waich belung to the exp.nential class. We cbtain
moximua likelinood equation, suTfiicient estimator, erricient
¢stimator, Cromer-Rao type incquality. Ultimately a general
refm of an ersiciently estimable paremeter Tunction and the
c-rpospunding estimator is determined. we also include
illustraticas time to time, Furtner we estimate tne cawenicd
medwe. G wiich accws in tne canvnical representatiun oI the

casracteristic runctivn or SIIP.

3,20 Kolnegorov Smirncy Stotistic and Kac Statistie .

== d—— -

Suppesae xl,xa....,xn is a random sample Irom 2 osntinuous

jistpibuticn having distribution runctivns F{.). The
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Tundanental preblem of statistics is to test the nypothesis
F=F, adainst F £ F_ . Let without 1oss o generality E
¢. rrespends to 2 unirerm distributicn cn (0,1). One statistic
that is cimirnly used is Kolmogerov-Suirnov statistic D_,

wiricn is glsen by

D = Jup 1 -],

E‘n(t) represents an ewpirigal distributicn runctiun derfined

as Irsliows 3

1 .
F (%) = nglI[X.< 2] n>0

I

ir¥ n=0 (5.2.,1)

1l
o

If_xdgt] is an indicator Tuacticn, IY the alternative

N . 'F N - B .
nypotanesis is .ne sidea, then either D) or 2, 1e used, wnere

o+ sup _
In Tostsl { £ -F()}
ot Sup - - .2, Y

. T .
In order to study the asymptotic properties ol Dn,"Dn’ gn R

let us consider thg Tamily

{z,(t), 0gt & 1}
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in wnich,

.Zn(t) = F (t)-t . (3.2.3)

Clearly {Zn(t) y0<t €1} is a stuchastic process. The process
{Zn(t) »0 & t & 1} can be transrormed tc a process with
uncorrelated increments as derined in Ducb - (page,99) wnich
cen be treated as 2 genaralisation or the process with

independent increments. Let us cunsider the transrcriaticn
- .

T> snow thot {Yn(t), 0<t <1} is a process with uaccrrelated
insreacnts, we need to c¢btain covaricnce runction or the prcocess,

Let 0858 t €1, J=1,2,0es,i1 and k=1,2,...,N then

E(Iijs 13]) = P{xa.gt}
= t (3.2.5)
<nicn iuplies that E(Zn(t)) =0 and JS(Yn(t)) =0,
Hote taat

P{}{J. <t} P{Xk < s} it j Ak

BTy ) Txee sV =¥
i . . -
p{xj < min (s,t)} ir J = k.

-
-

st i¥ jJ £ k
min (s,t) ir jJ =2 k
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Thercrure,
Cuv (I - I 3 3
[J{J-S.t], [xkss])={0 J.J.’J;ék
pin{s,t)-st ir j=k.
{ence, (3.2.6)
Cov (Z,(s), 2 (t))= min (s,t)-st. (3.2.7)

Jsing (4.2.5) Cov (Yn(s),Yn(t)) can be cbtained as rollows
Cuv(Yn(s) .Yn(t)) = (1+t)(1+s) Cov(Zn(s) ,Zn(t))

=(1+t) (1+s)véin Y Y W A,
o (1+s l+t) d+t)( 1+s)]

svince, s,t,2 O we can write

= nin (1+t, l+s)-l

min (s,t).

Taus we can see 1°r s<1,
cov (Y (s),Y (%) =y (s)) =0

which implies tnat tne process,{Yn(t) ,0<t < 1} is a process
with uncerrelated increments.

In s.me situaticns like the number <X insurance clains
during tne next year, number oI telephone czalls Iur one week,

nuwber ¢r insects trapped in three hours, sanple size will

n~t be Trixed.
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Thererure let N ,Xl,xz,. «+y be independent random variabless
il having poisson distributicn witn parameter a3 xl,xz,...,
are considered in particular unirnrm random variables on (0,1).
« o diried empirical distribution runction & (t) analugous te
F(t), is given by M. Kac in 1949 (Béekman, page 142) wnich is

derined cs

0 ts 1. (3.2.8)
Tne one sided Kac statistic analcgous to D; is
KT () =5, S to= B (D)) (3.2.9)
For convenience we derine

X (t) = 7 {t -~ F; (t)}.

Cleurly {%,(t), O st ¢ 1} is alsv a steonastic process. e

_btain bulow mean ond covariance runcticn oI Xl(t)'

LEt 0 _<- S :\_ t _(_ 1 ; jrl’Z’.-oN e-nd k=1,2,..,N, tllen

E{X, (%)) = E{E(X, (v)) [N=r}

Using (3.2.5) we get
= E{ /A(t - T t)} (3.2.10)

=0
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Now,

Cov (Xl(s). X, (t))

=Cov( /3 [3-1?;:(5)]; /f[tf-F: (t)D

a A Cov ( (s), E (£))

= {Cov( B(E} (s)IN=r), E(F, (t)[wer)) +
E(Cov(Er(s) ,EX(t)) | N=r)}.
Let us evaluate
Cov (uEy (s)|W=r), B(57(t)[N=r))
=Cov (X t, )-f-'- s)
st

A
Cov (R* (t), B*(s) [Nar)

r
=Cov(% I
1l J

Using (3.2.6) tne relaticn (3.2.12) sauplifies to
Cuv( F;’(’c). By (s) |N=r)

= -;5[ min(s,t)- st].
A

Hence,
E{ Cov[(F} (¢), Fy (s)|N=r]}

= %— {min (s,t)~- st].

1 T
r ~ E I' -
ILX. ﬁ_t] A 1 I-xk < 5])

(3,2.11)

(3.2.12)
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Thaen (3.2.11) becomes

st min(s,t) st
A + -

[l ) | A ]
= min (S’t)o

Cov(X, (s), X, (t))

in trder to sh.w that the process {Xx(t), 0K t & 1} posseses

independent incrementsi we include the fcllewing lenaaa,

independent ir Al and s, are non=overlapping subintervals or

(G,1).

«here,
N
Y(a,N) = 3'51 IA(XJ)
~nd IA(x).—.l irxean
= 0 © ¢therwise,

Pr-of. In crder to preve the lemaa let us obtain ror

CLkrkygnand ky +k, & n

P{Y(5),0) =Ky, Y(ay,N) =k}

= I PUY(a),N) =k, Y(a,N) = k| N=n} xp [Nan]

n—ici_--k“,2

n: k'l 5
k) :1{; E(n-kl-kz):al 82 (10y-2,)
e~X B
S A
n

= X
n-k1+k2
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= e_A‘E ( xéglz () (1=, -2
n=k1+kc2 | _T{-é! (n-K_L-k )!
| k i, -k
! “2‘ neky vk, (nely—k,) !
5 ‘

k K. -
o) A

- Yy 2
1 k '
“1 g 2!

It

P{Y(A_[,N) = k__L} P{Y(AZ,N) = kz} .
rnence the proor,

Y{o,s),N
Since X, (s) =/X { ¢t - -'Oi) )

znd or s < t

¥({s,t), N )
X, (£) =X, (5) = A{(t=s) = e}

the increments XA(S) and xx(t)-xl(s) are independent,

Hence, N is a Poisscn randem variable,is a surricient
c.ndition ror {X,(t), 0 £t & 1} being a process witn
independent incremuntse

Next lemna shows that N is a Poisson random variable is
a necessary condition rer {X,(t), 0<t & 1} being a process

with independent increments,



Lemna 2§ Let xl,xz,... b.: independent 2nd identically
distributed randum variables, each having probability density
function r(.), N be a nen-negative integer valued randem
variable independent o Xi’s. Iz Y(a,H) represents the number
5I thuse of Xi’s amung the rirst N, whicn rall within the
interval Ao and ror nonoverlapping intervals =1 and 8, the
randcm variables Y(Al,N) and Y(AZ,H) are independent then N
r~1liws Pcisson distribution.
Eroc¥, Derine,

I,(x) =1 irx e A

) =0 ctherwise
Then 1"(..\1,'.'1) = 31‘_;1 IA-_L(XJ') and

N

~ince Y(Al,N) and Y(Az,N) sre independent, ror u,u; £ R
we get
b b (X:7)}]
B T I (X)) +u, Z I )}
h[expil(u1j=1 Al( J) 2 55 ,%

_ N
—E{ expl i, JgIal(xj)}] slexplin, BT, (PN (3.2.3)

iet P{i=r} = P(r) tnen in view «I independence o N and

Xi's and (3.2.13) we writa
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r§5 P(r)(Efexp{i(ulxal(x)+u2 Iﬁz(x))}])r
=;EOP(P)(E[exp{iu1 IAI(X)}])rx;EOP(r)(E[exp{iuZIAZ(x)} (3.2.14)

a: can sSee that

Efexp{iu, I, (x)}]

Ay
= P, (x)=0)+ exp{iul}P(Ia.l(x)=l)
=1+ (exp{iul}—l)A{ r(x) dx. (3.2.15)
similarly,
E(exp{iu2 Iaz(x)} = 1+(exp{iu2}-lgf r(x)dx. (3.2.16)
2
Now,

e[ expliu, IAl(x) + iu, IAZ(X)}]
ﬂ(lﬂl{x)ﬂ’ IAZ(X)=0)+exP{iu]_}P(Iﬁl(x)=1’IA2(X)= G)

+ exp{iua} P{I, (xj=0, IAZ(x)=1)+ exp{iul-b iuz}x

Al

P(I

Al

~ince & and AZ are non-cverlapping we get

(x)=l.$a2(x)=1).
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E[exp{iul I, (x) « iu, ;QZ(X)}

el

= 1+(exp{iu1}-l)Afl r(x)dx + (exp{iuz}-l)A£ r(x)dx.(3.2.17)
Toking w=u, = & in (3.2.15), (3.2.16) ond (3.2.17) we write
(3.2.14) as

. Tr
~LoP(r) (-2 A,lr r(x)dx -2%‘ x(x) dx)

- - * b, - » ( - - 8
= T P(r)(1-2 f x(x)dx) z P(x) (-2 f r(x) dx) 3.2.18)
Setting

a =12 [ 1‘(x)dx,b=1-2‘£r(x)dx
A
1 2
. = I . ,
and gla} = oL & P(r) relaticn (3.2.18) becones

g(a+b=1) = g(a).g(b). (3.2.19)

Phe relotion (3.2.19) nulds rcr real numbers a,b between -1 and

1 ir nun-overlapping intervals oy and 4, can be round such that

2 =1-2 [ r(x) d&x and b = l-ZAf T(x) dx « Since g is analytic
o

2
in unit circle we write

1 .
e g(asb-1) = - g(a) g(o)
aa sa .

2 ‘ 8 2
m¢g(a+b-lj = ~3 g(a) '-a-ﬁ g(b)
< \2 o
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Henece we weito

glash=l) = g (a) g'(b).
IT b =1 then we get z'(a) = ¢ gla) wncre ¢ = g'(1).

. nerarorc

gla ) = a expfc a } + pB.
Clearly

1) =aCexp{C} =C.

Tais imglies o = exp {~C }.

Since

g(l) = oL P(r) =1
and

g(1) = a exp{C}+ p

= l'I'P .

We get p = O,
Hdence

gla) a exp{C(a=1)}.

r

TIl\.S P{N:I‘} = eXp {"C} %‘ H I = 0,1,2’.-.,.

In order to study tne limiting distritnation of Kag
stutistic K; (t) derined in (3.2.9) we study the limiting -

distribution or the process {Xl(t),os_t <1} as X —~e |
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Let {X (t), 0Kt <1} e a Gaussian process (Duob, page 71 )
witn p(X(C)=0) =1, &(X(t)=0 and

Cov(x(t} ,J{(s)) = min (s,t).
Dencte

K(t) =g t( ¢ 1 X(t).

since X,(t) ror each t and rixed N say N=rjis a sum or
independent and identically distributed random variables with

vinite varicncc we get

1i P (U, yUgpeae,u )
;—imm xl(tl),...,xx(tk) f1r72 K

=¢x(t1},...,x(t.) () 050 eeuy)

=exp{- 1?1 Jgiu iUy Bin (t;,t, )} (3.2.20)

where UjsUsses syl are real nusbers and

.‘L (tl), .'.’x (t )(Ul’u "..'llk) is a
characteristic :c‘uncrtlon or XA(tl),,.,x (tk) for any

{ty0.-st,} € [0,1].
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Tneorem 3 4 For any real number «

2 A K(t) Sa} =P{KT(t) Lal. (3.2.21)

Pro.x, Tu psove the thecrun we need tc ¢btain

Lm g { A KX(t)< o }= lim pe  sup x,(t) & a}. .

A~ TR0t
Jsing tne separaple version c? x)‘(t) we write

lim sup

K
s o %G sal.

Sup . _ i
Plocee 1%38) s a} = P

wince tae sets are munctenic we write

" 1lim sup Kk sup
Plerwe 1¢ke 7 xx( Kal= pia Pi1<k<2r L zrk «}-

Taererorea

= P{/AK 't)<a} = - P‘lusup 1&\ £9)<al.

(3.2.22)
Derine . -r
sk:ji 2 [Xk( 'g;) - X, (E'r" 1,
k =
R = E 4[x(?§—) - )L(
and

I"n((l) = Pi max (Slgszt--ossn)<a}
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In cider to prove the theorem we prove ror every integer k and
£ >0,
P{l max. (B ,RsseeesRy )< (0=~ €}/ K} Ic_é_

< n_,,' ()¢ 338 B (@) ¢P{ mak (Ry,e-0s0,) < o/ K},

Let nj = [J_:{l'] » 3 =0plyeearke

and .

Pnk(a) =P{- max (S !Dn :---,S )(CC /ﬁ}

™

Using central limit thecrem Ior multivariate randoma variablies

we get
nl-j:li 1‘nk(a) = P{ max (Rl’Rz’lcc’Rk) < [0 4 /-T{‘}. (3.2.23)
Denute
E, = P{s, 2a 71, Sy & @ /Me.sy5) 5 S /f}e,
Clearly
n
9,‘21 E, = -0 (a) £1° (3.2.28)

For n; < LS n;. we write
aP{b 2_0./__:: (o;/n,...,Sz 1( aJn,IS s -S [)e/ n}

+P{3 20 /M, 8¢ afneee,S,_g<a/ T, lSniﬂ-Slk € /1i}.

(3.2.25)
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Tae rirst terum or tne right hand side or.(3.2.25) is
w, P{]s S, |2 &/ n}
LR

Ivllows Ircia the TXact that S g 1s sum or independent randum
variables, rurther by Chebyshev’s inequality it is less than

T equal tu

k ?
ThercXore,

Kk . -
_ —e P P{5.Ya/T¢«¢ 8, < @ Myao.

i+l

-ougsz_].( /T'l_,lsn "S£I<€ /ﬂ}.

i+l

The double sum is less than 1- P (a=€), thererore
k .

1
1-P(g) ¢« == +1=P_f(a=-).
n - k€2 nk

Since P (a) < Pnk(a) we get

l - . -
P (a—ﬁ)-"'—';k‘(a)iPka).
nk kez 1 nk

de nold k and ¢ rixed =nd let n- , ia view cf (5.2.23)

woe write
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pj max "R],’RZ""’RK) < {a-€) vk} - -

k&

1im
-<- n.—-.o—o P (CC)S. n—J:mmbn(a)-s P{.ma;{ (Rl,RZ,..,KK)<G/R-}-

(3.2.26)
Let k== ror € rixed in (3.2.26), and we get

P{ max  (Ry,Ryy.0epi,)< (a-€) VE}

[ T

1im lim N
o Po(a) £ piw Pylal

V S. P{_ max (R].’R290‘-DRK)( a J-E}'
Finally taking € -0 we get

r}_:'_'moopn (a) =P i !';1:’):- (Rl’RZ’ s !f{k)< & ‘/E}' (3'2'27)

Using (3.2.21) and (3.2.27) we gzt

A-m

. - im 1i K
lim P{v’fKA(") S“}"‘ i-““‘ rimmpilizz%'x(?r-) LS a.}

_ sup
Hence

A_,‘,,P{f_ K (t) sa} =P{K™ () L a}.
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3.3 Seduentinl Estimaticn

Statistical interence about the processes with independent
increments is ¢ ncerned to tne problem'of’éstimation or testing
T unkncwn parameters. For tnis purpose a sample of app:*opriafe
cize is taken, In Tixed sample size procedure, a sample size is
Tixed and it dces not depend cn the data waicn are available.

;. sequential estimation rzYeres tc a technidie in wnich sample
size is net rixed in advance but it depends Ty some rule <n
tne data zlready ccllected and «teerved, hence it 4is a random
variable. Seguential procedure reduires, _ess nunber oI
observations on en average as compared te the Iixed sample

procedure to ac.ieve the same goals

We derine an exponential clags oX stocnastic processcs balow
and under some conditions we obtain maximum like.lrood
equation, suriicient estimator, errizient estimator and Zramer—
rac tygre inequality.

Let X(t) = [Xl(t),...,Xm(t)]'be & m—dimensional stochas=ic
process derined on (@ ,TF,P) wita tne vaiues in (E,€), where

= IR™® is a state space, € is a g-rield oI all Berel sets

p}

inE and t € Tc(0,%). P represents tne probavility measure

which depends on an unknowa parameter

.

- K
Om { € reees Ok]' €6 s2 1s an open interval orf IR . Furtner



3.19

we assume that IEt represents the g~rield generated by the

random vectors {%X(s), s ¢ t}.

Derinition 4. The stochastic process X(t) velong to the

exponential class, if the rollowing conditions are rulrilled

(i) A(t) is a SIIP with PLXI0)=0) =1 ror all ¢ € ¢ and

continuous in probability,

(ii) Tne probability distributions at time t are dominated
by a ¢-rinite measure v and the densities witn respect to

Vv may be represented in the rorm

x(x,%, ) = gl{x,t) exp{a' (0)%+ v{0)t},  (3.3.1)
¢ | 3
where X = (XsX5,0.0,% ) € B, 28(0) = [2,(5),...,a (0)], g is
a non-negative runction derined on EX' T and al,...,am,_b are
non-constant runctions derined on . (Winkler et.al.,page 130).
Tne multinowial process and m-dimensional Gaussian process
belong to tne expcnential class, In the one dimensional case
(m=1): tne Bernoulli process, Poisson process, gauma process,
negutive binomial pitocess belong to the exionential class,
We assume that the runctions a,(8),..., a;(e),b(e) in
(3.3.1) are dixrrerentiable with respect to the components or

the parameter ©= [91.'“" t\{]'. Wwe denote



B=grad_ b(c) =[ = b(¢6),.., =— ()] and
E 301 cﬁk

A =grad, d( o) =(grade a { F:-).---.:gzt‘«:tclc a_(6))

=(( == a.(0)))

. i
Clearly A is ;f qréor Kxm. Further we assume that thne

dirrerentiation is allowed under tne sign or integration and
tne components Eexi(t) of B, (X(t)) are dirrerentiable with
respect to % s J=1,2,..,ks Dirrerentiating both tne sides

oY the relation

J r(x,t,¢) dv=l

-

.

with respect to UJ- » vie get

E (% =& a.(8) X.(t) +—-°—Ii'""-)t)' =C
¢ ig:l v 1 i <€
J
Ior J =1,2,...9Kke Thererere
A E(X(t)) + B.t. =0. (3.3.2)
Clvarly ir k=m and AL exists we get
E(¥(t)) = -aTB¢. (5.3.3)

oimilarly dirrerentiating .-se(xi(t)) with respect te ?]

I'OI" j=1.2’-.-’k we get
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2 C e [ xor(et e
BCjEQ(xi(t)) =35 g xil(xlt,e)dv

- ; _
e I 2 g
=E [Xizil g ?9.(")"2* xi. e%b( 63t ]
Tor i=1,2,..., O, (3.3.4)
Hence, ;
G, = grad0 Eﬁ()g (t))

= A E (3(t) X(t))+ t. B 2,(%' (z)). (3.3.5)
Using (3.3.2) we get

Gy = 4 E (2(t) ¥ (£))-a E(X(t)) E (X (£))

= AK (3.3.6)

t’
l{t represents variance~covariance matrix orx X(t).
Ir K=m and 1:.-1 exists tnen tne covariance matrix z{t becenes

K =A-l

. grad (s71s ) t. (3.3.7)

de obtain expectation and covariance matrix ror some procasses.

Derinition 5, . stochastic process

X(£) = [%(t),...,X (£)] xor t = 0,1,2,..., with

stationary and independent increments such that Xi(t) takes

values in the set {G,l,...,} Tor i=1,2,...,mj is called



3.22

1 wiltinomial process if the probability distribution orf

Z(t) is given by

t! X X2 t= %
P (X(‘t): X) = P o s 29 Xy
~ ~ ' ' " t= . L peesPp 4 i=l1 (3'3‘8)
xl.xa ,..-xm.(t iglxii° n

ancre x=(x)se0esX )y X; e{O,l,...,t},iglxi <tand0<p; <1

m
i=i,,..,m and q =1 - > 0, (Winkler et ,al,page 131).

1P4

Clearly a multinomial process belongs to tne exponcntial
class and the proper identirication or the Xunctions ai(p) and

b(p) wnicn occwr in (3.3.1) wili be

p.
ai(p) = log -q—l and bp)=log q i=l,2,..,3,

WACre p=(p1,p2, . .,pm)'. It can be seen easily that

o 1 R
';Egai(P) =3 ir i#j
1 1 s s s
= = 4 = ir i=j

qQ Py

and
o 1
P op) =-3 -

Hence we get

.
[
D

E +diag [%I ""’p'nl'l—]

and B = [= =,4e.,==]+ E is a square inatrix of order m with
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easn or its eluisent c¢qual to uaity, A-l exists ond it is

given by
pl ( l-pl) —plp2 seee "'Plpm T )
-P,P; P(1-py)ece.  =po0.
~PpPy ~PpP2 ceeee p(1-py)

Thererore rrom (3.3.3)

B, ¥(t) = 41t

t
[pipyseeerp ) t o
We can also note that

= Egra X' t
Gy = gredy Ep(~ (t))

d .t
grap(p )
-'-'I.t.

Jnere I denotes an identity matrix of order m, Tnus we get Trom

=1
(303-7) Kt = L) G'.t

= It—l t .
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Derinition 6. 4 stochastic process

3 (t)=[X1(‘t),...,Xm(t)]'ror t ¢ [0,°) with
stitionary and independent increments taking valuas in rY
iz czlled a m-disengional Gaussian process if tne prodability

density fuaction or X(t) is given by

r(x,t, 6= .a_-.=—_1—_=-_—..== exp{~ %—t-(gvc— ot) ):'1(35- 8t)}(3.3.9)
Jentle

wnere  g= (ql;...,ﬂm)‘ is tne unknown expectaticn vector and I

is a given non-singular covariance matrix, |Z| denotes the

detorminant of matrix £, (Jinkler et al., page 131).

Conpzring the expressions (3.3.9) and (3.3.1) one can note

that the n-dimensionzl Gaussian process belongs to the exponen-

tial class and
- 1
a' () = 0L 1 and b(0)= = % g Lo,

Thercirre,

i =3Y and B =3

Using (3.3.3) and (3.3.7) we get

.

Ee(x(t)) =93 .t,

Gt - I.t’

K_t = z- t.
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For sequential estimation, sample size is not Tixed and
woe need stbpping times to stop the sampling. T'nererore let =«
be a stopping time derined on @ witn values in TU{=} such
that .
{we ® JtH(w) <t} el rorteT ;
where II‘; is a g-rivld generated by the random vecters
{x(s) y S £ 'I:}. Thne next tneorem provides the Joint distrivution

o 1 and X(T1) which is useful ZFor rurther inrerence.

Theorem 7. Let X(t) be a process wnich belongs to tne
exponential class and let t be any rinite stopping time. Then
a probability measure Pe not depending on tne unkncwn

0
perancter ¢ exists ror every rixed 6, € € sucn that

P{(1,X(<)es) = J (8)X(1)+B(8)t}aP
) (ot ’E(T))ss}exp{a( X(t)+p(8)t} 3
= ue(_S,) (3.3.10)
-~ .

wacre o Ta B is anr:[x € nmeasurable and

a(8)= a(8)-ad ), p(0) = b(8)-b(2).
Proor, Sve Winkler et.al.,page 1?1.
Deiine U = TxE and 20l as
o -Ticld of Borcl sets or U, Therciore Qg(8) ,:Ss]’_[_wﬂl be

dominated by the nensure Q"= Oe . We write (3.3.10) as rollows,
o



3.26

Q,(8) =J £ (u,08). d (au),

ind tae density runction or likelinocod runction will be
* .
£ (u,0)= exp {a (0)x(u)+pl{@)tu)

- ep{ Fia (ox (e (e (3.3.1D)

wSsuning f'(u, #) dirrerentiable with respect to ej and
treating T {u, 6) 25 a likelinood Yunction we get the

imoaximum likelihood equations ss rollows

3 » .
- log z (u,8) =8 IOr J=1,2,...,m.

] 3 rd .
iil( -393 ai(e))xi.(u)+ (—ajegﬁ (8))t(u) =

m 3 _
151( '333 (9))X (u)+'—é3' B(8} t(u) =0 j=1,2,...,m0.
tience,
grade log 'l (uy 8) = o X(W)+ B t(u) =0 (3.3.12)

Y& obtain maximum likelinood estimators ryor a multinomial

process and m=dimensional Gaussian process,

Ir X(t) is a multinomial process taen clearly

+ t(u)log —(l-}

P4,
£ (u,p)= exp{ 2 x; (u) .2og 3 q "
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e get th: Iollowing systei of linear equations

a

Y
]

J

5~ log f*(u,p) =

Tne relation (3,3.13) iwplies that

x, (u) ~
Py

and we g=t pj =

Hence thne maximum likelihood estimator oI p will be

m
xj(u) ii]_xi(u) t(u)
+ -
3 Q q
=0 ‘j=1’2’.__0 agile (5.3.13)
11}
izf:ll: evese_ xm(u) . t(u);_ilxi(u)
P2 Py 3
<{u)
)CJ Ior j= 1,25000y0

t(u)

f)=‘l'-z(f) .

Clearly E(§)=EE(T_1 x(1)| ) = o,

which implics that the mexirmum likelihood estimator oT

p is unbiased,

var (p)

E (72 x()E(rx(0))°
EE( T2 x(1)] 1)~ p°
k( 1 A"l) + p2 - p2

J{-l E( T—l) -
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It X(t) is a m-dimensional Gaussian process tnen
r¥(u,s) = exp{(e-go)' E"l_>_(_(u)— %( o £~lo- 652'19 >t()}.
{ o
[nerexrore likelinood equations become

grada log 4 (u, 8) = gL g(u)-}:-let(u)= O.
Hence neximum likelihood estimator o ¢ will be.

~

0 ----'r_:L X(1)
oty that
E § aBi( v x(0)] 1)

=9 .
mnus meximum likelihood estimator § turns out to be unbiased.

var(8) = B(=1 X BT

= E E( r“lf(x)l T) - 6%

-E t1 1+ ¢ 92

= X, E(T-l).

further we show that tne E(X(t)) and covariance matrix of

X{t) depends only upon E(t) =nd Var(t) uader certain assumptions

Lety =( ‘!_L...., ‘ii))' be a rfunction derined cn UX® . Tne

*
¥, j=l,e..,p are assumed to be measuravle,Q

components 3
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integrable and dirrerentiable with respect to ai,i=1,2,...,k.

(P'.)a.nd

Further we assume that ror j=1,...,k the Tunction ng

(%)
sz are independent or g . Moreover

SEED ur (au) <=, e oal,2, (3.3.14)
u J
and
I*(u’ e. : )-f*(u) 9) 1
¥y (u, 0) () Peult)  (3u5)
8. — 9.
: J J
¥, (u, 8,.y)=¥,(u,e)
| e () g 2 |2 (u, 8) 5_H(2) (3.3.10)
b e, 23
5 %
wnere O(J) = ( algooo, aj-l’ %; ej"'l’.." ek)o

e include below a tncorem wiich helps in expressing the
Eé(gg(t)) and covoriance matrix or ¥(t) in terms of Ee( ) and
var (1).

Theoren 8. Let X(t) be a process which belongs to the
exponential class, Tt be a stopping time and ‘!’=(‘F1,...,‘Fp)'
~ vector runction with the properties (3.3.14),(3.3.15) end
(3.3.16). Then

Ee[(a;(r)-n-ar) ¥]= grade (13e n')- i.-;e (gradg n'). (3.3.17)

Proor, We note that

E, ¥ (7,X(1),0) -_-Uf ¥ (u, 9)Q" (du) ror =1,2,..,p.



Due to thne -'.-‘.ssumptions (3.301“)](303.15) Aand (303.16)’

dirrerentiation under the sign or lategraticn is valid and

we get
00 E \ll (tsX(1) s €)
J
o [---e-J +vm i, r. e, (8)x, (W)+3(DE(W}]
x  (u, 6)¢ (du)
= E —-—w z 0 ( 6)t( ¥,
[ 7,311_“):: w+pL6)t(w)}y, 1.
J=1,2,..0,k32=1,2,...,p.
Thurciore,

aradg(Bg ¥) = sglerady B+ Bgla X(1)+B 1):¥].
dunce the theoren,
This theorcm provides o generalisation or wald’s rirst
equasion waich we discuss below
(a) Ir p=l and ¥ (t,X(1),0) =1, taen tne relation (3.3.17)

sives
usozc,(r)wbe(r) =0 (3.3.18)

Ir A'l exXists then

E X(7) = -~ B E, T (3.3.19)
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(b) Ir P=l and ¥ (t,%(7),0) =t then we get rom (3.3.17)
AE, (1X(1))+ B Eo(t))= gradg(Eqr)  (3.3.20)
(¢) Iz P=m and Y( ¢X(t), 8) = X(1) using (3.3.17) we write
grad, (Eg X' (1)) = AE(X(1)% (0))+ B Eg( ()
= A[E, (3(1)F ())-EZ(D) E 3(v) +HE( X(1))
...Ea T E 5'(1')]4- (AEgX(t)+ BEy )u 5'(1')

= AK‘I." + B k‘[

rollows due to (3,3.18). K. represnets

Eq(#(1) §'(1)) ~Eg¥(x) E ' (1) and k_represents

Ee(‘t E(_&))- 4T By X'(1). Ir we write grad, (Eeg;(t))e.ﬁt
we get
G, =aKe+Bk (3.3.21)

In order to express K. in terms or Eglt)and Var(t) we

assume A"l exists, Thererore

K= a4 6= a7 Bk_
- A"l[-grade(a'lB)' E_t-grad (5q7) (a™B))]
-8 [Ex 5'(0-E <E ¥ (V]
il s e . - '
= A [---gl:‘ad.e (A™"B) Eet -grade(Ee't) (& 1g)

-ilp(grad) (BT H-(TR)' E BB ¥ale) ']
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=(£1B) (a~iB) [Egt 2—(E 1 )2]-t grad (A-]'B)’Ee'r
-l [B grad (E 'r) + grad (E ‘r) B'] (s -1)'
..(A'lB)(A'lB) Var (1) - 4" grad (a 15)'_'

-7 B gred) (Ex)+ grad, (E.1)B'1(470)' (3.3.22)

The relation (3,3,22) depends only on x::e (t) and Var(xX(9).

(@) Ir p=k and ¥(r,X(1),6 ) = AX(1)+B T, tnen (3.3.17) yields

T = Eg (axX(t)+ Bt )(aX(1)+ B 1)
= g::-ade Ee(n X(1)+ Bt J'—E[grade (a%(t)+ B 7],

Using (3.3.18) we get

T= -E[grad.a (AX(T)+B1)]
= grad g (]:".0 £ t))a=- g:t‘ade (Ee X(t) &)

+grad (l::a T )B - grad, (Fe T B) '
| = grad, (B X(1)a')+ grad (B 1)B'~ grad [E (a¥(1)+B1)]
Using (3.3.18) we get
= G'r At + grade (Fbt )B .
Ir A'l exists then,we vy
r= [-gradg (U0 Ey t-gragy (5T GBI
+* grade (EB T)B

= -gracle (A"l 8 ) Y Eet (3.3.23)
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Ir {X(t),t >0} is a SIIEP which belongs to the exponential
class suc;.n that P(X(0)=0)=l then Tor every rixed observation
interval [0,t] the last observation X(t) is itselr sufricient
statistic Ior unknown parameter § , Yollows due to the
ractorability or probability density functions or X(t) (Gnosh,
page 175). HMoreover ir we consider in general X(t) an
mu~-dimensional process with independent and stationary increments
such that P (X(0)=0)=1 then also X(t) is a sufricient statistic
in order to estimate the parameter ¢ (Franz et .ak,1976). Now
we include a theorem wnich provides a surricient estimator in

case oI random observation tinme.

Thcoren 9, Let {X(t)t € T} be a process or the .exponential
class, T any Iinite stopping time and denote by +i the smallest
g -rield in . with respect to which the pair (T ,X(1)) is

measurable, Then /A is a sufricient J-rield to estimate ¢ .

In other words (1 ,X( 1)) is a surricient statistic.

Erocor. Let us obtain an expression ror Py (FNA) in order to
prove the tneorem where F € ‘}T and A € A C':j--r. Define a
bounded stopping time = nin(s, T), s € T.—‘g"rs represents

g =rield havirg elements or the type

{FeTJ :{'n{w-lrs(w)_g{'} e 7§, Tor every t & T}
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Using (3.3.10) we write

Po(FNu) = [ exp {« (0)X(1)+B(6)1}dp
Fla 8o

= S Ip(x(t))expla’ (2) X(1)+8 (8)T}dR,

A 0

=S L&) I (X(T) ) expia’ (8)X(1)+8(6) Thag,
(v}

=E[I_(X(r)) I (X(r)) expla’ (O)X(0)+p(0)}]

=/ E%[Iatzu)) I (X()
Q

exp{a’ (g)X(r)+p(€)TH #\]dpeo
= I T, X(expla’ (0)X()+p (01 }

B, (Tp(3(0)1/m)dp,

o}
=S P%(Flfh)exp{a' (8)X(T)+p(d)t }dpeo(3.3.24)
We can also write

P(F N &) = [F (Fl& )ap,

=f %(Flm)exp{a' (0)X(7)+p(8) T JaP  (3.3.25)
A 9

With the help or (3.3.24) and (3.3.25) we write

B (FIm) =Py (Flm)
- 9

For every pe ¢ witn probability one Hence (t,X1)) is a

sufricient statistic ror €,
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Since ( v,%(t)) is a surricicnt statistic one may restrict
to (1,X( 1)) ror rurther inrerence about the parameter o .
wreover the ramily or distributions of (r,X(t)) is complete
Franz,1979). Furtheremore we discuss a generalisation or the
cramer-nao type inequality ror the exponential c¢lass or multi-
Jimensional processes., Let h(a)=(h1(9),...,hP(0)T be a given
carometer runction to be estimated. In order to estimate h(0)
one can use an estimator ¥ (1,X(1)), based on the surricient
statistic (t,X(1)) such that Ee ¥= h(06). For a given X%(t)
and n(6) we need to determine a sequential proccdure (1,¥) in
wnich y is an unbiased estimator or h(€¢) and T is a Iinite

stopping time. Further we assume that the components
n3(0),3=1,24++.,p 0T h(@) are non-constant and dirrerentiable
with respect to 9. We denote H= grad0 (h'(0)). In view orf

theorem 8 it can be deduced thet
B, [(a X(1)+ B1) ¥] =H, (3.3.26)

We Jiscuss below a tneorem whicn enables us to get

Cramer-Hao type inequality.

Theorem 10, Let {¥(t),t € T} be a process or the exponuntial
class and T be a stopping time, each or thnem naving Iinite

-1 R
second order noment, Suppos: T — exists where
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I= Ee[(A 5('1)+.B-r) (X 1)+B ).

I¥ ¢y is an unbiased estimator ror h(g) with finite second

ordcer moient, then the inequality

z'Ee(w-n)(w-h)'z > z’n'rlyz (3.3.27)

holds Tor every vector 2z = (zl,zz,...,zp).'

In (3.3,27) equality holds at tnhe point o =8* ir and only ir

tne ostimator ¥ can be represented almost everywhere as

W =1 T az(1) +B1)+n at 6= &, (3.3.28)

froor., Let us denote
Y'=s (wX{(1)+B 1) rL Ho(¥ -n)',

n view or (3.5.13) and lE:0 ¥ =h we get EG Y'= 0. verine
i = Y2, Clearly E 0 V = 0. Further we obtain an expression
ser Var(V) to establish (3.3.27).

Var(V)= Z'Eo(YY) Z

= 2'Eg[H' (1) (4x(1)48 1)=(¥ -n)]
[(uxX(T )4B tJ(IDH (¥ =) Jz.

Leing (3.3.26) we simpliry and get

Ver(V)= z'Eo(w.n)-(w_hi' z-Z'H' "L HZ >0,
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Z Byi¥-n)(¥-n)z 2 2'H'r ™t Hz.
Equality holds at ©=6" ir and only ir var (V)=0 ror all
non=-zero Z. Since EgV =0, Y = 0 almost everywhere and we
get
- *
v=4 1'1(1;5(1.’)4-5 ) +h at 6=6 ,
almost everywhere,
We discuss below illustrations or Cramer-itao type
inequality.
Example 1, Let X(t) be a multinomial process having stationary

and indegendent incremnents and the probability distribution or

X(t) is given by (3.3.8). We use (3.3.23) to obtain I,

r= =grady («"1B) a E T

-grad, (~P)' Ep 1

IR a T :.' ]
wheIl'e p (pl p2 e pm) .

“lhererore

ionce rrom (3.3.27) we get

Z Ey(¥-h) (¥ Y 235 Z W 7z

]:.p
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BEquality nolds at p=p ir and only ir ¥ is or the rorm

¥ = El? H (X(t)-P1) +n(p) .

b
txample 2, Let %(t) be a m~dimensional Gaussian process

(Derinition 5). The relation (3.3.23) yields

r = -grade (A-ls)'Aont

- '
= AEG‘[ -

dence

Using (3.3.27) onc can write

\ A
2'E (v-n)(¥-n) 2y zH'Z H z.
0 EOT
Equality holds at 0= 0* ir and only ir

Y = g H' (X(t)= 01) +n(e).

Following is the diseussion asbout ersicient estimator in
tne sense that in (3.3.27) equality nolds ror all 0 or ror

some 0%e @ o We derine below an erricient sequential procedure.

Derinition 1l. .. sequential procedure (x,¥ ) is said tou be
erricient at o= 0: ir ror the considered stopping time t »

the parameter Xunction h{6) and the unbiased estimatar ¥ in
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(3.3.27) equality holds at :tnerpoint 0=¢*, (Vinkler et,al,,

-

Derinition 12, A sequential procedure (¢, ¥) is called
erricient ir it is erricient ror all ge g . (Winkler et. als,
page 136). o

A parameter runction h(€) is considered to be an estimaple
ir there exists an estimator ¥ with Ee ¥=h , accordingly irf
n(0) is an estimate parameter runction and ¥ is an unbiased,

estimator
erricient/or n(¢) ror 0e e one can say that n(®) is erriciemtly

estimable,

A theorem waich we include below gives a necessary

condition ror a sequential procedure (1, ¥) to be an ercicient,

Tneorem 13, Let {X(t),t € T} be a process which belongs to the
exponential class, T be a finite stopping time and let ¥ be

an unbiased estimator ror h(€) with rinite second order moment,

“Je asswne that the components hj(g), j=lseessp OF h(0) are non=—

constant and dirrerentiable with respect to &, T exists where

r=E [(a5(7) +BT)(A%7)+B t)'].

Iz the sequential procedure (r, ¥) is erricient, tnen there

sxist coerficients ;,i=0,1,..,m with ? Fro0amdafo
10

such that



coT; ¢ 3(&) =d (3.3.29)
hclds almost sursly, where ¢ = (cl,cz,...,cm)'.
Proor. (Sce dJdinkler et ,al. page 136).
We obtain below a general expreSsion ror erriciently
estimable runction h(8) under the assumptions or the tneorem 10,

Iz (1,Y ) is an ercicient sequential procedure using (3.3.29)_

we write
' d—
coEe-t + C Ee‘l((T) = d.
Assuming A™% exists(3.3.19) yields
-
coEe'r-cAlBEet-d.

Hence

- d . (3.3.%0)
-EBT co-c'(Af;B)

Since ¢ is erricient,using (3.3.28) we get
v o I L(AX(1)+ Bt) + n.
Tne relation (3.3.23) yiclds
¥= f [grad (™) A'Eg 4 HAX(T)+BT) +n.

Using (3.3.30) we get

Y= - c""Z(A ®) u.[.gradé (a718) 'A' 17 (AZ( 1)+ B1) +n
)
y= - 3 M(AX(T)+B 1) +h (3.3.31)
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t
where M = I-I'[—g,r'acle (A—J'B)' A ]—1.
In oracr to simpliry (3.3.31) rurther we denote

c = ( Co,cl,.-,cm)'

(1)_ '
cr\ = (co’cl""’ci-l’ci+l'"" cm)-

% (0)=(1,5,(7) .00 X (D).

- '
XN, %) (1) e eeaXy 1 (D,%,, 1 ()0 X (D)),
i:ﬂ,l,...m.
Let the colwmns orf the matrix A be denoted by the vectors

al’azjuctgam a:n.d. we \‘\frite A = (81,8.2,.-.,am)-

DcZine
= (Bo’a]_’aZ’ ---!%)
= (ao,al,...,am) where B= a..
alt- (ag0a0ree0a; 335,900 0-53)
Clearly A(°)= a, C(°)= cC, 5(0)(1)=.5(r)-

flow we can write the relation (3.3.29) as

‘K(z) =4d (3.3.32)

Ci

Tne relation (3.3.31) can be written as
€, ~c E A—lB )
\{l = d

M I (1) +h. (5.3.33)
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It o £0 ror any i,then (3.3.29) can be written as

cixi(-:)+ t:(i);g(i)(f)= d

Lonee
x, (1) = 2= (a- Dy ()
and (3.3.31) simplities to
o FIY lB - . . v
y = d ( ) Z[n(l)g(l)(t)+ ;;'-.(d- c(l)z(i)( 7)) }+h
setting clila -1 a, i) e write
i
N N . .
- cfl ) Al (e (D)) ¥ (0, ciiai] +0(3.3.34)
Denote
¢ _=c' (A-]'B)
9 3 rl %‘i' ai+h =k
and

nali_ i)y _

co-c'(Ale)
d

where K is a vector and K is a motrix with constamt elements
rollows due to the ract that vy is an estimntor which must not
depend upon § o I A(i) exists then with the help dX an

identity



3.43

- S (1) A1)y ()7
a, = (4 i i
i N (Y ~C Ja a,
C.-C(l) Jﬁa(iﬂa.
i i
R get
: =1
h ko= i K LS a;e
Ci -C(l) “(i) ai
c.ke k c(i)'c(i)-la.-dk A(i)-la.
_ 1 i 1
= —. —
ci-c(l) A(J‘) ag
(1)’

Taking k*= cik and K*=k c +dk, we get tne Tollaowing

representation ror erriciently estimable runctions

A=l -
k.*— K (u(l) ai)

oo (D7)

1

h =

ie can write the relation (3.3.34) as XYollows

y =K h}g(i)('l')-!- k

wnich is the corresponding erxricient estimator.

(3.3.35)

(3.3.36)
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Wote that y is an erricient estinator thereiore

using (3.3.28) we get at ¢= ¢*

y=H r-l(a.h};(r)-t-Br ) + n(s™).

Hence

E, ¥= (Iri r~t.) Ee)f,(r)+(H’ I'"IB)EG-: + n(e%),
So

h(6) = DEX(r) + 4E v+ d, . (3.3.37)
where D = (i—i’I‘-1 i)y d1=(1-§ .P-]'B), d, =h{ 6*).

Thus an erriciently estimable perameter vector h(®) possest

representation given by (3.3.37).

de now Jdiscuss some erricieutly estimable parameter

runctions and corresponding erricient estimator in case oX
multinomial process and m-dimensional Gaussian process.

Examnle 1. Let X(t) be a multinomial process. Ve deal witn a

S —————ir—————

rixed time procedure. Let T=d almost surely, d £{1,2,...}
and co‘=l’ cl=02’o-o=cm= 0. Thus we get irom (303.35)

* * -1
k = K (:’L(O) ao)

@ T,

(o

Co'- c

=% -K P



and (3 Je 56) gives

e i - Lo .
b =-£— E(O)(T)"'%—
de fs)
(o)
»
= £ x(2)+ &t

Iz we nave X)(t)=d, d e{0,1,2,...} tnen we nave

c =’ c -—1 c2 3... — cm-- 0-
Tnererore rrom (3.3.30).
N d
E (1) = ——" - ,

: 3
co~c (. -lB) 1

rrom (3.3.35) we get N
= # (a) 1)

(1) (A(l) a)

01 -C
= K- K* 4';(1) al
cna rrom (3.3.36) we get .
* (l) :
Cl K =k* ¢ (1) 5.*_..
Yy = d-cl X ('l')'l' cl .

a e TR0, % ()



Clearly
e Ve 1a ... 1/q]
-1/a 1/py+1/a  1/q 1/q
(1
2l -1/4 1/q 1/p3*+1/Qees 1/q
[ -1/q 1/ 1/q oo l/ng 41/ Q_j

and a) = (1/py+1/2,1/Ppse e 1/By)"

Thererore _ :
=(p,#Pg+e--+pptd) P, Pz eer Py
- -pz pz O see 0
A1), - 0 o
.3 . ?3 a9
-pm 0 0 pm
and
(-t

A

.al = (-1/Pl’-92/l)1’.-. —pm/Pl)' .

Thus we get that the erriciently estimable Tnunctions are

L

h(p)= kK'+ B

K3 '
K (Lypyseee »P,)  @nd the corresponding
wstimators are '

y(t ,%())= 1?-*% ( T.Xélr).....xm(r))'
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Exanple 2, Let ,__),((t) be a m=dimensional , Gaussian process,
we toke 1=d almost surely,d being rixed, we have co=1,
cl=02....=cm=0 and eiriciently estimable functions are or

the type

a(e) = € - & (a72B)

and the corresponding estimator will be

¥ (4,£(2)= K'+ 2 K'x(4) .

In general ir c_ # O then rrom (3.3.30) we get

E T d
= 1 ™

Using (3.3.35) and (3.3.36) we get an erriciently estimable

Tunction
% *
k+K ©O

[
co+ c 0

n(e)=

with corresponding estimator

k* coK - k* ¢
?(T ’_)E(T))= 'é-"' ac E(I)o

o o
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3.4 EBstination of the comgwial Tnessurt G of Sup

Let {X(t),t > O} be a SIIP satisrying a cunditioun
F(x(0) = 0) =1. ¥e alsc assune £X(t) exists and is Zinite, In
view .Y tavoren 6 ¢r chapter 1, X(t) is inrfinitely divisible.
Hence with the nelp or (1.3.7) we expresz tne cnaracteristic
runctivn ¢t(u) o X(t) as rcllcws 3

o 2
1og @(u) = ivat +t S (e™F-1- ux 1"']; 46 (x)

- .'l.-i-x2 x
with Gé-) bcunded, mon-tine non-decreasing ,rignt continucus
ruactivn in x navingxl_{_mm G(x) =0 and a 1is a c nstant,
We assue ¢t(u) is c.ntinucus at t= 0., Finite dinensiinal
distributiins <r a SIIP caa be determined ir the parameters
G zad a are kicwn. e include @ metncd «TF estination or G below.
An ther Letacd of estimaticn ¢r G and a is suggested in the

peper’ by itnbin and Tucker (puge,648) which requires thecry

¢Y stocnhastic integrals and so it is not discussed here,

We derine for an integer n2>1

X = x(-—)-x(k;l) s K=l,2,000,0.

TherceIore Iur every n we write
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X(1) = X 1+ «ou + X g (3.4.1)

Since X(t) is a SIIP {X_ | 1<kgn} is a sequence or
independent and identically distributed randua variables.

de denite distributi.n runcti.n cr Xk Y Fn(x) Zr Yixed
nand g = fyx an(x) Icr arbitrary y >0. The relati.n (3.4.1)

-y . . . n
yields, X(1) is the limit law or distributicn ¢z k21 Xn.x 25

n— %, Thererire

Gly) =n f aF, (x+a ) = G(y) (3.4.2)

- l+)?
as n—=e= rcr all y £ C(G) , where C(G) is a set oI points
.1 disccntinuities or G (Rubin et. al., page 644). Gn(y)

inv.lves an thererere we dering

Gpiy) = n J-E @ (x) (3.4.3)

- 1+x
and establish that 5n(y) - G{y) as n ~« rcr all y €C(G).
{2 include below the necessary results,

Leana 14 ¢ I G * (y)=n f -Lx—)—--—-dF o (%)

-co lﬂx—a 1

tnen G;* (y) - G(y) as n-e rcr all yeC(G),
Pr..r : Let y be 2 rixed point wnich belings tu ¢(G). Clearly

ror every € >0 there exists a §» O sucn that
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y * 5€C(G)r

IG(y+ 6 )-G(y- &) < 52- .(3.4.4)

The relation (3.4.4) and the ract that Gn(y)-'G(y) as n —=

enables us te vwrite rTor ecvery € >0

{6, (y+ -G {y-6)}-{G(y+68)-G(y- 6)}I< 5 wor all n>N.

(3.4.5)
Now

»e e y+ -
62" (y+ 0 )62 (y)|=|n S % (x=a Nh

v " (x_ )zdfn(x) ’

= 16 (y-a )=G ()|

¢ 16 (y+a )G (y-a ).

Since Ianl < § ror 2ll n > N we write

[G* (y+ay)-Gp (WL 16 (y+ 8)G(y= 8)
Slian'«s )=G_(y=&) }-{G(y+ 8)=Gly- 8)}l+|c(y+s)Gly-a)l.
Using (3.4.4) and (3.4.5) we get

| (y+ an)-G:: (y){<e, for alln >N,

Hence the proor.
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Lemma 15 ¢ I¥y < O is a centinuity point or G, then

Cfn(y) -~ Gly) as n -,

Proor. Derine

. 2
. 2 l+(x-an)

X
T = = -
(x) 1458 * (x—an)T

n

Then

, |
Ga¥) = L 2,00 ady  (x)

In order to prove the lemaa let us obtain

- Y e
& o <l et i Galel £ 870w

S )r (x)-11ET (1)+IC (7)Giy)]
n n n

T XLy
(3.4.6)
Since fn(x) converges uniformly to 1 over any closad set

not containing zero and in view or lemma 1l4, right nand side

or (3.4.6) tends to zero as n- . Hence the proor.
Lemna 16, I¥ a,b £ C(G) sucn that 0< a< b, then

Gn(b)- ﬁn(a} -~ G(b)G(a) as n ~= ,

)

roor: Clearly

e b kiad
1G(0)-G(a)-a(B)+a(0) | | Frp(xdey (- [ ady (]

b e
+I?f dG, (x)-G(b) + G(a) |
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Sac e 120011 (@ ()G (a))

163 (5)€ (a)-G(b) +6(a)].

Using similar argument as used in the proor or leana 15,

lemma’16 t®¥1lows;-- e e
Iheorem 17 3 Iry € C(G), taen G (y) = G(y) as n == .
Procf ¢+ Ir y <0, theorem rollcws due to le.ma 15. We establisn

below . inequalities in order to prove the tiheorem ir y > O.

He write

Tel o1 102 dF -2n F_(1)-F (=
1+ T+|an|)2 {n_{x p-2nay +nap (F (t)-F (= 1))}

1 T 2
= - dar' ol"o
1+( T-l-la, |)2 n-{ (x an) n(x) (3 7)
T (x-a )2
—Llw s dF (x)
£ n-{f 1+(x-a )2 *
20 e ap)? a0
& n f d.F (X) - i . (3-408)
wote thgt

a5 () ¢ (1 Dn S e @ ()
- -

S (Lx PAn [7 xFarF, (x) (3.449)
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It can be s:z2en

T
nf xz.an(x)gnfozdF(x)
-T 1+x -T n
)2
<11+( r-l-[a 1) } f 2:1Fn(x)-n-{Z--F‘n(‘t)-n-f:‘n(-'r)}na,f1
-« I+ (xX-a
. T
s{1+(z +lan|2}n J deFn(x)
. - T .
{1~ t+la 1) 2-F (047 (D }na’ (3.4.10)

T 2
< (1-!-.[2) [2+(t +|an|)2_',n J ..?E.—Z— an(x)
-1 1+x

+(1+ 12){1_( T +Ianl)2—Fn(T )‘i'Fn('- T)}mg -

Observe thnat A =na,

=k_1f xn aF (x) < 8(X(1)) < =,

Hence {4 n >1} is convergent and 4  is bounded. Thus we

can say a, = U as n —~+«, osince no, is bounded we write

2_
naps= (n @y ) &y

C. a
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2

- —— X
I o [ ar () ¢ (14 D {6(1)6(= 1}
n=e ol lexs BT T

2

22 1im T X
& @+ ) = n [f-—» dF (x).
n=® _: 1l+x n
Wwe can write Yor o< T L ¥y
P

lim &F (x) > G(y)-G( 1)+ ~2=5{G(1 )G(~1)}G(=17)
n—w - 11-){ n J2 Y) ) 1+12{ T ) ]

and as 1= 0 we get

i y x2
iy =5 @F () 2 6(y).
A% —-w 1+x

Sinilarly

. v 2
in oy P X ()¢ DHE(D)0(= 1 }(y) 6D G(=T),
- l+x

a8 ™ U we get
. Yy x2
0 g e aF (x) < G(y).

- 00
n ~-c 14X
Hence the proor.

e write the statement or tneorem 17 as Ioliows
2

X
& (y) = nB{ ——p— I, P o
n X0 | nk>Y

as n -~ ® ror every y € C(G).
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Using strong law or large numbers we get ror rixed n and every y

2

X
* . 1 UN n.k -
G, (y) = = I -G ( )
o TR 1+x2 Xy k¢yy Y

as W~ e« with probability one. Using the ract that G; n(y) and
3

G(y) are nondecreasing in y we cen write

P{ 20 iz c-fq o{y)= G(y) ror alliye C(G)}.=1.

(3.4,11)

From (3.4.11) one can say G;I n(y) is a strongly
4
consistent estimator ox G(y).

Zstimxtor G

M, o{¥) necd not be unbiazsed. We illustrete

tne same below.
Let {X(t),t > O} be Poisson process with characteristic

runction N

B (u) = iuat + 2t (etP-1), ot T

where ueR, a> 0, b>»0,x >0,
Using (1.3.7) proper identirication or G will be
G(x) =0 irx < b
=1 2 irx > o,

Ir x £ 0, taen ror every n and N
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-_— G* ( .
B Gy plx) =0,

IT0<x4 b, tnenrornsuchtnat0<%<x we get

2
* l.n -

na

- -3}>0 ror all N,
e e -1}

I¥ x> b, then

[2:-%2.' {a+njb) 2

*

EG, (x)= X exp{-—L}(-L)j-e:L.-

J,n( ) =0 n2+(a+njb)2 n n It
2
- _ Ay el (awmd)”

n expl n }[nz-l-az +n2+(a+nb)2 n
[ %2 | Y
b Jj-2 a+njb
A A 1 . (3.45.12

#
It rollows rrom (3.4.12) E Gr-x {x) is greater than

Py ¢ )

A b2(1402) L

e CO » O
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