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CHAPTER 1

INTRODUCTION

1.1 : Prelimineries
Contingency table :

A contingency table is a table of observed frequencies
classified according to different categories. In this

dissertation, we concentrate on two—way and three—way contingency

tables.

When the population is cross classified with respect to two
classifications or polytomies, we get a two—way continency table.
For example, a group of individuals can be classified according
to two attributes viz. sex and smoking habit. The attribute sex
has two levels (i) male and {ii) female, while a person can be
classified as smoker or non—-smoker according to smoking habit.
Thus each individual is classified in one of the four cells.
This classification is known as 2x2 contingency table, which is
the simplest form of two—way contingency tables. In general,
suppose we have two attributes A and B where A can be classified
in ‘r° levels, A‘, Az, cvey Ar; and B can be classified in ‘s’
levels B‘, B;, aney Bs and we get a two-way contingency table

with '‘rs’ cells.



A three-way contingency table is obtained if the population
is clasified according to three attributes. For example,
suppose, we are interested in the relationship between smcking
and cancer. Then we may classify the individuals according to
disease status (present, absent) and smsoking habit (ssocker,
non—-smoker). A three-way contingency table is then obtained 1f
each individual is further classified according to third

criterion e.g. sex {(male, female).

The variables with respect to which the population is
cross—classified may be classified as ordinal or nominal
variables. A categorical variable is referred to as “ordinal®
when there is clear ordering of the categories but the absolute
distances among thea are wunknown. For exaaple, the variable
"education®™ is ordinal when measured with categories grammar
school, high school, college, post—-graduate etc. Political
philosophy is ordinal because it can be classified as liberal,
moderate and conservative. Here a person classified as moderate
is more liberal than a person classified as conservative, but
there is no obvious way to quantify numerically how much more
liberal that person is. A cateqorical variable is referred to as
"nominal® when ordering of categories is unisportant. Examples
of nominal variables are sex, race, country of residence, marital

status etc.



An ordinal variable is quantitative in the sense that each
level on its scale can be compared in terms of whether {t
corresponds to a greater or smaller magnitude of a certain
characteristic than another level. A nominal variable is
qualitative and distinct levels of such variables differ in

quality, not in quantity.
Assoclation =

The concept of association refers to “dependence’ which may

or may not be causal between two or more variables.

While analysing contingency tables, it is natural to test
whether the factors are independent as a first step. One cannot
stop at testing for independence when there is ground to believe
that there is association between the factors, and when it is

only a formality to test for independence.

A statistical explication of an association is made in terms
of various measures of association, the correlation coefficient
being a familiar example. The odds ratio and the relative risk
are two others. In 2x2 contingency table, xz/N can be looked
upon as product moment correlation coefficient between the two

characteristics.

Goodman and Kruskal (1954) reviewed a large amount of

literature that dates from the late 19th century where many



statisticians and non-statisticians have contributed by proposing
measures of association in consideration to problem at hand and
these have been proposed for use in as varied fields as

sociology, psycheology, meterology, linguistics etc.

In this dissertation, we concentrate on odds ratio or cross—
product ratio which is one of the most important measures of

association.

Odds ratio in a 2x2 contingency table =

Consider general 2x2 population cross—classification in the

following table.

Column 1 2
Row
1 Pea Pz P,.
2 Pas Pa2 Ps.
Py P2 1

Within row 1, the odds that the response is in column 1

inste ad af column 2 is defined to be

ul = pu/pxz

Hithin row 2, the corresponding odds equals

0, = B,/P, -



o pllpzz

The ratio of these odds y = 1 a1 22 4« referred to as
Dz ptzpzn
the ‘odds ratio’. An alternative name for it is the

cross—product ratio since y equals the ratio of products PP,

and U of proportions from cells that are diagonally
opposite.
Properties of odds ratio :

{i) 0Odds ratio y takes values from 0 to w.

(ii) Note that each odds Oican be expressed as

O =p

i 140>

/p

20

where pﬁh represent conditional probability of (i,j)}-th cell

given the i-th row. Thus,

y = pacaafpz(:a
pncz:lpz:z>
The two conditional distributions (p“”, péu>) and
(p P ) are identical and hence the two variables are

uD "t ud
independent if and only if D! - GE. In this case the odds ratio

y = 1.

(1ii) If 1 < ¢ < w; individuals in row 1 are more likely to

make the first response than are individuals in row 2.

(iv) It O £ yw < 1; individuals in row 1 are less likely to

make the firast response than are individuals in row 2.



{v) w is invariant under change in both rows and columns
i.e. if both rows and columns are interchanged, yw remains the

same.,

{vi) It the order of rows or columns is reversed, the new

value of y is simply the inverse of the original value.

(vii) y is invariant under the transformsation pi.i -+ tisjpi.j
for any sets of positive numbers (ﬁ}, {59 that preservs §, 2;%
i i

]

= 1.
Odds ratios in rxs contingency table =

For the general rxs contingency table, odds ratios can be
r(r-1)}
r) = —_—— airs of rows in
2 7 P
s{s-1)
=72

formed wusing each of the (

s

combination with each of the (2) pairs of coluons. For

. .P....
rows i and i’ and columns j and j° the odds ratio — -3 uses
PLisPir;
four cells occuring in a rectangular pattern and there are
(;) (;) odds ratios of this type. The independence of the two
variables is equivalent to condition that all these population

odds ratios equal one.

There is much redundancy of information when the entire set
of these odds ratios is used to characterize the association in a
rxs contingency table. For example, consider the set of

{r-1) (s-1) odds ratios

\-J p 9’ i - 1,2.--., l"—].} j - 1,2.--.,5—1

is rj

L)

(1.1.1)



Each odds ratio is formed using the rectangular array of
cells determined by rows i and r and columns Jj and s. These
(r-1)(s-1) odds ratios determine all () () odds ratios that can
be formed from pairs of rows and pairs of coluans. Independence
of the two variables is therefore also equivalent to the
condition that the odds ratios in the set (1.1.1) are

identically equal to one.

The construction (1.1.1) for froming a minimal set of odds
ratios that deteramine the entire set is not unigque. For exaaple

another basic set of (r—-1) (s-1) odds ratios is

s 1 = 1,2, ..., r=13 3 = 1,2,...,5-1

(1.1.2)

In this dissertation, we consider basic set of the odds

ratiaoas in (1.1.1).
1.2 : Outline of the Chapters

Two major areas of statistical inference are estimation of
parameters and testing of hypothesis. As mentioned earlier, in
this dissertation, we are concerned with the analysis of two—way
and three—way contingency tables through odds ratios. Chapter 11
and III deal with two-way contingency tables while Chapter IV

deals with three-way contingency tables.



The most simple form of two—way contingency table wviz. 2x2
contingency table is discussed in chapter 11I. For 2x2
contingency table, the parameter of interest is the odds ratio or
cross-product ratio (y). Point and interval estimation for y
based on Fisher's exact distribution is discussed along with
various asymptotic methods. LLast section of chapter 11 reviews
literature regarding the procedures for @esting the hypothesis of

independence of two varibales.

The most general case of two—way contingency tables is a rxs
contingency table (r, s > 2). For simplicity of notations, we
restrict to a 2x3 contingency table in Chapter I11. The method
of interval estimation based on exact distribution for 2x2 case
does not readily extend to the 2x3 table. We have considered
various asymptotic methods for interval as well as point
estimation for the two odds ratios in a 2x3 contingency table.
Test procedures to check independence are considered in last

section.

In chapter IV, we consider analysis of the simplest form of
three-way contingency table, viz., 2x2x2 contingency table.
Assuming that the odds ratio remains constant across the two 2x2
tables, point and interval estimation procedures for this common
cdds ratio y are discussed along with the procedures for testing
the hypothesis I-lo 1 ¢w= 1. It may be noted that the procedures
described for two 2x2 tables readily extend to t (t > 2) 2x2

tables.



Various paradoxes that may octcur while amsalgamating the
contingency tables are discussed in chapter V.

Material presented in all these chapters is a review of the
results regarding odds ratio in 2x2, 2x3 and 2x2x2 contingency
tables. We have given illustrative examples throughout, with a

view to explain the theory discussed, as it is used in practice.
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CHAPTER 2

2 X 2 CONTINGENCY TABLES : ONE ODDS RATIO

2.1 : Introduction

Odds ratio as a measure of association in a 2x2 contingency

table :

In 2x2 contingency tables only one degree of freedom 1is
available to measure assocliation. Due to this most standard
measures are sald to reduce to functions of cross-producit ratio
or chi-square stlatistic (Bishop, Fienberg and Helland 1975).
Here we study the cross-product ratio or odds ratio which is

often used as an index of association in a 2x2 contingency table.

Sampling schemes :

The extensive literature on 2x2 tables reflects the range of
different sampling schemes that may underlie such tables.
Barnard €(1947a> was the first Lo observe Lhat there were at least
three distinct sampling schemes leading to a 2x2 table. Kudo and
Tamuri €1978> have observed thalt olher sampling schemess, based on
negat.ive binomial distribution may arise, Here we consider Lhree
distinct schemes described by Barnard (1947ad) corresponding to

tables having zero, one or two margins fixed.
Origin I data (no fixed margins/double dichotomyd :

Consider that we have a four—-fold universe in which

individuals can be classified according to two attiributes A and B

10



each at two levels. This doubly dichotomous population can be

represented by

B B
A Pys Py2
A Pas Paz
In this population p‘,_.i i = 31,2 ; jJ = 1.2 represent the

proportions falling into i-th level of A and j-th level of B.

Pufpaz represents the odds of being in the first level of B
for the first level of A while ]:;2’/;::zz denote the odds of being
in the first level of B for the second level of A and odds ratio,
¥, is defined by

P,,"P,a P,P

PZ 1 /pzz

If we draw N individuals at random (independently> from this
popul ation, our sample outcome may take the form
B B
A 4 4
11 12
A x x
21 22
Thus, in this case the sample (x , X , X, %X 2 is treated as
12 12 21 22
realization of (X , X X > ~ Multinomial CN, p ., p _»
11 22 11 12

P..» Pzz) .

21

in advance; only total sample size, N, is fixed.

1

1

Note that in this case none of the margins is fixed



Origin II data (one set of margins fixed) :

Origin I1 data is that we have two binomial populations A
and A. We have a randem sample of size n from population A and
a random sample of size n, from population A Crow margins are

fixed). We then observe the members of B and B.

ir P, and P, denote proportion of B in populations A and A

respectively, our population situvation would be

B B
A P, Cl—p‘)
A P, Cl—pz)

Odds of B in population A are defined as p{(l—ju) and that in

popul ation A are defined as ;H/fi-pi) so that the odds ratio is

defined as

v = plfti-p‘) _ p‘CI—pz)
pz/(l—pz) pz(1-p’)

The sample cutcome may be represented by

B B
A x n -x n
1 1
A y nz—y nz
m N-—m N

Here x is realization of X -~ Bi(nl. p;) while y is realization of

Y ~ Bi (nz. pz).

9



Origin 111 data (both the sets of margins fixedd :

Origin III 4is that we have conducted a comparative trial.
We had for use N individuals or experimental units. We allocate
n‘ of Lthese at random to receive treatment A and remaining n2 to
Ltreatment A. This determines n. n, margin. Moreover, if none
of Lthe N individuals was assigned treatment A, a given nunber m
Cunknown to experimenter) would be fated to be in B category.
And if there is no treatment effect this number will not be
changed by the experiment. Subject to this condition, therefore
other set of margins is also determined. Our sample outcome may

be represented by

A x n —-x

A m—-x n, —m+x

The classic example of the two fixed margins case is Fisher's
C19353> tea-tasting 1lady. However, situations in which both
margins are unarguably fixed in advance are rare. ¥We consider

Lthe first two sampling schemes in the following.
Statistical inference :

There are two major areas of statistical inference - the

estimation of parameters and testing of hypothesis.

For 2x2 contingency table, the odds ratio is the parameter

of interest, Point. and interval estimation for Lhe odds ratio is

13



discussed in sections 2.2 and 2.3 respectivliey. Section 2.4
discusses the procedures for testing the hypothesis of

i ndependence.
2.2 Point estimation for the odds ratio

The odds ratio is often used as an index of association in
2x2 contingency tables. There is a considerable literature on
‘confidence interval® for the ‘odds ratio’ in 2x2 tables which we
review later. However, it is usually a point estimator that is

used as best single statistic to report study results.

¥e cbtain unconditional and conditiconal maxmum likelihood

estimators for the odds ratio.

Theorem 2.2.1 Unconditional maximum 1likelihood estimator
CUMLED of the peopulation odds ratio is given by the observed

cross—-product ratio. We denote it by Yon'

Proof : Case I

¥hen none of the margins is fixed; (x , x_, x , X 2 is
11 12 24 22

realization of multinomial distribution (N, p .. P_.. P... pP_.I.

The unconditional likelihood can be written as

L = LCx e x x b
12’ T2 21 T2z l Py Pyyr Py Py
N? x ® ® ®
- puptzpzxpzz
x v ox 0 ox 1 x 1 1 12 22 22
11 12 2 22

Maximizing L or In L with respect to p_ (i =1,2,; j = 1,2> with
ij

the restriction that L 1:.,“i = 1 gives MLE's of ptj i=1.,2;
LI |

14



J=1.2> as xij/N 1 =1.,2, § = 1,2, Hence the UMLE of the odds

ratio is given by

x <

~ _ 12 22
wUfl -
4 b4
12 " 22
Note that Yon is not defined if X225y = O

Case IT

¥hen one set of margins Cn‘ and nz) is fixed; x and y can be
considered as realizations of X =~ BiCn‘.pi) and Y -~ Bi(nz. pz)

respectively. The unconditional likelihood can be written as

L

Lix, ¥y | P,» pz)

n -

nl * 1
[ ] p.C1-p >
b4

x nz y ﬁz—y
( ] pzt 1 —pz)
Yy

M.E's of P, Ci = 1.2 are given by x/n and y-n respectively by
maximizing L or 1ln L w.r.t. P, i = 1,25, Hence the UMLE of the
popul ation odds ratio is given by

~ x(nz-y)
w T e———
un yin -

Note that Yon is not defined if y(n‘-x) = 0.

o
Theorem 2.2.2 : If we condition on both the margins of a 2x2
contingency table; the conditional likelihood is given by
n n
3 2 x®
(o)
x m=x
glx|m, yd> = c2.2.1>

n
2

rz N .
jff‘[ J’] [m-.i] v

18



where r’ = max(O, m-nz) and !'z = minCm, nl).

Proof : Since we have to conditicn on both the setls of tLhe
margins: we begin with conditioning on one set of margins. Yhen
only one set of margins Cn‘. nz) is fixed; the likelihcod is
given by

n‘ < h’—x nz y 'nz—y
L = LCx.yIp’.pz) = [ ] P, (1—p‘) [ ] p2C1-p2) .
x Y
In terms of the odds ratio, the likelihood can be written as

n xty

1 P2 "y T2 paC1_pz) " P
- (1) (Y e e (B ] [ 2]
x ¥ * P, P, P,

Thus
L = LCx, ¥ v, »> = ulx,yd vy,»d ¥ 7 ce.a.
P‘(1‘P23 P,
where y = —_—— and w» =
poI'-Pa) 1—;3z

We cobserve that (2.2.2) belongs to two parameter exponential

family and X and X4Y are sufficient statistic.

Now we obtain the conditional distribution of X given X+Y=m.
Since n‘. nz and m are fixed: the value of X is limited to lie

inclusively between max(O, m—nz) and min(m.ntl Let
r = maxCO0, m—n D> and r_ = mintm.n D,
1 2 2 1

PCX=x , ¥ = m>0

PCX = x | X+Y = nD = . a2.2.3
PCX+Y = mO

From (2.2.2>

PCX = %, ¥ = m—>0 = ulx, m—x0 vy, v2 vxvm

16



and

Hence, from C2.2.3>

n
(I ()
PCX = % | X4Y = m) = .
2 n n
E00)
= KCm, yd [:‘] (:::‘] 'Fx

where KC(m, y2 = -
2 N n

Thus, the conditional likelihood is given by

n ™

SRS

r? ta ] n
()

Note that the conditional likelihood depends on y only.

glx | m, y> =

Theorem 2.2.3 : The conditional maximum likelihood estimator
CCMLED of the population odds ratio y is obtained by maximizing

the conditional likel ihood

17



w.r.t. wy, We dencte it by Yo,

Proof : To Justify the argument of maxdmizing nglm.v) to get
CMLE; we discuss the definition of ancillarity in the presence of

a nuisance parameter (Godambe 1980).

Let the abstract sample space be X = {xX> and the abstract
parameter space be 2 = {e). The density function w.r.t. some
measure g on X is p(x,0). Further e = (9‘. 92) where e1 e ﬂi
being a real interval and ez € Qz where Qz is any specified set
such that @ = ﬂ‘ x Qz. Let o, be the parameter of interest and

ez be the nuisance parametier.

It is assumed that there exdsts a statistic T having tLhe

following two properties.
€13 The conditiocnal density f‘ of x gilven T = 4 depends on
©® onl y through e’, i.e.
pix, & = ft(x. 9‘) . hit, o
where h is the marginal density of T.

Ciid The class of distributions of T corresponding to eze {}2 is

compl ete for each fixed en € Q‘.

i8



Definition 2.2.1 : Any statistic T satisfying conditions (12> and
€(ii> above is said to be an ancillary statistic w.r.t. Bs; the
marginal distribution of T is said to contain no information

about el ignoring ez'

For 2x2 contingency table, from (2.2.2> the likelihood can

be written as

n nz n‘ “2 x xe
LCx, ¥ jpd =L = [ ’] [ ]Ci—p’) c1-p Y
. < y
Here y is the parameter of interest with Q‘ = {0, o while v is
the nuisance parameter with Qz = {0, oD. ¥e observe that
nglm.w). the conditicnal distribution of X given X+Y = m depends
on y only. Further the marginal density of X*Y

1

PCX+Y = M) &« ——or——m ¥ . m=0,131, ..., N cz.2.48
KCm, y>

Thus, we can write

PCX = x, Y = yly, I = PCX = x | X+Y =m, y>. PCX+Y = m|y, 2.

The class of distributions in (2.2.4) is complete for » € Qz
and fixed y € 0‘ because for fixed y & n‘. K€Cm,yd> > C ¥V m. Thus
the definition 2.2.1 is applicable and we conclude that Lhe
statistic X+4Y is ancillary w.r.t. y and the marginal density of
X+Y is said to contain no information about yw ignoring wv. Hence
inference on y can be based on the conditional distribution of X

given X+Y. The CMLE is then cbtained by maxdmizing g(x[m. ¥ .

19



Example 2.2.1

Consider all possible 2x2 tables with n, = is, n, = 10 and m

9,

ratio.

Table 2.2.1

We present below UMLE and CMLE of the population odds

UMLE and CMLE for the population odds ratio

Sr. No. Table Yon Yen

1 o 15 0. 0000 O
g 1

2 1 14 0.0178 0.0237
8 2

3 2 13 0. 0659 0.0784
7 3

4 3 12 0.18667 0.1812
] 4

S 4 11 C. 3636 0. 3796
5 =

5 S 10 0. 7500 0. 7588
4 S

7 6 9 1.5555 1.528S
3 7

8 7 2] 3. 5000 3.3301
2 8

= 8 7 10. 2857 9.3845
1 a

10 9 6 unbounded unbounded
0 1C

20



Discussion @

While evaluating a point estimate of the population odds
ratio, problem of zero cell arises, In general if we dencte tLhe

observed table by

a b n
1

Cc d n
2

m N-m N

then UMLE of y is given by Yon = ad-bc while CMLE of w is

obtained by equating one of tLthe observed cell frequency (say the
*a" cell) to iis expectation under Lthe noncentral hypergeometric
distribution with noncentrality parameter y. Thus V.. is obtajined

by seolving

a =ECa | n., n, atc, btd, y_>3. c2.2.5
s 2 cn

.

Note that Yon is undefined if bc = O and | S is undefined if
bc=0, a+c = O or b+d = O.
Caution is obviocusly required when reporting an actual data

set with a zero cell CMantel 1986, Hauck 1986)>, although many

exanples of such report exist in literature.

In evaluating estimators of Lthe odds ratio, one faces a
dilemma. If zero—celled tables are excluded from the admissible

sample space, estimators are always defined, but the evaluation

21



is over only part of the sample space. It is suggested (Mantel
1992> that when a table with zero cell occurs, instead of peoint
estimate one should lock for interval estimate. On the other
hand if zero-celled tables are included in the admissible sample
space, some estimators are nol defined and must be modified if
they are Lo be evaluated. We discuss below some modifications

for estimation of y or equivalently 2 = &n y.

NHote that UMLE of 3 iIs given by ﬁU“= lnth") and CMLE of 73

-~

is given by ﬁc“= lncwhg). ﬁuu and ﬁcﬁ are undefined if abcd =0.

To allow estimation of ﬁuh under the condition that abcd = 0O

Haldane (1955) suggested adding a correction term £ = 1/2 to all
Lthe four cells, to modify Lhe estimator proposed earlier by Woolf

C1855D. Thus, Haldane's modified UMLE of /2 is given by

ﬁun = 1ln{Ca + 1,23 (d + 1.25<b + 1./2) (c+1./20>

Adding a positive constant only to zero counts was proposed
by Grizzle, Starmer, Koch 19659, but Cox (19702, Goodman (1970
and Walter and Cook (19910 recommended always adding a constant.
More generally, Gart, Pettigrew and Thomas (19850 have shown Lhat
the optimal &£ correction for 2xk table depends on k. Adding € =
12 in all tables gives better bias and mse properties for ﬁ than
if it is added only as necessary when a zero cell occurs (Walter
19850 . Al though, not quite as clear cut the same preference also

applies to uncondilional estimation of y (Walter 1987).



Jewell C1S98B6) proposed the following estimateor for Lhe
estimation of the population odds ratio

Cadd

v, =
Cb+1d Cc+1D

Its correction of ¢ =1 to b and ¢ cells is intended to reduce
positive bias of UMLE and also make it defined for all possible
tables. However, the corresponding estimator of 2 is still
undefined if ad = O, Walter and Cook (19910 have suggested

modified Jewell type 2 estimator

Fal

ﬁJ = In(Ca + 125 Cd + 120 7/ (b+1D Cc+1d)

Jewell (19863 has shown that ;'_; performs well on the basis of

bias and mse.

Modifications suggested for conditional m.l.e. are as

follows (Walter and Coock 1991D.

a~

First, if abecd = O, Yo is defined directly by (2.2.%.

Second, if a = O or d = 0 enly; wcm is calculated using the

solution to

~

a+1/2=Ea | n, n, atc, bid, y_ >
% 2 cn
Similarly, if b =0 or ¢ = O; Y is defined as solution to

a=-1/2 = E{a | n, n_, atc, b¥d, y__ >
2 2 cn

Finally, if a+c = O or btd = O Yen is defined Lo be equal to 1.



Walter and Cook (19910 studied modified UMLE, CMLE and
Jewell's estimator for y and ln y. They recommended that 7 = 1lny
to be estimated rather than w be estimated and modified UMLE
should be used for this purpose. There 1s a considerable
instability and occasionally large bias associated with most
estimators on the arithmatic scale, particularly for small N.
Jewell’'s estimator ;J has relatively good bias and mse
preperties, but it is not invariant under table ocorientatiocn.
Therefore if symmetry w.r.t{. table crientation is an important
criterion, then modified UMLE should be used. (Walter and Cook.
19915,

Note that the wvarious modifications of UMLE of the odds

ratioco shows the prior belief of the experimenter. Consider that

only Lable total is fixed at N, and > , x_, >, X are

11 12 21 22

realizations of a mulitinomial CN, P,,+ P,,» P, pzz)' Now if

<p P . P p.> follow Dirichlet distribution with
11 12 21 22

parameters (1.2, 12, 12, 120 then posterior distribution of

CP“p P.» P

s P, given (x , x , x , x 2 1s also Dirichlet
12 21 22 11 2z

12 2

with parameters (x + 12, x + 172, x + 128, x + 120 so
1 12 22 22

- xi.j + 1.2
that Pij = e i =1,2; jJ =1,2 and hence
~ Cox + 1.2 (x + 1.2
" - 11 22

un Cx  + 123 Cx + 172
12 21

If L‘he prior belief is changed to Dirichlet distribution with
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parameters (12, 1, 1, 1720 Lthen Lhe odds ratio estimate is given

by
Cx + 1.2 Cx * 1720
11 22

un Cx  +1) Cx + 3
12 21

Exallple Cele

In the following, we study bias of various estimators

discussed earlier for tables with
Cad n‘ = 15, l':z = 10, m = 9 and

(b n‘ = 17, n, = 318, m = 15,

Cad



Table 2.2.2 ¢ Table of estimates

~ ”~ ~ Lal ~ ~

¥ ¥, Y Ve ¥s Yo

Uncondi-~ (modified Cmodified Jewell's Condi- Modified
tional uncondi - uncondi- estimate tional conditi-

estimate tionald tionald esti- onal
adding adding mate
12 to i2 to
Zero all the
count cells
only
o 15 0. 0000 0. 0037 0. 0051 0. 0000 0. 0000 ©. 0093
g p |
1 14 0.0178B 0.0178 0. 0304 0.0148 0. 0237 0. 0237
8 2
2 13 0.0659 0. 0859 0. 0864 0. 0537 0. 0764 0. 0764
7 3
3 12 0©0.16567 0.1667 0.1938 0.1319 o.1812 o.1812
6 4
4 11 ©O.3636 0. 3636 0.3913 0.2778 0. 3796 0. 3796
5 L]
S 10 ©0.7500 0. 7500 0. 7566 0.35454 0. 7588 0. 7588
4 6]
& 9 1.5559 1.59555 1.4862 1.0500 1.5285 1.85285
3 7
7 B8 3.5000 3. 5000 3. 0000 2.0741 3. 3301 3.3301%
e 8
8 7 10.2857 10. 2857 7.1778 4. 5000 9. 3845 g, 3845
1 g
Q ] ] 0.0333 20. 6923 i12.8571 w c2. 0485
o] 10




Table 2.2.3

$ Table of expectations

ECv&) ECya) ECys) ECy;) ECV;3 ECyQP
wy=0.2 O0.2679 0. 2667 0.c8685 0.1999 0.2797 0.2785
py=0.7 1.0635 1.0828 1.0029 0. 86293 1.0433 1. 0585
v=1.0 1.5822 1.5784 1.4865 0. 9973 1.5278 1.5780
vy=2.0 3.1755 3.1090 3.1561 1.9578 2. 9906 33941
y=4,.0 S.2832 4.7774 6. 5982 3.6104 4,905 6.5748
CbD
Table 2.2.4 : Table of estimates
a b ¥, ¥, Yo Ve ¥y ¥s
Uncondi- (modified (modified Jewell's Condi- Modified
c d tional uncondl - uncondi - estimate tional conditi-
estimate tionald tionald esti- onal
adding adding mate
1.2 to 12 Lo
Zero all the
count cells
only
10 17 ©O.0000 0. 0053 0. 0064 . 0000 0. 0000 0. 0031
15 3
1 168 0.0178 0.0178 0. 0282 0.0157 0.0212 o.0z12
14 4
2 18 0.0513 0.0513 O, 06ST 0. 04485 0. 0573 0. 0573
13 5
3 14 0.107% 0.1071 0.1253 0. 0523 0.1156 0.1158
iz o]
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[ d
o

O © N 0 0 N © 0

14

1S

i3

i2

11

10

i0

11

iz

13

14

18

0.1938 0.1998
0.3333 0.3333
0.5454 0.5484
0. 8750 0.8730
1.3968 1.3068
2.2%500 2.2500
3.7143 3.7143
0. 4167 6.4167
12. 0000 12. 0000
26. 0000 26. 0000

79. 3333 79,3333

o«

0.2174

O. 3562

0, Bes2

0. 8823

1.3719

2.1493

8, 7008

10. 0043

19, 8000

48, 3333

270. 0000 229. 4000

0.1667

0.2737

0. 4500

0.7071

1.7143

2.7083

13. 8667

29, 7800

g0. 0000

0. 2081

0. 3444

0. 551

2.1971

3. %881

6. 03856

10.9747

22. 7302

63. 7444

0.2061

O.3444

0.5551

0.8783

1.383%

2.1971

3.5681

5. 0388

10. 9747

22. 7302

B83. 7444

1851, 6293




Table 2.2.5 1 Table of expectations

EC v‘) EC wz) EC ws) EC w‘) EC 'rps) EC wo)
y=0.2 O0.2333 0. 2388 0. 2579 0.1999 0. 2483 0.2472
y=0.7 O.8841 O. 8841 0. B787 0. 6999 O. 8806 0. 8806

y=1.0 1. 2942 1.2957 1.2574 1.0000 1.2736 1.2751
y=2.0 2.7825 2. 7839 2. 5576 1.9999 2. 7825 2. 6841

y=4.0 B.2234 5. 2844 8.3372 3. 9930 5. 732 S. 7659

2.3 Interval estimation for the odds ratio

2.3.1 Confidence limits based on Fisher®s “exaci" distribution

Here we consider the confidence limits for the odds ratio
based on Fisher’s exact distribution. As shown earlier, the
conditional probability of tLhe observations for the subset §f
samples in which all the marginal tolals are fixed by the

condition

is given by

n n
1 2 x
J ()
gCx|m, ¥> = = i €2.3.1>
m nl hz
t (J(2])"
i=o J m—3
Here and henceforward we assume Lhat rt = max(O, m-nz) = 0 and

r, = max(n‘.m) = m. The conditicnal probabilitly of the sample



cbservation given the marginal totals, thus
the unknown parameter.
An exact 100(1-cD% confidence interval
(wLCxJ. wu(x)). where WLCx) is such that
m
£ gl3|m. vLCx)) = a2
=x
and vu(x) is such that

x
£ giim qux)) =z a2
o

The probability that this interval fails

depends only on y,

for y is givenm by

2.3.2

C2.3.3

to contain y |is

PCqu)DOp) + PCwLCXD > yd. We now prove that each of the above

exclusion probability can not exceed al.

Let
o
F‘Cxlw) = ¥ gCJ[rn. wo (2.3. 4>
=0
be the c.d.f. of X.
We now prove Lhe following lemmna.
Lemma 2.3.1 : For any fixed x, O = x < m; FCxlv) is a decreasing

function of y.

Proof

o
FCx|yd = L gCi|m. ¥
i=o

x n n

A O N O A

B0
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m n n - _
N O G L

o ]

z(0)

PCX|wd 4
[ 2

A |yd
where PCx|yd =j=:,2ﬂ [:l ] (n:: ] e
and  Cx|y> = f., ['J‘=] [,.:j ) v

Since ¢ 2 0O; PCxlw) is an increasing function of y and QCx‘w) is
a decreasing function of y. Thus, F‘Cxlv) is a decreasing

function of yw.

Now,

PCy CXD < w) PIFCX{pd> < FCX | w CX32)

PIFCXIyD < o2l
= P[FCX'\D £ ail

= a2 .

By a symmetric argument, PCWLCx) >y = ovse.l This proves
that {wLCx). qux)} is a conservative 10X1-ad24 confidence
interval,. Due Lo discreteness of the distribution of X, there
are generally no values of L and L which satisfy the equations
(2.3.2> and C2.3.3> exacltly. The wvalue of v, is taken to be the

largest such that the expressiocon in (2.3.2) is £ a2, whereas the
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value of L > v, is taken to be the smallest such that the
expression in (2.3.3) is £ a2. When any entry in the table is

zero, only one sided intervals may be found.

The term “exact confidence limits* is often applied to this
procedure, This is somewhat confusing because "exact” does not
refer to the confidence coefficient being exactly (1-¢0, but
rather to the fact that the limits, which only approximate a
(1-a® confidence interval, are based on the exact conditional

distribution of X.

Example 2.3.1

Let n, = 15, n,6 = 10 and m = 9, In Lthe following we give
a5% exact limits for the odds ratio in each table with above

marginal totals,



Table 2.3.1 : Limits based on exact distribution

95% Exact Limits

. No. a b Lower limit Upper Limit
d YL Yu

1 o 18 0. 0000 0. 2250
9 1

2 1 14 0. 00038 0. 2958
8 2

3 2 13 0. 00513 0. 6528
7 3

4 3 12 0. 01800 1.3218
] 4

S 4 11 0. 04900 £.86371
5 S

B 5 10 ©.1077 5.4812
4 &)

7 o] g O.2191 12.9482
3 7

B8 7 8 0. 43553 42. 6595
e 8

9 8 7 0. B947 504. 9055
1 =

10 9 & 2.8585 ©
0 10
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Gart’s approximation to exact confidence limits 3

For small numbers, Garil (19620 has suggested approximation

to exact confidence limits. The suggested approximations have
xCm—x>

been found Lo yield good results whenever TR < i, although
1 'z

for values of this quantity close to unity, the interval tend to

be Loo narrow.

o
Consider 3} P(i) where
t=zo

Wise (19540 has given an approximation to above sum by

k| % m - —
T Pid =~ [ [1 ] ¢t 1™
i=0 izo

where

2an -k + 1
c = t c2.3.%
ECn'-rnz) - m+l

k being number of terms Iin the sum in questicon, in this case

Cx+1),

We have Lhe exact confidence limits given by

(1) () %

«a
= - 2.3.6
b=
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and

JE* [ ?‘] [ "::] Yo _ 2.3.7
™ n n ) T e
L LI ]

Since Lhese equations have a certain symmetry, we =shall
explicitly consider only (2.3.8). Dividing the numerator and

+n i
dencminator of (2.3.86) by [n’ 2] we find that coefficients of p;
m

are the terms of hypergeometric distribution. Applying the

approximation mentioned earlier we obtain

*® m

i m—t
‘}: 4 ] Cczvu) Cl—cz)
LEO
~ 2
bl m t m—i =
i{,‘o [1 ] Cczvu) Cl—cz)

where we have c, for the moment unspecified. Summaticon of tLhe

denominator yields

-
| x
o1
=
» 8
|
e
[a]
(=3
|
0
N
vl 0
3| e
NS
€
c
| S |
~”
pe——
~
[y
| [
0
N |
L)
+| 0O
I
N‘G
c
Smmd
R
R

m m . .
<=> [ [ ] Ce*d' Cc1-e»™ > - 3 c2.3.8>
=X+t i
c
where c’ 2 v

(1-cz)+czwu

By using the relation between binomial sum and incomplete

beta, we have



Ic.Cx+1. m-x) =«1 -

\ ]

Since Lhe lower 1001 point of F distribution with v v, degrees
of freedom (denocted by F‘l_va‘.vz)) satisfies the equation
Iv‘F C v‘/E. vz/a) =
> w F
2 s
¥e can write (2.3.8> as
IvlF‘ C vlfa. vz/'a) ~1 - e

v +v F
2 1

where v,o= 2(x+1), v, = 2(m-x> and F is lower 10001~ ;—5'/. point of

F distribution with v' and v, a.r.

v’F‘
Now c' = ST F
2 1
<o cz""u _ v’F‘
{(1-c D+c_ vy v _+v F
2 2'u 1
» 1—-—c
{(=> yp = —— X F Cy , ¥
u %) c, a2 1 2
1l1-c
- Xt 2 F  (2x+2, 2m2O
m-—x Cc

x 1-c b
¥ T Toex+id c F (2tmx+13, &3 °
[+ Pg-




It would seem reascnable here to use Wise’s formula (2.3.9 in
evaluating c, and C however this leads to difficulties. Since
€C2.3.5 involves number of terms in the sum and this number of
terms is different in the numerator and denominator of (2.3.8
and (2.3.7>, its direct application would unduly complicate the

final result, It was found that (Gart 1962) for tLhe upper limit
letting
Cx+12% + (m+1d?

k = 2.3.9
x + m+ 2

in (2.3.8) yilelded the most accurate limits over a large number
of cases. Here of course, kz is the weighted mean of number of
terms in the numerator and dencminator, the weights being

properiicnal to number of Lerms.

Analogously, for the lower limit, we let

Cm-x+12% + cm+1>%
k = €2.3.10
2m - x + 2

in evaluating <, from (2.3.5.

Thus we have the following approximate C€1-o0100% confidence
limits for the odds ratio

xt2n_ - k. + md 1
2 1

v = x _ €2.3.11
Y c2n, -k +15Cmex+1d Fa om-Ext8, 2%

and

¢an_-m+k DCx+1)
y = x F___ (2x+2, 2m-2>0 c2.3.12
v ¢2n -k +13Cm—>0




Example 2.3.2
Here we calculate the limits for the codds ratio using Gart's

procedure for 2x2 tables considered in example 2.3.1.

Table 2.3.2 ¢ Limits based on Gart’s approximation

95% 1imits
Sr. No. a b Lower limit Upper Limit
d ¥ Yu

1 0 18 0. 0000 0. 4342
9 1

2 b 14 0. 0028 0.8211
8 2

3 2 13 0. 0263 1.2857
7 3

4 3 12 0. 073S 2.9830
o] 4

5 4 11 0.1448 3.1729
S 5

8 5 10 0. 2451 5. 4600
4 &

7 5] 9 0. 3897 10. 9994
3 7

8 7 8 0. 6077 31. 7531
2 8

=) 8 7 1.43865 339.3172
i g

10 9 o) 2. 3028 ©
o 10




2.3.2 Limits based on approximate distribution :

Finding confidence 1limits based on exact conditional
distribution is a process which Fisher (1962 described as toco
lengthy Lo be recommended. An attempt to avoid such lengihy
calculations for moderately large sample sizes leads to the
investigation of asymptotic approximations given by Cornfield
C1956) and Fisher (1962>. Though the formulae given by Fisher
and Cornfield were somewhat different, essentially both the

methods lead Lo Lthe same limits. We discuss both the methods.

Approximate limits proposed by Fisher

Let the observed table be represenled as

x n —-x n
1 4
n - n
Y 27 Y 2
m N-m N

First determine the value of z which provides scluition to

the equation

2 1 1 1 1 _ 2
z [x_z+ Tzt 53 +r_1:__y._?] X2 2.3

where z; is upper 100a percentile of chisquare distribution.
Then assuming that eqﬁation ¢2.3.13> has real sclutions z, and z,
Cz > z 0 take
1 2
(x—zZ 2 Cn_—y-z D
1 2 1

¥, " (2.3.140
Cni—x+z‘3 Cy+z’)

and



Cx-zz) an—y—zz)

2.3.1%

€
n

Cn -x+z_> Cy+z_ D
1 z 2

as Lwo sided approximate confidence limits for Lhe {Lrue odds

ratio. These limits are at approximate probability level a.
Fisher gave the following Jjustification for the use of iLhe
equation (2.3.13>.

If Lthe expectation in the four cells of 2x2 table were
xX—Z n —x+z
S
Yz n Y-z

their cross product ratio will be

Cx—-23 an—y—z)

Cy+zd (n’—x+z)

and the chisquare statistic for the cobservations would be

2 2 i 1 i i
X' =z {E MM nz—-y'-‘z} €2.3.163

with one degree of freedom,

Applying Yates'® correction for continuity Fisher used

2 1 .2 L | 1 i 1
x = izl - 32 { x—z +nl—x+z Yyt n_-y-z }
is his numerical calculations.

Approximate limits proposed by Cornfield (19563 :

The mathematical derivation suggested by Cornfield (1856)
for obtaining approximate confidence limits for the odds ratio is

as follows.
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In obtaining the limiting distribution for (2.3.1), which we
now denote by f(x); we are faced with an initial difficulty
arising from inability to evaluate the constant term of tLhe
denominator, This difficulty is avoided by seeking instead the
limiting distribution of the ratio

£¢:0

£C30

where x is the mode of the distribution (2.3.1) and is defined by

the inequality

(;+1)an-m+;+1) §an -m+ O
~ ~ zZ y =z ~ — €2.3.17
(n‘-x)(m-x) (n'—x+13 Cm—x+iD

For large samples, it is sufficienl to write

X, - m o+ 3O
v o= — ~ cz2.3.18
(n =0 (m—30

Before obtaining the limiting distribution f(x>, lel us prove the

following lemma.

Lemma 2.3.2 : If we use Stirling’s formula for factorial n and
expand all the terms of the form logCl+x) to the quadratic and

sel terms of the form

~y > ~ L)

x +1.72 n‘ -x+1l.2 m - x+i.2 nz—m+x+1/2
L") . e 4 ~ » and .
x n‘ - m - x nz -m +x

equal to unity, we have as a limiting expression

CxD -
- alog{ — } = Cx - 0% { 1: + 1‘_ + ._1: + ;_: }
¢ x n . - m—x nz —~m+x
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Proof

- 2log il = - 2log [:‘][mi‘;]v’
=2 {[;‘][;‘;]f}

X! Cn Ot Cn —m+D! Cm— *Cn_ —m+0
- -atog{ [ ——— = 1}

x! Cn -0 Cn —mx0t Cm=3 ! Cn’—;)(m—;'c)
Now using Stirling's approximation n! = vén n""*"? ™" we have
(0
- alog{ — }
£
- g - 8 O |
- N -4+ — m-x¥ — N —~meExXe+ —
-~ ne ; - 1 2 ~ b 4 -~ 2 2
= Cn‘—x) Cm—>0 (nz—mﬂo
= - &log 1 1 1 1
n+ ; 'hl-x# ; m—x+ -z- n _~m*rX+ ;
x Cn‘—x) Cm—30 an—mﬂc)
-~ _~ ’—;
x(nz—m-ﬁ-x)
Cn‘—;'OCm—?O
| | 3 1 3
neE - T =% 4+ - m-xer - ™ _~MEXr —
2. n —x 1 2 2 —-m+x 2 2
Y 1 m-x 2
200 {{2) () (=) =) }
x n —-x m-x -m+x
1 2
. x5 1 %o
= 2(x + —a-) log{‘l ¥ — + 2Cnl-x + ED log {1 4+ = }
% n_-x

. S-x
+2Cm-x+é-)log{1+ ._}

m —X

x - x
+ 2Cn -m+x + 1.2 log 1 + _.-..}
2 n, —mx
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A

2C nz—m+x+1 Vg=o

n —m+0O
2

2C% +1./2+ x—3

X

> 2

{(x-;)-

43

1 X=X 1 Cx—0
=2tk + 35> { — -F ——— }
x ;(z
x-% 1 Cx—0 7
"’E-‘Cn‘-x-t-i/a){ -~ ——=
n -x <n -—x)z
L Il
X~ y €x—0?
+2Cm—x+1/a){ -5 — }
m -x Cm—x)2
1 x-; " Cx—;)z
* EChz-m-i-x + é) {—"""'-—_' - E —_—
n_—m+x an—m+x)z
2C x+1 /2> Cx—>02
= — { (x - x> — }
b Y ax
2Cn_—x+1./2> Cx - 302
+ — {Cx - x> - }
Cn‘ - 3 2Cn -3

Cx—;'oz
2n - m
2
_1_ Cx -
=] pu

x

[LH R



20m - X +1/2+ %0 . , Cx -0
+ ~ {CX-XD-E p= }
Cm - >0 Cm -
2an-m+§+1/2+ x5 s x - 02
+ ~ {CX-X)"‘E ~}
an—m-!-x) n —m+HO
x - X Y 4 x-0F
= 2{1 }{Cx-x)—— }
= ~
x
;—x - Cx—;vc)2
+ 8{1+ — } {Cx—x.‘)— ~}
nl—x 2(n —x0
x - x Cx - 0%
R N e .
Z2Cm —
x—x Cx—;'c)z
+ a{1+ }{Cx—x)- _‘T}
n—m+x Ean—m-l-)O
- 1()(-;(31 1 Cx--x.)3
=2{Cx—x)+é- - _é' ~z }
x
N L Cx-0F  x- 00
+ Z{Cx-x)*-a— = —E "'2}
n 2O (nl—x)
1cx—>oz . Cx - 0°
+ B{Cx-x)-fg — -3 ~z}
Cm —x Cm — X
- 1Cx—§)z 1 (x—;c)‘
+ 2{Cx—x)+§ ~ 3 --z}
Cn_—m+0 Cn —m+xD
o Cx—i')z{}_‘-_- + 1~ + 1‘_ 1__}
S n —-x m —-x N —m+x
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¥We now obtain Lhe limiting distribution (0.

Theorem 2.3.1 Limiting distribution for (2.3.10> is normal with

mean x def{ned by (2. 3.18 and variance given by

Proof

Jo obtain the value of maximum ordinate, we use (2.3.1) to

write
1 - ~
— = ¥ OO
T xX=0
Approximating the summation with an integration from - o to ow;
we have

[ ]
¢
N
8| —
8
;
prt—
I
1\ Lot
~
¥
&t
N
"
X+
(¥
¢
+
(=]
¢
+
[=Y
X

¢ n —-x m —-x n —m+;c
1 2
N 1
. — = v2n x
£ _/ }_+ i + i + 1
% n-x mx n_-mex
s0o that
1.2
£C50 = 1 [f__+1~+1~+ 1‘_]
n x n_-x m —x nz—m+x

Hence the limiting distribution f(x2 is normal with mean ';c and

varlance
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X
+
'Y
¢
+
[¥
¢
+
(WS
S
i

~
n =-x m =X nz—m-*x

Hence Lhe theorem.

Now denote by ;z the largest root of quartic in x.

C§ - % - % )z { é + i — + 1 — + 1 - } = Z:
x n‘-x m —-x nz-m+x

and by ‘>'c1 the smallest real root of

€% - x + L 52 { 1,13 + 1 + 1 } = 2
ot -~ -~ -~ ~ o
X n —x m —X nz—m+x

where x; is upper 100a% point of chisquare distribution. Denote
by ¥, and v, the value of y obltained by substituting ;z and ;&1 in
€2.3.18) respectively. Thus,

;Elan—m-f;:‘)
y = (2.3.1

L (n -% D Cm-x D
1 |
and - -~
sznz-—mﬂcz)
v, T = — Ca.3.200
Cn —x > Cm—x_>
1 "2 2
Then Pc;‘ < x = ;z) = 1-a asymptotlically and since yp 1is a

monotone function of x, the asymptotic preobablility that the

statement v = yw = L is correct is also equal to (1-cO.
Example 2.3.3 :

Consider the following subset of data resulted from a
case—control study of menopausal estrogen use and endometrial

cancer. (Schlesselman, 1982).
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Table 2.3.3 : Use of Oral Conjugated Estrogens (OCED for Cases of

Endometrial Cancer and controls

Endometrial contirol Total
OCE cancer
Yes 55 19 74
No 128 154 22
183 ig3 3665

The approximate 95% confidence limits for the true odds ratio

using Cornfield’'s method are given by

v, = 2.0271 and Yy = 6. 839Z2.

2.3.3 Some more approximate methods :

¥e now consider two more approximate methods viz.

(1) Goocdman's medification to Fisher's approximate method

and (2) Gart's (1962) approximate method (for large numbersd.
1. Goodman®s modification to Fisher's approximate method :

Goodman (C€1984) has suggested a method for obtaining
confidence limits for the odds ratio which is based on Fisher's

approxi mate method.

Let P, = xN, P, = Cn‘—x)/N v Py, = y-N, Py, = an—y)m.

The chisquare statistic (2.3.18%) can be rewritten as

x‘=Na’[ LIS SN c2.3.21>

==
+
Pll € p12+€ P21+$ PZZ_‘:

where € = zN,
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¥hen the marginal proportions in 2x2 contingency table are
fixed and N + o, then £ will converge in probability to zero and
the statistic (2.3.21) will be asymptotically equivalent lo

2 1 1 1

W o= 2%x ! s Cn‘—x)- + CmO 1+ an—m+x>"‘> cz.3.22

Instead of solving (2.3.13>, Lhe quartic equation given by
Fisher (19620 which can be rewritien as

X% = x c2.3.2»

Goodman has recommended to replace x? in C2.3.18 by Wz. thus

obtaining
W e o’
1.e. 2°5% = x; c2.3.24>
where
s = [ 1 . L + 1 ] <2.3.25%
b%e n —-x y n_-y

Equation (2.3.24> has two real scolutions viz.

Y 2 » »
z = vYx_ /S and z = - =
1 a 2 1

Replacing 2z, and 2z, in (2.3.14> and (2.3.15 by z: and z:
respectively, we obtain the approximalte two sided confidence

limits

Cx—z D an-y-z 2

*

c2.3.262

€
fl
YR I

Cyt+tz 2

- B @»

J Cn —-x+z
1
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and

. Cx+z:) an-y-fz:)
w = c2.3.27
v - .
Cy-z > (n_—x-2 D
t 1 1
[ ]
Denot ing z‘/N = s. » we can write ap: and w; as
- Cpl’ - &% szz -
¥, = —= y (2.3.28
L ] [
sz‘+.-:)Cp‘z+s)
. Cp“ + c') chz + .e:')
v —x = a2.3.29
U " »
(pz‘ - &) (p‘z -2

Vhen marginal proportions are held fixed, and N - o,

€(2.3.28) and (2.3.29) will be asymptotically equivalent to

y, = [1 NS S S SO T ] c2.3.30
p‘.l plz pz‘ pzz
12 21
P, P
vy = [1+£.Cp1 +p1L *pi +E?—— )] c2.3.31)
P,,P., 11 12 21 22
respectively.

We thus have confidence limits given by

~

- - 2 w 2
w, =¥, 11 - ¥x S) and y, =y, (1 + ¥x, S) c2.3.32

where Yon dencte observed cross product ratio.

The above limits are easy to calculate and they will serve
as approxdimations to Fisher's approximate limits in the case
where N + ® and both the sets of marginal totals are fixed.

We now prove that the limits obtained in (2.3.32) will also
serve as confidence limits for the odds ratic when one set of

margins or none of the margins is fixed.
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For the case of one set of margins fixed; we obtain

Ll

asymptotic varlance for Yun

Fas
Lemma &.3.2 : When one sel of margins is fixed: ¥un is CAN for w

with asymptotic variance given by

1 1
| . J
ntp‘CI—p‘) nzpo1-pz)
Proof : W¥hen one set of margins is fixed, likelihood can be
written as
L=PCX=x.Y=y|p‘.pz)

n nz x ni-x v r-z"'y

« y ) p‘(l - p‘) po1-pz)
Note Lhat it is a two parameter exponential family with parameter
(p‘.pz). M.L.E. of P, i = 1,20 1is given by P, = x/nl and P,

=y/n2 respectively and Cp‘. pz) is consistent for Cp‘. pz).

Py P, -1
Further [A] ~ AN { [ ] » I Cp‘. Pz) }where I(pl.pz) denocte

P, P,
information matrix and is given by
2’1in L #’1n L
EC- — p EC- ——8—— 2
I(p’. pz) = :p‘ :p‘t?pz
d°1ln L 8°1n L
EC - —— > EC - 2 p]
6pz apx "pz
"y
O
_ p‘CI—p‘)
nz
o] - <
po1 pz)
p‘(i—pz)

Now consider the Ltransformation y = Using the

p2(1—p*)



invariance property of CAN estimators ¥in is CAN for » with

asymptotic variance given by JIX _‘Cp’.pz).l' where

5 [ oy oy
ap: 0pz
=[p‘C1—pz) - P, ]
z 2
po1 p‘) po1 p‘)

Hence asymptotic wvariance

- p‘C1—pz)z pfu-pz)
Var Cy_ D = +
vn l'*a‘pzfi-p‘)3 nzp:CI-p‘)z
2 2
_ p:“’ pz) [ 1 . 1 ]
2 2
poI p‘) n‘p‘CI p‘) nzpz(:l—pzb

i i
i s |
n‘p‘C1—p1) nzpo1—pz)
o

Similarly, when none of the margins is fixed, asymptotic variance

is given byVar(; )=‘—"i 1 + i + + 1 -
un N Py Py2 P2 Pa2

Thus in both the cases estimate of asymptotic variance of LA
VaerUn). i=s given by wznsz . Hence in both tLthe cases ap: and w:

given by (2.3.32) are approximate limits.

2. We now describe the methoed proposed by Gart (1962) for large

numbers.

The chisquare statistic for testing independence in a 2x2

contingency table is given by
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-~ -~ z
2 Cpl - P23
X" = €2.3.3W
pgci +1 >
n n
] 2
Here unknown p (¢ = P, = pz) is estimated by
n + n_p
= B | 272 - _ _ =
P e and q 1 P
] 2
Confidence limits on Cp‘ - pz) with approximate confidence

coefficient (1-cO are found by modifying this statistic (2.3.33

and selving the equation

~ ~ 2
(p, - p, - Cp_-pP_ 2
L 2 2 = z; c2.3.34D
plql + quz
n n
s 2

In an analcogous way, confidence limits for the odds ratic may be
found. The chisquare statistic (2.3.33) may be alternatively

written as

Cpa-PqD
x? = rt 2 27 c2.3.35
Sqci Ll
Pac - =
4

This expression being algebraically identical to (2.3.33D, The
modification of (2.3.35) proceeds as follows., In the numerator,
substitute Zz = cE.az - \u‘;;za‘)z and in Lhe denominator substitute
estimated variance of Z, denoted by ;CZD Now for all y, EC2=0
and 2 is a well behaved function of sums of independent random

variables. Thus, Z2/vCD has limiting chisquare distribution.



We derive expression for variance of Z in the following

lemma.
Lemma 2.3.3 : Exact expression for variance of Z is given by
P,q P,q P.9,P. 9
- .22 2 1's 2 1 47272 a2
VCD " Cpl + W‘) + T cw2+q2> + —I"l_l_'l_ Ci W)
2 ] 1 2
c2.3.38)
Proof
Z=paq, - ¥,q,
_ x_(n -Y> _ Y_Cn‘-}()
n n ¥
1 2 1 2
Now
viD = v(ECZlY)) + E(v(Z'Y)) C2.3.37D
){an-Y) YCnl—}Dv
ECZ[Y) = E { - | Y}
n n nn
1 2 12
Cn_-YD Y y
= —2 — xn p - (tn - np>
nn 171 n n Fl 11
12 1 2
p_ tyq
1 %
< (25
2
P,1, 2
VCECZ|Y)) == Cp’ + wq‘b C2.3.38
2
Now
2 2 2
an-Y) Yy n P,q, 2an—Y)Yv n pP.a,
vZ|¥> = ————npq *+ +
2 2 1781 2 2 2z 2
n nn n'n
12 12 12
P,q P,q
1 22 2
ECVCZ[Y)) m, i1 apz + + P, ]
P .q P4
1 o 272 2
M n, vt n, * P, )



p.q p.q
1 1 _ 272 _
* g —Ip, n P, !
1 2z
p.q p.q.p.q
o a4 2 171722 _ .2
('sz + qz) + T 1 yo 2. 3. 39>
1 t 2
From €2.3.37), (2.3.38) and (2.3.39
P.qQ P.q P.q9,P.q
2 4 | I | 4 14 2 2 z
= + -
V(2D (p‘ wq‘) + m, (pzw +qz) + nn, 1 ¥

Now, an unbiased estimator of wvar(zl, except for terms of

on *n D, cn 2 nH, tn D, Xn2nD is
2 i z 1 2 1 F
- P - - pP,q A A P
z 2 2 171 2 14 22 _ 2
WD ==t P P ¥R G WP, Y9 g L oW
2 1 1 2
C2.3.40

Upon the correction for continuity, we are led to estimation
equation

2

1 1 2 ~
Z * C 2Z_ %+ 2— >35> = ¥* v(D C2.3. 41D
n n a i

1
=3
where the ‘plus’ sign is associated with upper limit and the

‘negative’ sign with lower limit.

Equation (2.3.41) is a quadratic in y and roots are limits
of an interval with confidence coefficient approximately equal to

(1-cO,

Hence by solving Lhe equation (2.3.41> we have the lower

limit



(2.3. 420

and upper limit

e
| e |
fal
_z
ad e
ch. +
- A
- _l
m i
\J
(4]
5 +
N
~
> N
e
Fa
Ad.z +
¢ N
& ko
]
- [ QA
| ~
NG &
N
J +
n
_ N
e~
+
_4.
il
W
+
(g
5
<P

C2.3. 43D

1

where
and



In the derivation of €2.3.42> and €2.3.43% terms of om:‘n;"‘)
OCn_'Vz n;‘). OCn:'n;i). ocn 1’2n:'/z). and OCn-glhn-1/z) have

been dropped.

It is suggested C(Gart 19682 that (2.3.42) and C2.3.43) be
used for Lables in which

xCm—xD

n_+n
1 2

although when the quantity is close Lo 1 the limits tend to be

too wide.

If the quantity greally exceeds one, Lo be specific when
xCm—3

_— 25
n_+n
2 z

the feollowing somewhat simpler formul ae may be used.

“ 1 1
vy =y -7 x / ~ =~ =~ C2.3. 44D
L un n,P,.q, nzpzqz
. 1 1
v =y 1 + v x / = ~ = C2.3.45
u uUn n P9, nzpzqz

Equations (2.3.44) and (2. 3. 45> are obltained from (2.3.42 and

€C2.3.43) by dropping terms which are of cxn:‘a. O{n;') and

-t,2 —1/2
oln n

. J. Note that limits given by (2.3.44D> and (2.3.4%

are same as given by Goodman®s modification to Fisher's methoed,

Example 2.3.4 : Consider again the 2x2 table in example 2.3.3.

»xCm—>D

NoLe that _n:-r_nz > 5.



Hence we use (2.3.44> and (2.3.45 to calculate 99%

confidence limits for the odds ratio.
v, = 1.5931
and ¥, © 44,7451
Note that the same limits are obtained using Goodman’s
modification to Fisher's approximate method.

2.3. 4 Logit method :

Another approach to setting approximate confidence limits on

y is based on a transformation of approximate limits for fi= 1n yp.

In case where one set of margins is fixed or where none is
fixed; Lhe statistic 1n ¥Yun is ml.e. of f3 Haldane (19532 and
Anscombe (1956> have shown that an approxdmately unbilased
estimate of [ can be derived by adding 1,2 to each of the cells

of 2x2 table and using

B = 1nC Cx + 172> Cn -y+1/2> 7 Cy+1/2> Cn_ - x+1/2>>

The estimated asymptotic variance of 2 is given by

~ o~ 1 1 i 1
varc {x+1/a * n‘—x+1/2 * y+1i.2 * nz—y+1/2 :

Since 3 in large samples has a normal distribution. an

approximate (1-o0100% confidence limits for 3 is

;}iz/i+1 L, 1

a2 x+i./2 n‘—x-t-i/a y+i.2 nz—y+1/2




where 202 is the point on the unit normal distribution that is

exceeded with probability o2.

Approximat.e lower and upper confidence 1limits for y are

found by taking antilogs of the limits for f3. Thus,
y =y exp{ = Z,, Yvar(/D } 2.3 46>

and

v =¥y E'XP{ + sz Yvar( } C2.3.47>

v Un

These 1limits will also serve as approximations to Fisher’s
confidence limits where both sets of margins are fixed.

Example 2.3.5 : Consider again the 2x2 table in example 2.3.1.

95% confidence limits for Lhe odds ratio using equations (2.3, 4060

and C2.3.47)> are given by

y,_ = 2.1075

v 6. 5270

U

In Lhe following table, we summarise limits given by variocus
approxi mate procedures.

Table 2.3.4 : 95X limits for the odds ratio given by various
approximate procedures

limits using limits using limits using
Cornfield’s Gart's method 1logit method
a b method
d wl. Wu wl. vu vl.. wu

53 19

128 104 2. 02871 6. 8392 1.5931 4.7450 £.1075 6.52870




2.4 : Testing the hypothesis of independnce
Various test procedures are suggested for testing the

hypothesis of no association in a 2x2 contingency table. Ve

discuss the following testis.

CI> Fisher’s exact test
CII> Gart's approximation to Fisher's exact test.
(I1I> Uncorrected chisquare test.
CIV) Continuity corrected chisquare test.

CI)> Fisher's exact test

Ve first consider the one sided tests only. An exact one
sided test of significance of null hypothesis of no association
i.e. Ho : y=1 Vs Hl : y < 1 can be obtained from distribution

of X conditional on all the margins, being fixed.

p—value in Lhis case is given by

b 3
p_ = L gCi|m. 1D C2.4.12
£ +=0
where
n n

1 2

| R My
gCilm.i) = — 2.4.2

Similarly, p-value corresponding Lo the hypothesis Ho : p=i

Vs H‘ : ¢ > 1 is calculated as

m
p, = L glilm 13 €2.4.3
L=x
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How to calculate two-tailed probability is a matter of

dispute among statisticians which we discuss later.
CII> Gart's approximation to Fisher's exact test

Gart (1962> has proposed the following approsdmation to

Fisher®s exact test,.

Consider the hypothesis Ho : =1 Vs H‘ : > 1. Then the
p-value calculated from the exact test is given by (2.4.1D. ¥ise
€1954> has shown that a good first approximation to p is found by
approximating Lhe hypergeometric terms in (2.4.1> by binomial so

that
[ ] ct c1-od™ c2.4.4>
1

where
cn -k + 1
P

2Cn +n D- m + 1
1 2

k being the number of terms in the sum in question, (x#1) in this
case, Using the well -known relationship between binomial sum and

incomplete beta function, we find
p == I‘_c Cm—x, xX+1i)
p=~=1- Ich+1. m->0
Ic(x+1. m-x> ~31 - p C2.4.5D

Since the lower 10004 point of F distribution with v, and v,

degrees of freedom (F __ (v ,» 33 satisfies the equation



Iv!'r Cv‘/a, vz/a) = P

2.4.8)>
v F + »
) 2

we have from (2.4.5

v‘ = 20x+1), vz = 2Cm-30

1 vz
- c = 14 » F
1
- 1-~c = vz
< v F
1-c¢c vz
- (Y 2 = — x —=
1-y4-py 4 2 c v‘
Bn‘ - X m—x
= ————————————————————— x —
Enz-m+x+1 x+1
m—x an: -
P{%(ax+8. em-2x0 = o X ——— } =p .

anz-m+x+1

Thus, we may perform an approximate test by computing

Cm—0 Can!—xb
F = (2.4.6>
Cx+1D (anz-m+x+1)

and comparing this statistic with upper 100 point of F
distribution with 2(x+1> and 2(m—-x0 degrees of freedom; a being
predetermined level of significance. This approximate test has

been found to be accurate for tables with small numbers, a good
xC m—x>

rule is to use this test whenever i = 1.
’ 1 2

Now consider the other ocne-sided test.
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H, : ¥ =1 Vs H : yw < 1. Exact p-value in this case is
given by (2.4.3>. Again using the approximation given by VWise

m. .
e C2. 4.7

m
P= L C,
=x

i

3> ce*dt ¢1 - e

+ X

2n -
t

where c’® =
2Cn‘+nz) - m+1

Again using the relationship between binomial sum and incomplete

beta function,

Ic,Cx. m—x+1) = p 2. 4.8
Using relation between F—distribution and incomplete beta
function we have
I Cy /2, v./23 = p
v F t 2
v F + »
1 2
so that v - 2x, vz = 2Cm—-x+1D
v F
c* = :
v F + »
1 F
¥ c*
F= < 1=
1
2Cm—x+1D 2n —m+x
ex a2n_-x
2
2Cm—-x+1> an‘*m+x
P{Fcax. 2m-x+1) £ —4m7m8m8 — X ————— }zp )
2x anz—x



Thus, we perform an approximate test by computing

Cm=-x+1D 2n -m+x
x — 2. 4.8
* anz—x

and comparing Lhis statistic with lower 100x% point of F
distribution with 2x and 2(m-x+1> degrees of freedom, a being

predetermined level of significance.
CIII> Chisquare €3 test 3

In the case where data is generated either by sampling from
two binomial distributions or by sampling from single nmultinomial
distribution, the usual 13 statistic for testing independence is

a 2x2 contingency table is given by

NExCn -yd - y(n‘-x))z

2 -
X AN c2. 4.9

Under the null hypothesis of no association, the statistic X% has
an approximate chisquare distribution with one degree of freedom

when the tLotal sample size is large.

A chisquare test is essentially a two-sided test. For
testing the one sided hypothesis, we use Lhe approximate unit

normal deviate z = 2 Vk;.

Yhen the data 1is generated by sampling from two bincomial

distributions, equivalently, tLhe cone sided hypothesis H° PSP,

Vs H : p > p, can be tested using the statistic
1 1

pl - pl
T = €2.4.10
/ pCL-p Cism  + 1/n)

&3



wvhere

E - nlpl + nzpz - =
n +n Q=1-p
1 2
P, = x/n‘ P, = y/‘nz

The significance p-value for the observations is given by

= >
pN p‘:'l‘N 2> t.n)
©
I A expl - 15 25 dz
. Yen

4]

where t.h is the value of 'I‘N given by Lhe observed table.

Ir P, < P,: the test function is not calculated. Ifr p‘?:pz;

then the test function is calculaled.

Apart from TN. Lhe statistic
P, - P
T = 2.4.11>

is also used Lo test the hypothesis, Sathe (18820 has suggested

the following statistic

T, = €2.4.12

Similarly, p-value for the other one sided hypothesis Ho:Pg = P,

Vs Hl 2 P, < p, can be calculated by



P, pCTN =i
t; _ !_zz
= I -1— e z dz

where L"‘ is the value of 'I'N for the observed table. Here test
function is calculated if P, < ;z. The hypothesis can also be

tested using the test statistics Tn' and Tn"'

C(IY)> Continuity corrected chisquare (x:) test

Because X° depends only on cell counts and because cell
counts assume successive integer values, it seems natural to

adjust the cell counts by the amount 1.2 to cobtain a continuity

2

correction for X'. This procedure proposed by Yates (19340,

results in the use of the statistic

1 2
N< [anz yd yin x> | z N

2
X, = A R . 2.4

In case of sampling from two binomial distributions the one sided

hypot.hesis Ho : p‘ = pz Vs H‘ PP, pJ P, <an be tested in a

similar way to that of chi-square test by using tLthe statistic
-~ -~ 1 1 1

P, Pl -3¢+ 772

T = . C2.4.14D

which is distributed as NCO,1) for large n . nz

The p-value is calculated as

= >
P, pC'I'C._t.)



where te is the value of T; Tor Lhe observed table. Similarly,

Lhe olher one sided hypothesis can be tested.

Discussion @

Here we are concerned with the test of the hypothesis of no
association in a 2x2 table. In case of samples from two binomial
populations, the problem reduces to the comparison of two
observed proportions; a very old statistical problem that has a
very literalure associated with it. Upton (19820 has compared the

performance of 22 different tests for the problem.

We discuss below the historical background as well as
various poinls raised against the tests discussed above from time

to time,

Early dispute regarding the degrees of freedom in a

contingency table :

In 1900, Karl Pearson introduced the chisquare test for
goodness of fit. The test can be used for testing the hypothesis
of no asscciation in a rxs contingency table, For the chisquare
test, in addition to deducting one degree of freedom for the
number Iin sample, an additional degree of freedom must be
deducted for each additional parameter estimated from the data.
In testing for association in contingency tables, the
expectations of the cell values are estimated from the marginal
totals and the number of degrees of freedom for a rxs conlingency

table is therefeore Cr-1D (s-13, net rs-i as Pearson indicated.



This error is particularly seriocous in 2x2 tables for which
chi-square with one degree of freedom must be used, and not the

three degrees of freedom.

Udny Yule (1911) intreoduced a Lest for association in a 2«2
tables in his textbook ‘Introduction to theory of statistics®

using the large sample eslimate <vYpg-n for standard error of a

preportion p.

Under the null hypothesis of equality of proportions, Yule's
test was equivalent Lo Pearson's chi-square test wilh one degree .

of freedom.

Yule did not mention the chi-square test in his text-book,
but he evidently soon (Greenwood and Yule, 1915) became aware of
the discrepancy between his test and the chi-square test with
three degrees of freedom. Shorlly afterwords, he constructed 350
2xzZ tables and 100 4x4 tables by mechanical devices designed to
gi ve i ndependent. distributions, and compared Lthe z; -
distributions so obtained with Lhose given by theory, but did not

immediately publish his results.

Pearson’s error regarding Lhe degrees of freedom was.pointed
out by Fisher (1922D. Although Yule was not fully satisfied with
Fisher's proof; he then simultanecusly published his sampling
investigations, which, as was to be expected, confirmed Fisher's
results, Pearson did not immediately admit tc any error and a
considerable controversy arose, but tLhe correctness of Fisher's

conclusions ultimately came to be generally accepted.
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Exact test and continuity corrected chi-square test :

The chi-square test is of course approximaie and will not
hold exactily when the expectations of the separate cells of a
distribution or contingency table are small. In Statistical
Methods for Research Workers (1925), Fisher advanced a rule of
Lthumb that the expected number in any one cell should not be less
than five. This rule may infact be adequate, indeed
conservative, for tests involving more than one degree of

freeedom (Yates 1984D,

If the exact distribution related to any particular problem
is known the accuracy of chi-square test (or any other aproximate
testd) can be investigated by comparing its performance with that

given by the exact distribution over a range of typical examples.

The exact form of the distribution of a 2x2 table with given
marginal totals was suggested by Fisher. This form depends on
the restriction that only sets of values conforming to both pairs
of obser ved marginal totals are included in evaluating

probablilities.

The resulis of the investigation by Yates (19340 showed that
the approximations given by chi-square to both binomial and.axa
exact probability, particularly when Lhe parent distributions are
approximately symmetrical, are greatly improved by deducting 1.2
from cbserved devialions from expectations when calculating )
When parent distribution is markedly assymetric, continuity

correction may not work.



Binomial distribution is markedly asymmeiric if p differs
greatly from 0.3, ConceplL of asymmetry in case of the exact form

of a 2x2 Lable can be explained as follows

We represent a 2x2 contingency table as

a b n
1

c d n
2

m N-m N

where ‘a’ is the cell with smallest expectation Cdencted by ed

under the hypothesis of independence. With n, n_» there will
be pairs of peoints representing the integral division on the two
tails equidistant from the expected value, e. These will have
equal hypergeometric probabilities. Hence hypergeometric

distribution is said to be symmetric. For example consider the

table
a b 20
c d 20
7 33 I 40

with e = 3.3,

Ir n, L n,. but 2e is integral there will still be pairs of
points equidistant from e, but alsc some points on the longer

Lail that are unpaired. For example, consider the table

with e = 3. 5.



For this case, {he hyplergeometric distribulion will be

asymmetric and the associated probabilities will be unequal.

If 2e is not integral, there will be no equidistant pairs.

This may be termed as mismatch,
Unconditional approach :

An uncondilional approach to this problem was proposed first
by Barnard (1945). Barnard (194722 elaborated his proposal into

what he termed as C.S. M. test.

Basis of Barnard’s C.S. M. test : In case of sampling from
two binomial distributions, all combinations of the possible
samples of n and n, are considered along with their associated

o~

probabilities ranked in the order of the values of ;‘ i A
condition, S, of symmelry is applied so that the points (Ca.b> and
Cn’-a. nz-b) are equally significant. Barnard then imposed a
natural convexity condition, ¢, which requires Ehat .i;f‘ the
obser vation (n‘li:;!. nz;z) is significant, then CniS‘. “2523 is
significant if B‘ - Bz is greater than ;’a-sz' The conditions S
and C give only a partial ordring of the sample space. The

ordering will be complete if tLthe maximum condition M, is ‘imposed.

Conditions S and C alone pick out two distinct points as
being most significant. One can then consider what other points
a-lways using S and C, should be regarded as next in the
significance ordering and so¢ on. If, for instance we have
selected the ordering Zov Zoe e Zoo these being points in the

sample space, one then consider subject to S and C, as the next
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condidate point, say, z; one then locks at ProbCz‘. Zys ceer Zow
z2> which is a function of the unknown common value of p under the

null hypothesis and chooses that z Lhat makes this probabllity a

ma>d mum over p.

Barnard (19472 argued that his Lest was more powerful than
Fisher's exact test. But shortly afterwards (1949) he retracted
his proposal saying that the reference set considered by Fisher

to calculate the probabilities was correct.

The wunconditional approach has attracted support from

McDonald et al. (1977), Berkson (1978 a,bd and Xempthorne (1979).

Berkson (1978a) considered the problem of comparison of two
obser ved proportions. The hypothesis of interest is HO: P,=P, Vs
H. PP, > P, He compared the exact test for one sided case with
normal test and normal test with continuity correction for the
nominal significance levels 0.05 and 0.01. Here the nominal

significance level a is the level a at which Ho is formally

rejected.

If we consider PN. Pc:' and PE Cor P-r for Lthe Ltesl T> as the
test functions and distributions of random variables P-r’ specific
values of which are denoted by pr; then with an ideal test
Prob( P_I_Sallv-!o) = a. With the three tests considered here, this is
not generally true, The actual Prob(PTSQIHo) is referred to as
‘effective a’ and denoted by a while = Prob(P_r = alH‘)

represents the ‘effective power®,
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To compute a, and 3, each possible sample with given n =n,
was generaled successively, and if a 2 c, its probability and the
value of Pn' Pc and PE were calculated. ir P, < a, Lthe
probability of Lhe sample was cumulated for the pertinent test T,

The sum represents o, or ﬁo depending on whether P, = P, oOF
F&>F&-

The three tests viz, T;. TE and TE Cexact tesid) are compared
in terms of ao and ﬁ; for the sample sizes ranging from n;wa=5
to n =n, = 200. A Ltest T was said to perform betler than the
test T' if the effective level of the test T is closer to the
nominal a than that of Lthe test T' and at the same tLime effective
power for the test T is more than that of the test T°. Using
this principle, Dr Berkson concluded that in case when samples
are drawn from two binomial distributions, TN is preferable to TE

and Tz should not be used.

The preference expressed by Berkson was strongly criticized
by Barnard (19792, Basu (1979), Yates (1984>, L.C.A. Corsten and

deKroon (1979).
Conditional vs unconditional methods ;

In the context of testing Lthe significance of association in
a 2x2 table, tLhere is considerable debate about whether one

s%ould condition on both its margins,

IL is sometimes C(Kempthorne 1879, Upton 1982 represented

that although conditioning on margins is justified by necessity
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for randomization in a comparative trial; this does not apply to

samples from two binomial distributions for which more powerful

unconditional Lests are available.

The reason advanced for also conditioning on second margin
in case of samples from two binomials is ithat the second margin
does not contain information on the association within ihe table.
Hence conditioning is said to eliminate the effect of overall
success probability which is a nuisance parameter (Godambe 1980,

Yates 1984).
Use of nominal level of significance

A contributory cause of confusion that affects discontinuous
data is the use of cenventiocnal nominal levels of significance,
such as 5 or 1 percent. This was partly engendered by the use of
nominal significance probabilily in the tables of t+ and normal

distribution.

Exact test and ils approximation by Yate’s continuity
correction have been continuously criticized as being
conservalive. [Berkson 1978, Upton 1982, D’Agostino et al 1988,
Storer and Kim, 1990]. The exact test of course does not give
the test with predetermined significance level a. In fact,
because of discreteness of hypergeometric distribution; Lhe
observed significance level or p-value has the property p = a,
where p depends on marginal totals held fixed, and the test then

will be always conservative.
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If we use accept-reject rule in case of tLests involving

discontinuous data., a predetermined level of significance is

rarely attained and these tests are always conservative. If we
want to achieve a predetermined level of significance, a
randomized Lest should be used. For &2x2 Lable, one such

randomized test, which is infact UMPU, is suggested by Tocher
<1930), But randomized tests are not useful in practice. Hence
the actual significance probability or the p-value should always

be mentioned when reporting on discontinuous data.
Uncorrected versus corrected chi-square tests :

Earlier CPearson 1947, Plackett 19B4, Grizzle 1967>
chlisquare test and continuity corrected chisquare test were
compared using the exceedance probability estimales taking exact
test as basis for comparison. These comparisons resultied in the
criticism of continuity corrected chisquare Ltest for being

overly conservative.

Mantel and Greenhouse (19682 have supporied tLhe use of
continuity corrected chi-square statistic wiith a two stage

argument saying :

1. The proper probability model to use in a 2xZ2 table is
the one with both sets of marginal totals fixed, which yields the

hyper geomelric distribution of x* and

2. The correction improves probability estimates for the
hyper gecometric distribution excepl in pathalogical cases such as

when the distribution is sufficiently asymmetric.
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Controversy arising in calculating two-tailed probability :

For two sided tests both tails of the distribution must be
taken into accounti. Many authors advocate that the one-tailed
p-value should be doubled. An alternative ébproach CMantel 18974,
Haber 189803 is to calculate p as total probability of tables in
either tail, which are at least as extreme as that observed in

the sense of having probability at least as small.

Thus as shown in the following example, the same observed
one tailed probability can give rise to different two-tailed

probabllities according to the rule used.

Example 2.4.1

Let n = 15. n, = 10; m=9,

Table 2.4.1 : Single tail and two-tailed probability based on

exact distribution

Two-tailed probability

a Exact Single tail (lI> doubling C1I> Summing
PCad probability the single the prob

tail of two
tails
0 0. 000005 ©. 000005 0. 000010 0. 000005
1 0. 000330 0. 00033S ©. 000670 0. 000335
2 0. 0051 87 0. 008502 O 013004 Q. 008952
3 O. 0486770 0. 053273 0. 106546 0. 087220
é 0.031498 0. 033948 O. 067898 0. 040450
g 0. 002450 0. 002450 0. 004900 0. 002785
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Table 2.4.2 : Single tail and two tailed probability based on

continuity corrected statistic

Two-tailed probability

a Conlinuity Single tail CI> doubling CII> Summing
corrected probability the single the prob.
estimate of tail of two

pCad taills

O 0. 00001 4 0. 00001 4 0. 000028 0. 000014

1 0. 000433 0. 000449 0. 000898 0. 000449

=4 0. 006306 0. 008755 0.013510 0. 008393

3 0. 045880 0. 052618 €. 105230 . 0B6833

8 0. 032882 0.034229 0. 068458 0. 040975

=] 0. 001638 0. 001638 0. 003276 0. 002087
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CHAPTER 3

2 X 3 CONTINGENCY TABLES : TWO ODDS RATIOS

3.1: Introduction

In tLthe previcus chapter, we have dealt with point and
interval estimation of the odds ratio and the test procedures for
Lthe hypothesis of no assocliation in a 2x2 contingency table.
Here we discuss extension of some of the results for the two odds

ratios in a 2x3 contingency table.

As in 2x2 case, we consider the following two ways in which
the data can be generated imn a 2x3 contingency table and define

pepul ation odds ratios.

Origin I data 3 In this case. none of the margins is fixed, only
the sample size N is fixed. The population situvation may be

represented by

B B B

1 2 ]
At Py Pya Pes
Az P24 Pa2 Pos

with LI p, =1.1 =1.2 3 =1.23
Vo

If we draw N individuals from this population., ocur sample

outcome may Lake the form



'] 2 9
A x x x n
1 11 12 13 1
A
2 X214 X22 X3 N
m m N-Cm +4m_D N
2 i 2
Here the sample (x , x , x , %X, %X _, X D can be considered
11 12 13 21 22 23
as realization of (X , X , X , X , X , X > ~ Multinomial
11 12 19 21 2z 23

CN, Pi® Pyt Pyt Py Pyy’ pza)'

Origin 11 data (One set of margins fixedd

Origin I1 is that we have two multinomial population A‘ and
Az. ¥e have a random sample of size n, from popoulation A‘ and a
random sample of size n, from population Az' In this way, the
row margins are fixed. We then observe the members of Bl. Bz and

B,. The popoulation situation may be represented by

B B B

1 2 ]
A: Pyt Pe2 Pys
Az P2y Pa2 Pas

3
with To pi.j= 1 .1 =1,2
j=1

The sample outcome can be represented by

B B
B: 2 3
x n -x -x n
Ax x“ 12 1 112 12 1
x n -xX - n
Az xzx 22 2 21 22 z
m m N-Cm +m_D N
1 2 T 2
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Here (x . X _, n -~ x = x > can be considered as realization
4 12 i i1 2

Odds ratios for a 2x3 contingency table : For a 2x3 contingencyy

table, we can define three odds ratios, viz.

pll pZS p:z pZS Pll P
YW r _r,. o Y25 P and ¥, =
19 21 13 22 12 pZI.

22

Since ¥y, can be obtained as a function of v, and v, we consider

inference on these tLtwo odds ratios. For simplicity of notation,

P,. P
we denote these odds ratios by w,and y, i.e y. = tj 23

ti Pes pzj
=1, 2. Point estimation of the odds ratios is discussed in
section 3.2 Section 3.3 discusses simultanecus interval
estimation for the two odds ratios. The last section deals with

the tests of hypolLhesis of independence.
3.2 : Point estimation

Ve discuss below unconditicnal maximum likelihood estimation

for the odds ratios v, and ¥Y,, in a 2x3 contingency table.

Unconditiocnal maximum likelihood estimation :

Case ] : When only the total sample size, N, is fixed, Cx“.x‘z.
X gt Xpet X, xst is realization of cxu. xiz. x“. xz’. xzz.
Xzs) o~ Multinomial N, P“. P’zo P‘,- Pz1. Pzz. st) and Lthe

uncondi tional likelihcod function can be written as

N 2 3 xi,
L = - n n p_‘j" €3.2.12
! Pae Yy Yx_ _Yae Y i=g j=1
X1 T2 % 21 22 T 29 4

M.l.e.5 of pi'j i =1.,2,: jJ = 1.2,3> are obtained by maximizing L
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w.r.t. p.Ci =1,2; j =1,2,3) with the restriction that

2 3
£ L p;=1. Thus we have p. = x /N, & = 1,2; j=1,2,3.
t=1 j=1 tj i)

Hence the unconditional maximum likelihood estimators (UMLE for

¥ and V., Cdenoted by v, and wﬂ) are given by

11

x x = x
; - t1 29 ~  _ sz 2w
1 x x Yz x x
19 21 13 22

Cagse 1] : ¥hen only one set of margins Cn‘. nz) is fixed,
unconditional likelihood can be wriiten as

n! n !
'y ]

3 .
a p.-? €3.2.2

® Yt ¥Yx Yo VY Y ' i
12 12 "1’ 214" "22 " 2>

Maximizing L w.r.t. pij i =31.2; J = 1.2,.3 with the restriction
3

Lthat j?tpij = 31, 4 = 1,2 gives xij/ni as m.l.e. of pij. i =1,g;

J =1,2,3. Hence UMLE's of v, and y,, are gi ven by

b x x ®

~ 11 29 -~ 12 23

v - ————————— T e ——
x x 12 b4 x

14 19 " 21 19 22

Conditional maximum likelihood estimation :

Theorem 3.2.1 : If we conndition on both the margins of a 2x3

contingency Lable; the conditional likelihood is given by

m p)
g(xu. X2 I ey My oot V2
11 %12
- X m - x D
qu“. Xe2* Py 12" 2 127 ¥Ysa 12
t

r. sttt
r £ uCi,j, m — i, m —J)w:‘v
i=r j=din
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n ! ' t J
= ] * nz' ’P“ w;z
it t Cn ~i—94D% 451 - -m -
J n ~i-33 (m‘ 1! Cm_-3>! an m mz+1+J)!

KidD = maxCO, m +m - n - 1D
5 2 2
sCid> = mianrwl -4, mz)
r = maxX0, m-nd and r =mwnCm, no
) 1 2 2 1 i
Proof : Since we have to condition on both the seis of margins;

we begin with conditioning on one sel of margins. When only one

setl of margins (n‘.nz) is fixed, the likelihood is given by

L= chu' 42" T2 %22 | Pys® Pyz® Py’ Py2’
n! nt 2 2 x_ .
1 2 ij
= n 14 pi_
x 'x _'(n —x -x_ D! 3 Y YCn_-x_ -x_ D' i=1 j=2 1
11 12 t 11 12 21 22 2 T2t Tzz
P11 a2 ™24 %22
1 - P, ~ pm) <L ~ P,, pzz)
L ™
= ulx x b4 x ) p ! P 2
11" T2 Tz2a' T2z 13 23
* *q2 ¥41" %24 *2 %22
[pnn Psa ] 1 [pn'z Pas ] [ Pay ] [ P2 ]
Pys P24 Pys P22 P2y P.s
vhere pns =1 - P“ B ptz and pzs =1 - pz: B Pzz'
Thus, we can write
Lo= LOx o X0 X0 X, | ¥ W v v
o k3 x X x *x
_ 5 vC ¥ b awD ‘u“ vlz p 11 2, 1 22
= UCX e X e Xag V' ¥42' Vs V2 11 .2 . 2

€3.2.3
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where ¥, = ?..Lpz_’_ . p = P,2 P2y
Pys Pgy 12 Pia Pay
P p
Iv“ = i and ¥ = ﬁ .
pZS z ng

We observe that (3.2.3) belongs to four parameter exponential

family and (X , X _. X + X . X_ + X > is minimal sufficient

statistic. Now,

chu = X xaz = X2 l xu * xzx = me. x:z +xzz = mz)
PC » - . = » = -
X“ AP xzx = m, X4t xaz X2 xzz m, x:z)
=
PCX + X =m , X + X =m 2
i1 24 1 12 z2 2

3. 2.4

Since n, n, m and m are fixed, the range for x and Xx
1 z 1 2 1% 12
is given by

maxC0, m — n> £ x X mnCm. n>
1 2 21 t 1

and
m+*‘m-n-X D =X _ =Zmintn - x m>2>
max< 0. 1 2z 2 "1 12 1 1’ T2

or
m —n2> =x =X minlm no
mx{o. z z ‘z zv 1

and

+ -n - X J =< x =Z=mintn - x m>D,
maxCO, m P2 2 12 11 1 12" 2

Now, freom €3.2.32

PCX = x , X s X X =m - x , X =m - X
11

11 12 12" T2a 1 11 22 2 12
- m O x D v v v
= qu“. Xez* ™y Xt M2 12 Vo' Vet Yyt P2
o ™m m
Y 12 A
¥ Y12 * 1 2
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11 1 " Taz 22 2
= ¥ T ulx ® m —x m - v 1%
" 12° T42" g T4’ zxxz) v(?p“. Yz' ¥y 2>
11 22
m m
11 22 1 2
’F“ Viz » vi W

Hence, from (3.2.4)>, the conditicnal likelihood is given by

gcC X1® %2 l Mey» Mye ¥pe w:z)
= = = =
chtt " X xtz 42 I xu M xza ™ xsz * xzz mz)

x o
11 12
ulx x m - X m -
12" T22 g 11" 2 x:z> L 12

r et
z

Z ) ucti, Jj, mt -1, m, - J> V:‘ V:z
L:r’ ji=&ciy

(3.2.5

where Lid> = max(O, m + m - n_ - iD
1 2 2

s$Cid> = minCn - i, m D
£ 2

r = maxC0, m - nd and r_ = minCm, nNn2.
1 1 2 2 1 1

Nole that the conditional likelihood depends on ¥, and ¥,

only.

Theorem 3.2.2 : Conditicnal maximum likelihood estimator CCMLED

for Cy ., vz) is obtained by maximizing the conditional
11 [

likelihood gix . X, | M M W qp‘z) given by €3.2.5).

Proof : Justification for the argument of maximizing the
conditional likelihood g€ X v X, | ma Mmoo wsz) to get CMLE
can be given using the definition of ancillarity in presence of

nuisance parameter. (Godambe 1980 .
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¥e have discussed definition of ancillarity in presence of
nuisance parameter when Lhe parameter of interest is real wvalued.
The extension of definition of ancillarity in presence of
nuisance parameter when both Lhe parameter of interest and

nuisance parameter are vector valued is straightforward. Ve

discuss it in the following.

Let the abstract sample be X = {x> and the absiract
parameter space be 2 = (o), The density funclion w.r.i. some
measure g on X is pix, €. Further, e = Cet. ez) where o, is
vector~valued parameter of interest and ez denotes vector wvalued

nuisance parameter, e‘ € Ql and ez e Qz such that Q‘ = Qz = £

Definition 3.2.1 : Any vector-valued statistic T satisfying the

following two conditions is said to be ancillary statistic w.r.t.

(1> The conditional density ft of cbservations given T=t

depends on © only through e1 i.e.
pix, © = fl(x. 9‘) . hCi, ed
where h is the marginal density of T.

Cii1id The class of distribution of T corresponding to ez d‘)z

is complete for each fixed e‘ € N.
1

For 2x3 contingency table, from (3.2.3) the likelihood is

x x +x o +x
v > vy 1 v 12 Car2e a2 22
L= u(x“.xu.xu.xu Vi ¥ ¥V’ ¥ 12 1 2
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Here Cw“. wlz) is the parameter of interest and Cvl.vz) denote
the nuisance parameter. n‘ = Qz = {0, a0 x (O, aD,. ¥e observe
Lhat the conditional distribution of observations gi ven
x“ﬂ(z‘- m and X‘z + xzz = m depends on v, and L only,

Further the marginal density of ¢X + X , X + X D
i 2% ¥4 F+ 1

1 ™ m
= 1 z
chl!+x21 ml' x:z+xzz=mz) ex v: vz M m:’mz
K(m ., m_,¢ ,y D
2 11 12
(3.2.68>
where
b
KCm‘.mz.w".w‘z) = r, etlid €3.2.7
- - LIS
2 z . UCi‘mel 1.mz j)wllwlz
i=r =L

Thus, we can write likelihood €3.2.3) as

L = gcxu’xszh‘:’mz'wu'w:z) : PCX“+X21 Me» x:z+xzz =m,

53 v .
|’f'“- Yi2r Yy Y,

Note that for fixed Cv“. v’z) e D‘. €3.2.68) is a
two-parameter exponential family and hence complete. Thus the
definition 3.2.1 is applicable and we conclude that the statistic

()C“ﬂ(u. xu-ﬂtu) is ancillary w.r.t. C v“. vﬂ) and the

marginal density of cx“+xa. X’z + xzz) is said to contain no

information about (vu.vﬂ) ignoring Cv‘,vz). Hence the
inference on (\u“. v’z) can be based on the conditional

likelihood. The CMLE is then obtained by maximizing the

conditional likelihood,



Note that the conditional likelihood glven by €3.2.5 1is a
power ~series distribution and bel ongs te two parameler

exponential family, Hence moment estimators and ma>d mum

likelihood estimators are same.

3.3 : Simultaneous confidence intervals

Confidence set Confidence sets are generalizations of the
familiar notion of confidence intervals. Suppose that
(y‘.yz. Ve .yn) are observations whose distribution is completely
determined by the unknown values of the parameter Ce‘.ez.. . .em)
and that (95’. ¢z' cee s ¢q) are specified functions of the
parameters, Denote the three points with cocrdinates
(yl.yz.....)'hD. Ce‘.ez.....em) and C¢‘. ¢z.....¢q) respectively

by Y. © and ¢ so that ¢ is a point determined by the value of
ein g-dimensional ¢-space. Suppose, for every possible y in the
sample space a region R(y> in the qg-dimensicnal ¢-space is
determi ned. Then if Lhe region RCyD> has the property that the
probability that it covers the true point ¢ is a preassigned
constant (1-c0 no matter what Lhe unknown true parameter point e
is, we say that RC(y> is a confidence set with confidence
coefficient C1-aD. Note that a confidence interval is a special

case when g = 1 and RC(y> is an interval in one_ 4 di mensi onal

¢-space.

Here we are concerned with simultaneous confidence interval
estimation for the parameters ¥, and L We discuss two

asymptotic methods viz. (1> Cornfield’s method and Ciid Woolf's

method.



Cornfield" s method : The unconditional likelihood function can

be given as

!"J
2 3 P. .
L= n n!'! = tJ
N L
i=1 j=1 x, .}
i
3 ]
where xX A = = =
j:=:| G n and j}_:l pi.i 1, 1 1.,2.

The conditional probability of cbservations for the subset
of samples in which all Lhe marginal totals are Tixed by the

3
conditions T xi_j = m.i » J = 1,2 is given by

t=t
2
nn !
. | 3 x .
i=12 2 i3
m = m S — ——  =m i
ng“.x“‘m‘. z'wu'vnzD KCm om s ¥y ¥ya . =1 ¥
T ox A
j=e !

€3.3.1>

where K(m‘. n,. ¥

L wu) is given in €3.2. 7.

We find the limiting distribution for (3.3.13 (C(which we
denote by f(x D> exactly as in chapter 2. We denote the values
i)

of x . at the point of maximum density of (3.3.1> by ;i.j' where,

&)

in large samples

v = €3.3.2

z
ij - .)Cn‘ -j:‘_'_“x‘j)

Then. by substituting Stirling®s formula and making other

approximations of chapter 2., we get

a7



- 2 lcg {ﬂf"j) } = E T O T %P €3.3.3
rex, > iz1 j=1 X ;

Hence, we conclude that the limiting distribution of (3, 3.1)

is multivariate normal and in consequence the positive definite

quadratic form given by right hand side of (2.3.3 is distributed

as chi-square with 2 d.f. 1In that case, the reguired confidence

region in the ;i,j is defined by

~ 2
2 3 Cxi. - %, ) 2
I T 1 3 < X (3.3.4
i=1 j=1 x. . o, 2
)
where xtj are observed wvalues, ;ci.j are the wvariables of

parameter space and z: is upper a percent peoint of chisgquare

distribution with 2 d.fr. A corresponding region for Vq is

ocbtained from €3.3.23 in view of the fact that w‘j is monotonic

in Xp ) ¥ j, & k. VWe illusirate the procedure in the following
examples,
Example 3.3.1 : The data (Cornfield 1956)> in Lhe following table

shows the distribution of lung cancer and conirol patients by
smoking st-.atus. I{ has been suggested that cigarette smokers
have a greater excess risk of developing lung cancer Lhan do pipe
and cigar smokers. We propose to consider from the point of view

of interval estimation, what evidence Lhe data in the table

contain on this point.



Smoking status

Nonsmoker Pipe+cigar pipe+cigar+cigarette
smoker smoker
Lung 19 is 484 18
cancer
Control 56 &8 394 ois
Total 75 83 878 1035

Let a = 0.05, then the confidence region given by (3. 3.4)

becomes
€19 - x D% 15 - % 5% (484 - (518 - % - % 932
it + 12 * I & 3 12
11 x:z 518 - xll - xaz
-~ 2 i 4
{56 — C75 - x D1} 68 — €83 - x D]
14 12
+ ~ + ~
S - x 83 - x D
11 12

[304 - (518 - 75 - 83 + Q“ + §!z)Jz
+ < 5.99 €3.3.5

-~

~
(360 + x + x D
11 12

At the 95 percent level of confidence therefore we shall
rejecl. any hypothesis specifying values of ;Eu' ;'c’z for which the
expression set oul above exceeds S5.99 and we accept the
hypothesis for which it has a lower wvalue. One such set is
obtained by settiing ;hz =x_C = 15 in (3.3.5) and solving the

12

quartic

1 1 1 1
Cx -1932{ — + — 4 — * = }
1t x S03-x TS-x 37S+x
11 11 11 11

_([;1
8

(3.3.8

IA
d

subject to the condition O < §“



The smallest and the largest root of C3.3.8) are 11.52337
and Z8. 92048 respectively. Hence the confidence limits for Y,
are given by €0.1428, O.5347). Thus the risk that any pipe +
cigar + cligarette smoker will develop lung cancer relative to the
risk that a nonsmoker will develop the lung cancer are 1.8702 to
7. 00e8.

Similarly, we obtain the confidence limiis for w“. For
this let x = x_C =193 in (3.3.5 and we solve the quartic

1 i 1

. 1
Cxu-15:-’{ . — + — 4 _ }=5_Qg
x 499-x 83-x 379+
12 12 12 12

(3.3.7
subject to the restriction 0 = ;12 = 83. The smallest and the
largest root are 8,.392087 and 24.824650 respectively. Hence the
confidence limits for vy, are given by (0.0888, 0.3634). Thus
the risk that any pipe + cigar + cigaretie smoker will develop
the lung cancer relative to Lhe risk that a pipe + cigar smoker
will develop the lung cancer are 2.7518B to 11.2613. Note that
the chance that there is any error in the two statements made
above giving the confidence limits for L and ¥,. iz less than
C. 05,

Example 3.3.2 : The following data refers Lo a comparison of two
different. operations for treating duodenal ulcer patienls
CAgresti, 1984D. The operations correspond to removal of various
amounts of the stomach., Operation A is drainage and vagotomy

while B is 25% resection and vagotomy. The categories of

operation’ have a natural ordering with A being less severe



operation. The variable ‘dumping severity’ describes the extent

of a possible undesirable side effect of the operation. The
categories of this variable are also ordered, with the Tresponse

‘none’ representing the most desirable result.

Dumpi ng severity

Operation None Slight Mcderate
A 61 8 7 o6
B &8 3 13 104
129 51 20 200

Here again, let a = 0,05 and the confidence region is given by

Bt —-x%x > (28-%x DX 7 -¢CoB - x%x -x 0%
11 + 12 + | ¥ | 12
x x o6 - x - x
11 12 11 12
-~ 2 “~ 2
(68 — C129- % D) {23 - 51 - x D)
iz2z9 - x“ 51 - >nc12
{13 - C104 - 129- 51 + S’E“ + ;c‘z)lz
+ — < 5,99 C3.3.8
x +x -6
14 12

To obtain confidence limits for v“. we put ;'<u= 28 in 3. 3.8

and solve the quartic

1 1 1 1

Cx —e1>’{~ + — + — + = }=5.99
11 % 68 -x 129-x x -48

11 11 11 114

€3.3.9
with Lhe restriction that 48 < X < 68. The smallest and the

largest root are 568, 00276 and 64, 83757 respectively. Hence the

=7



confidence limits ror lp“ are given by (0.5118, 5.3811). Hence
the risk that dumping is moderate instead of none for operation B
than that for cperation A is 0.1858 to 1.93539.

Similarly we obtain Lhe confidence limits for Y, by putting

x, = 61 in (3.3.8) and solving the quartic

~ 2 1 1 i 1
Cx‘z—aab{‘.' + — + = + = }=5.99
p 4 35-x« 51 -x x -1S5
12 12 12 12
(3.3.100
with the restriction that 15 £ x < 35. The smallest and the
largest root for (3.3.10) are given by 23.40872 and 31.67342.
Hence the confidence limits for vy, are given by (0.6155,
8.21425. Thus the risk that dumping is moderate instead of
slight for operation B than that for operation A is 0.1217 to
1.6247. Here also the chance thal there is any error in the
statements regarding confidence limits for L and L is less

than 0. 05.
Woolf*s method

Here we first obtain the (1-00100% simultaneous confidence
intervals for 1ln ¥, Jj=1.2. Simul taneocus confidence intervals
J
for rp‘, are then obtained by taking the anlilogs of the intervals
J

for 1n v‘j.

We first consider the case where a sample of size N is drawn
from the population table where no margins are fixed. Let ;13'
j=1.2 denote the observed cross product ratio i.e.
X . X

~ L} 29
= e —— » =1.a .
¥ J

X X_ .
13 23



Let 1n Vi © d” » 1 =1, § = 1,2 Denocting the cclumn vector
(dU) by d. this vector has two elements and its distribution is

bivariate normal with mean vector & = {6, D> where
— i3

éi.j‘:lnwi.j' 1 =1, j =1,2.

and the asymplotic variance — covariance matrix of d is given by

1 1 1 1 1 b
+ + + —_—
Np‘ F 3 sz 9 Npi - sz £ sz 3 Np‘ 3
z =
N1 + }_‘1_ N_i_. - ﬁl_ + N_i_ + Ni
st pas Plz pzs pzs pzz

The asymptotic variance - covariance structure of the dU can be
determined from the fact that in an analysis of dij which are

contrasts of 1ln xij + WwWe can regard ln xi.j as asymptotically

! CGoodman 1964).

uncorrelated with an asymptotic variance CNp_tj)-
The dispersion matrix of d can be estimated consistently by

1

a matrix V obtained by replacing the CNpu)_ in the dispersion

 §

matrix by Cxu)-. The asymptotic distribution as N » o of the

statlistic
W =Cd - & Vtd - & €3.3.11>
is the chi-square distribution with 2 4d.f.

The desired confidence set is constructed wsing (3.3.11D.
Hence the probability is (1-¢0 that the chi-square variable in

€3.3.11> 1is = x; 2 and therefore the set given by
Cs5jca-8 Vied-& x> €3.3.12

is the desired confidence set with confidence coefficient (1-od.



Inequality in (3.3.12) determines an ellipsoid Cfor the
proof, see appendix in the Lwo - dimensional space with centre
at Cdu. dxz) and the probabiliiy that this random ellipsoid
covers the true parameter point (6“. 6‘23 is (1-®0 no matter

what the values of unknown parameter.

Let us now denote by x = C X xz) any peint in two -
dimensional space of possible wvalues of (¢ 6“ , 6“) . Then the
above confidence ellipsocid may be formulated as follows. The

probablility is (1-a0 that Céu, 6‘23 lies inside the ellipsoid

d -" V'cd -0 < x5 o €3.3.13

But Céu. 6’23 lies inside the ellipsoid €3.3.13D iff it lies
between 2ll pairs of parallel planes of support of ellipscid. 1If
h = Ch‘. hz) is any non-zero wvector, it can be shown thatl (see
Appendix® Lhe point Céu. 6’2) lies between two planes of support
of ellipsoid (3.3.13) orthogonal to h iff

| h* 6 - h'd | = fx: , Ch° vho ' €3.3.14

—
»

This result can be used to cbtain simultanecus confidence
intervals for 6”., i =1, 3 = 1,8 In particular, we obtain the
following approximate two sided simultaneous confidence intervals

for & . at a coverage probability at least (1-¢O
3

2
+
dtj * fxa‘z Sd” €3.3.15
L
where
S = fi + 1 + 1 + 1 » i = 1' J = 1'8
d n n n n
1) t) 23 v 3 2]

o4



Example 3.3.3 : Consider the data in example 3.3.1. Let a =

0. 05. Ve obtain from (3.3.15 the following simultanecus
confidence intervals for the twe odds ratios.

0.1412 = ¥, =< 0.5401 ; 0.0878 < LI < 0. 3829.
Example 3.3.4 : Consider the datz in example 3.3.2. Let, a =
0. 053, W¥e obtain from (€3.3.15> the following simultaneous

confidence intervals for the Lwo odds ratios.

0.4890 = y =< 5.6760 ;

.1 i 0.5937 = w_ = 8.5188.

12

3.4 : Testing the hypothesis of independence.

¥e have discussed in chapter 2, Llhe test procedures for
testing L1he hypothesis Lthat rew and column effects are
independent in a 2x2 contingency iable. For 2x3 conitingency
table, the hypothesis of independence is equivalent to HO: w“=1.

¥2 © 1.

We generalize the test procedures for 2Zx2 table to 2x3
table, In the following., we discuss generalization of Fisher's

exact tst, uncorrected chisquare test and continuity corrected

chisquare lLest.
3.4.1 Fisher's exact test :

Let us denote the observed 2x3 contingency table by XK.
Denote by J the reference set of all possible 2x3 contingency

tables with Lhe same marginal totals of R. Thus

3 2
J = ¢ ¥ : ¥ is 2x3 . L y.u.=n,.z yij=mj. i=1,2; j =1,.2).
=i

. i
i=t



Under the null hypothesis of row and column i ndependence,

probability of observing any ¥ € J can be expressed as product of

multinomial coefficients.

m ! m! (N-m-mDd>'n'n?t
1 2 1 2 1 2

N' 7 y t y 8
j=1 1) z)

The exact significance level or p-value associated with ihe
observed tLable R is defined as the sum of the probabilities of
all tables in 7 that are no more likely than X. Specifically.

p= Y P(Y) where
Yed

P =4LF : Y €0 and PCYDY =< PCRO>

To calculate Lhis p-value, it is required to generate all
the 2x3 contingency tables with fixed marginals. The complexitiy
invelved in this procedure severely limits the use of Fisher's
exact Llest. But the computer algorithm develcoped by Mehta and
Patel (1983) calculates p-value for a general rxs table in

considerably less amount of Lime.

Fisher's exact test is not the only procedure yielding an-
exact p-value. There are several alternative methods. In
general, we may define a discrepancy measure d : J +» R as a
function that assigns a real number Lo each contingency table in

the reference set J, If X is the cbserved table, an exact iLest

is defined by

p= L PCYD
Ye F

where F =<¢ : Y € J and d(¥) z dCXD >



For Fisher’s exact test d(X = 1.PCYO. Two olher commonly used

discrepancy measures are Pearson’s X° statistic and the

likelihood ratio statistic.
3.4.2 Chisquare test Cuncorrected 3

Letl xu i = 1, 2 3 = 1,2,3> denote the observed
frequencies in a 2x3 contingency table. Under Lhe hypothesis of
independence of row and column effects, let eu denocte expected

frequencies (i =1,2; jJ = 1,2,3). Then the chi-square statistic

is calculated as

Yhen N + o, X% has an approximate chisquare gdistribution with 2

d.r1.

3.4.3 Continuity corrected chi-square test :

The continuity corrected chisquare statistic is given by

2
2 2 s Clxij - etj' - 1.2
X>= L T <
< . . PR
v=1 =1 1
2 ‘
where x. and e, are as before. Yhen N -+ © Xc has an
) L)

approxi mate chisquare distribution with 2 d.f.

o7



APPENDIX

Definition A.1 : A (solid n dimensional) sphere with centre at

Lhe poinl a and radius r is the set of all pointls x satisfying

Ix-alsr o fx-af®<r® | CA.1>

Hereg=Cx‘. X s...0XxD) anda =Ca, a_, ..., ad
2 | ¢ | 2z n

The case where a = Q and r = 1 wviz,

X" x =1 CA. 2D

is called as unit sphere at Lhe origin.

Definition A.2 : An ellipsoid in canonical position is defined
to be the result of applying to the unit sphere at ithe origin a

uniform stretch along each axis.

If the unit sphere at the origin, CA.20, is stretched by
faclors cl. cz. s € along the axes, the resulting ellipsocid

in canonical position then salisfies
T Xt <1 CA. 3D
The numbers (ci) are called semi-axes of the ellpsocid.

The ellipsoid in canonical position is symmetrical in all
co-ordinate planes, since replacing x,‘ by -xt does not affect

CA.3>. We may therefore call origin its centre.

Definition A.3 : An ellipsoid is defined as any point set which
may be brought by translation and subsequenl orthogonal

Ltransformation to coincide with an ellipsoid in canonical

position.



A transiation of a set by a vector a2 consists in displacing
each point X of Lhe set so that it goes Lo x + a. This means
that a set defined by an equation or an inequality can be

translated by the vector a by substituting x - a for x or x -a

for x.
1 9

Geometrical meaning of an orthogoral Ltransformation is a

rotation plus possibly some reflections in coordinate planes.

The centre of the ellipsoid just defined is the point into

which the centre of the ellipsoid in cancnical position goes.

Result A.1 : If Mis a symmetric positive definite matrix, the

inequality

(x —ad' Mx - ad> =1 CA. 4D

defines an ellipsoid with centre at a.

Proof : First, we tiranslate the set defined by (A.4> by the

vector - a, by substituting x+ta for x . to get
x" Mx =1 CA. 52

We know that for the quadratic form x"Mx in n variables,
there exists an orthogonal iransformation which reduces (A.B) Lo

n

the form T A? x* < 1, where the i\ >are characteristic roots of
iz L t

M. But Lhis is of the form (A.3)> which defines an ellipscid in

the canonical position, with semlaxes {c = )\:Uz

>:; the Ai's are
positive because we assumed M Lo be positive definite. Thus

CA. 4> defines an ellipscid with centre at a.



Definition A.4 For any wvector h # 0O, we define the plane

through O orthogonal to h to be the set of points whose location

vectors x drawn from Q¢ are orthogonal to h.

These vector points x are on the plane iff h°x = O. In

general, if h = O
h* (x-x>=0 CA. 8

define a plane through point X, and corthogonal to h.

Under translation by any vector a, or a linear iransform
with any nonsingular matrix P; a plane goes into ancther plane.

The plane tLhrough X, orthoegoral to h # O divides tLhe
n-dimensiocnal space of point x into three parts according as the
linear function

€0 = h'Cx — x O

X

%,
is 0, > O or < O.

i f

¥e say that two points X4 and x,, are on the same side o

The relationship of two points being on the same side of a plane

is wunaltered by a nonsingular linear transformation and
translation.

Definition A.5 We may define a plane of support to the
ellipsoid CA. 4D as a plane that has at least one point in common
with Lhe ellipscid and such that the ellipsoid is entirely on one

side of the plane.

We give Lhe following resultl withoul proof (detail proof is
given in Scheffe,H. 1959).
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Result A.2 : For h » 0, the equations of planes of support of
ellipscid CA 4D are given by
h'Cx - a) = + Ch*M*7? CA. 8
¥e now gel Lhe inequality which defines the strip between
the two planes (A.8).
¥e define the set of points between the planes (CA.8) to be
the set of those points which are on the same side of both planes
as the ellipsoid. This is the same as the set of all points x
which are on the same side of b(_:i.h the planes, as the cenire 2a of
Lthe ellipsoid. Using the condition CA. 7> to determine the latter

sel of points, we let

(v
I+
0

£,00 = h'Cx -

where c_ = ch'M '

For either plane, both x and a will be on the same side iff
£, rf,Ca> 20
z
» -_ >
or i:ch,!'_t_Cx_ g)+ch_o
or ib_'(g—g)z-*ch
the Lwo conditions € + and - D will both be satisfied ifrf
—chﬁn'C:n_c-a_x) S-l-«t:h
or | h'C(x - a> | =<’ M h'7?
This is the desired condition defining the strip between two

planes of support orthogonal Lo h.
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CHAPTER - 4

TWO 2 X 2 CONTINGENCY TABLES : COMMON ODDS RATIO

4.1 H Introduction

The analysis of several 2x2 contingency tables is required
in many contexts. The two principal ones are (i) the comparison
of binary response random variables for two treatments over a
spectrum of different conditions or populations; and (ii) the
comparison of the degree of association among two binary randomn

variables over different populations.
Consider the following examples.

Example 4.1.1 : Use of oral contraceptives is said to be related
to myocardial infarction (MI), and suppose one is interested 1in
their relationship. An investigator may want to control fer the
potential confounding effects of age, cigarette smoking, weight,
alcohol consumption, diabetes etc. For simplicity, 1if we
consider only one confounding effect, say, age with J classes;
then we get 5 2x2 tables. Analysis of these tables may throw
light on association between use of oral contraceptives and MI
adjusted for the effect of age.

Example 4.1.2 : Suppose, in a sociological problem, one is
concerned with the relationship of education and sex to attitudes

towards the role of women in society, and each respondent is
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asked if he or she agreed or disagreed with the statement “Women
should take care of running their homes and leave running the
country upto men”. At the same time, education status of the
respondent is also noted. Thus the respondents are classified
according to sex (male, female), attitude towards women (agreed
with the statement, disagreed with the statement) and the

education status (say, t levels, t = 2).

One might have anticipated that those who are more highly
educated would generally tend to disagree with the statement, but
what is the form of relationship? To what extent do the males
and females respond differently? Does any such difference depend

on the amount of education received?

We may form t 2x2 tables according to t levels of education.
Analysis of these t 2x2 tables may help to answer some of the

questions raised above.

In this chapter, we restrict to sanalysis of two 2x2
contingency tables. We consider two pairs of nutually
independent binomial variates ka and sz with corresponding
parameters p,, and p,, and sample sizes n, and n,, respectively

(k = 1,2). The sample observations can be written as

Table I Table 1II
Xea PR PP Xy 2 N2 = %42 N2
X24q Rpe = %24 Ny X2 N2 =~ %2 N2
. N, - m, N, D2 N, - nm, N,
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F
Let N = [
k:tuk

Here X, is realization of X ~ Bi (n

1k and x, 18

1k * F&k)
realization of X;k ¥ Bi (n, ., B, ); k = 1,2. Population odds

ratio for k-th table is defined as

P q
k
v = 1 zk k = 1,2
pzk qsk

where q, < 1 - P, i=1,2, k=1,2.

We assune that odds ratio is constant for the two tables i.e. ¥ =

V’k: k = 1.2.
In this chapter, we concentrate on inference about this
conmon odds ratio, v. Section 4.2 reviews point estimation

nethods for ¥ while section 4.3 discusses interval estimation for

v as well as testing procedures for the hypothesis ﬂo s w = 1.

4.2 : Point estimation for the common odds ratio

Here we discuss the methods of point estimation for the
common odds ratio, ¥. Unconditional maximum 1likelihood,
conditional maximum likelihood and asymptotic method for point
estimation of v involve jterative calculations. We discuss these
iterative methods. We also discuss some noniterative methods for

the point estimation of v suggested in the literature.

4.2.1 Unconditional maximum likelihood estimation @

The unconditional l1ikelihood function, ignoring the binomial

coefficients is given by
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x -
ik e T *ik

2
™R, (1-p) (4.2.1)

Since, we have considered the case of a common odds ratio i.e.

Pyy
p:.l: tv qu:

V.= ¥ k = 1,2; we can write P, = k = 1,2 and hence

the likelihood function (4.2.1) can be written as

2 N - x o+ N _*N = X _+x ) -n
_ 2k 2k a1k 2k 1k 2k 1k 2k 2k
L= k':lv Py Uk (B, +¥q,)
(4.2.2)
Thus, the likelihood is the function of 3 parameters viz. P,
P, and ¥. The unconditional maximum likelihood estimate (UMLE),

denoted by ¥Yun is then obtained by mnaximizing (4.2.2) w.r.t. P,

p_. and ¥ sinultaneously. Thus UMLE of the common odds ratio ¥ is

12
obtained by solving the system of 3 sinultaneous equations which

involve iterative calculations.

Example 4.2.1 : As mentioned in example 4.1.1, use of oral
contraceptives is said to be related to myocardial infarction
(MI). Here, we consider two tables corresponding to two age

groups viz. 40-44 and 45-48. The tables are as follows

(Schlesselnan 1982):

Age group - 40 - 44 : 45 - 49
ocC MI control | Total OC MI control | Total
Yes 6 9 15 Yes 6 5 11
No 65 362 427 No 93 301 394
71 an | 442 88 306 405
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For the data considered above UMLE of w is obtained as

~

w0n=3.7897.

4.2.2 Conditional maximum likelihood estimation

Theorem 4.2.1 : JIf we condition on both the margins of the two

2x2 tables; the conditional distribution of X“ + Xiz given

X“+Xu and Klz + Xu is given by

ch“+x‘z=s|x“+151=n » X, + X, =m_)

where C
[

"
™
il
»
"
R
[T 3
—
x 2
x
e
—~—
W
N
—

Xea™ 1k *ox
2 2

r, =L r, ad r, = I r,
k=1 k=1

Proof t The unconditional likelihood can be written as

2 2 n x, n._ - X
k k ik ik
=1 k=1 ok

=
n

X 1k

2 n x n » [12 x N x
k k 1k k 2k 2k 2k

= n [ ’k] P‘ (1 - pu:)‘ [ ] Py (1-B, )

k=g 1k




= ( xt‘.*xlz x11+x2‘. xtzﬂ‘zz
= u x".axz‘l ‘zlﬁz) V(w,v‘ ,vz)lp v‘o vz

(4.2.3)

Pax(1-P,,)

where = =
MG Pax(1-Pyy) ”

pz 1 pz 2

VvV =& ——— ——
. (1= pzi) and v, = (1= pzz) .

We observe that (4.2.3) is a three perameter exponential

fenily and X“+Xﬂ, X“+Xu and X12+Xu are w@minimal sufficient

statistic.

First, we obtain the conditional distribution of X;‘, %u
given X“ + xza = m“, xsz + xzz = B>
P(X“ = X xxz = X2 I X“ + ng = n, st + Xzz = n:z)
- P(Xl‘= X0 X =0 X0 Xy TX L x%z:miz-x1z) (4.2.4)

P(X“ + x21 = Bye xtz + Xzz=nsz)
From (4.2.3)
P(X“ = X X, = ®, - X, X2 = %, X2 ° D, T %X5?
v v 'wxu*xuv 11 412
=u(x,, B "X . X, By ~ X)) vivw, v, v, 1 Y2
(4.2.95)

and
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o
”~~
e
[
+
e
[
1
o
[ Y
by
N
+
o
N
]
=}
St

12
P21 T22
= L
PP 12 " T2
¥91 12 M1 ™12

u(X, s B =X . X2’ Ba ~ X)) Vv, v, v W Yy Y2

(4.2.8)
wne = - = : =

here T nax(0, n, nzk) and Lo "1“(“11:' nik), k=1,2.

Hence, from (4.2.4), (4.2.5) and (4.2.6)

P(xll = xlt' xtz = xl.z l xﬂ + &1 = n!.l.’ xi.z + XZZ = m:z)

x +Xx

( x ) i1 42
- UCX g s By Xy X0 By %, ¥
- r r
z1 z2 C
(i, m  -i, 3, m-3) v’
_}: . uti, B 71, J. By,
i=r i=r
11 12

Thus, we can write the conditional likelihood as

P(X“ = X4 xxz = X2 I xn + xz: R PR xzz + xzz = miz)

2
= m g(x& | n, - ¥) (4.2.7)
k=2
where
[“u 3 [nnzl: ] thk
X ’ -X
1k 1k tk
= 4.2.8
g(xsklmak' ¥) . ( )
2k ., n n .
T 1k ] { 2k .]wj
1= L J B, -3

Now, the conditional distribution of Xt.- x“+}(‘2 given X +%,, .

: i by using (4.2.7)
xz+xn is cbtained by
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™
-
m
P
nw
x
"E
t.
€
L

z D
= T - -
®patNgp™0 k=1 2k [nuc ] [nzk ] »
i=r_ 3 m -3
| 3
C. W
= < <
s r, £s= T,. (4.2.89)
c, v’
=r
z n n
where C = [ n [ "‘] [ 21‘]
x‘ *+x =g k=1 xﬁ xzk
2 2
r = L r, ., T = L T -
' k=1 1k z. k=1 2k

Note that (4.2.9) depends only on ¥, the parameter of interest.

a
Theorem 4.2.2 : CHLE for the common odss ratio w (denoted by
v;c“) is obtained by solving the equation
x“ + xsz = E{X“ + xzz l X“ + ng’ xu + xzz’ vl
Proof : First, we c¢laimn that inference on ¥ is based on

conditional distribution of X +X_ given X + X and X _+ X, .

There are two lines of argument that lead to above statement. In
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both the approaches we need to consider methods involving
sufficient statistic.

First, we may look for a distribution that depends on the
value of ¥, but not on the nuisance parameter (v‘, v.). For any
fixed and known value of y, a sufficient statistic for remaining
paraneters is X“ + xu and Xu + xzz Therefore, the
distribution of the observations and hence also of X‘ =XM+X12
given X“ + x“ and ]'I‘z + Xu depends on w only. This is the

standard Neyrpan - Pearson approach to elimination of nuisance

parameter (Cox 1870).

The second approach is that if we were given only the vlaues
of X“ + Xm and Xﬂ + Xz,__, no conclusion could be drawn about w,
and hence ancillary for w ignoring the nuisance parameter (Fisher
1956). This approach can be formalized using the definition of
ancillarity in presence of nuisance parameter (Godambe 1980)

discussed in chapter 2. Here v is the parameter of interest with

01 = [0, o) and (v‘, vz) represent nuisance parameter with
Qz = [0, @) x [0, ). Further, we can write the likelihood L,
as

L=PX, =x,, X, =X, | X, + X, =1o,, X, + X, =n,.¥)
X P(X“ + Ku = By x:z + }gz =R, ¥ v‘, vz)'

Thus, conditional distribution of observations given X + X,

and xﬂ + ng depends on ¥, only.

110



Further, from (4.2.8), we obseve that for fixed ¥, Jjoint
distribution of X + X, and X  + X _belongs to two parameter
exponential family with parsmeters @,, v,). Hence it is
complete. Thus, the definition 2.2.1 is applicable and we
conclude that the statistic (X“ + Xu, X‘z + xzz) is ancillary
w.r.t. v and marginal density of (X“ + xn, X, + X)) 1is said
to contain no information about y ignoring ., v,). Thus,
infernce on ¥ in the conditional set up is based on the
conditional distribution of X, + X, given X + X, and

11
X‘Z+Xn. From (4.2.9)

h(s l Il“., n‘zn ¥) = r =s =r

CMLE of ¥ is obtained by maximizing h(s|m,, =m ¥) w.r.t. ¥

12’

i.e. by solving the equation

z . J
J Cjw

r

1 (4.2.10)

r
z.,

L ¢ v’
j=r
L.,

i

and hence CHLE is obtained by solution to

x‘g + xgz = E(xll + xaz I xt.l. + x21' x:z + xzz’ W)

Note that (4.2.9) is a power series distribution. Hence moment

estimator and m.l.e. are same.
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The computation of the coefficients C, in (4.2.9) is the
most difficult task in the application of conditional theory.
The computing time utilized by program of Thomas (1975) was large
if number of tables are large. But this difficulty has been

solved by algorithms developed by Mehta et al. (19835) and Vollset
et al. (1991).

Example 4.2.2 : Consider the two tables with marginal totals
fixed by

(i) n,6= 15 n, = 10 m, = 9
(i) n, = 17 n_ = 18 n, = 15.

Any two tables with the above marginal totals can be represented

by
X, . 15 - X, , 15 X, 17 - S 17
X, 10 - X, 10 b 18 - X, 18
9 16 25 15 20 35

x“ + X12 takes values from 0 to 24. In the

Note that X

following, we give conditional point estimate of the common odds

ratio for tables with observed value of X equal to 8, 12 and

16.
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Table 4.2.1

a
*

Conditional maximum likelihood estimate

Observed value ;cn
of xt. = x11+x11
8 0.26867
12 0.8287
18 2.55873
Example 4.2.3 : Consider the data in example 4.2.1. Here
(i) n = 15, n, =427, n, =71
(ii) n, =11, n,, = 394, mn, = 89.
Conditional point estimate for the common odds ratio is
given by
;En = 3.7781.

4.2.3 Estimation by asymptotic method

The exact conditional noncentral distributicen of xﬂ:. k=1,2
is given as before by

2
nogx, | n,,¥)
k=1

where g(ﬁkl m,, ¥) is given by (4.2.8). 1In Chapter 2, we have
shown that )gk is asymptotically normally distributed with

asymptotic mean and variance given by

E(x‘k | m,» v = X,
-4
1 1 1 1
o - L e +
and V(X |n , W) = { = + = * = = }
k — — —
o X P X B ¥4 Rk Byt Xy
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-~

where X, 15 the appropriate solution to the quadratic equation

-~ ~

xﬂ(%k"mk*'ﬁk)

= v , k=1, 2 (4.2.11)

-~ -~

e T X)) (ng, - x

(m 1k

1k)

The appropriate solution is the one vielding positive numbers for
all the factors and divisors on the left hand side of (4.2.11)
i.e. all the estimated entries in the 2x2 tables. Hence

X‘_=X“+Xu is asymptotically normally distributed with mean and

variance given by

- z .
ECX, | mn,,m,,v=E EX, | g,.® (4.2.12)
* k=2
L. z o~
and V(X | n,. 0, ¥) =L V(X, | o, ¥ (4.2.13)
y k=1

The estimator of w which paximizes the asymptotic conditional

likelihood is then obtained by (Gart (1870)

~

x + x_= EX

11 412 o | n“" m‘z’ w) (4-2-14)

which involves ¢trial and error solution of two quadratic
equations. We denote this estimator by v, . Program of Thoras

(1975) performs the calculations.

Example 4.2.4 : Consider the two 2x2 tables considered in

exanple 4.2.1, ;; for this data is given by w_ = 3.7866.
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4.2.4 Noniterative Methods

All the three procedures described above for estimating the
conmon odds ratio require iterative calculations. There are some
methods which require no iterative calculations. Here, we

discuss two procedures viz. Woolf’s procedure and Mantel -

Haenszel procedure.

Woolf'®s Procedure

Woolf (1855) proposed an adjusted estimate of the comnmon
odds ratio y based on the 1log odds ratio. Let ;k denote
unconditional point estimate of the odds ratio for the k-th table.
An estimate of variance of 1n ;} is given by

- 1 1 1 1
S . . N . (4.2.15)
EoXy Mok "Xgx X2k Nox "%k

Taking a weighted average of the log odds ratios with weights
being the reciprocals of the estimated variances, # = 1n ¥ nay be
estimated by the gquantity

2 - ~
-1

r ) in v,

k=1

)
1

2 N §
L (v.)

k=4

Thus, the estinate of w is given by
2

~

8

- exp { } (4.2.18)
w 2 - -

L (v

k=1
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Example 4.2. ” -
xample 4.2.5 v, for the data considered in example 4.2.1 is

given by

v, = 3.7887

Mantel - Haenszel Procedure

Mantel and Haenszel (1859) proposed on heuristic grounds a
highly efficient method for estimating a summnary odds ratio from

a series of 2x2 table.

The Mantel - Haenszel estimate (denoted by ;u_n) is

calculated as

2
kfﬂ X (Nyy = X /N,
Vuu 2 (4.2.17)
kE‘ X (Ngy = X M/,
Note that Yo is defined only if X, 2 0 and n, -x, > 0oV k.

The Mantel - Haenszel estimate can be regarded as a weighted
average of subgroup (subtable) odds ratio provided none of the

values of n, - X and x.. are equal to 2zero. The odds ratio

k 1k 2k
estimate for the k-th table is given by
. X (g = X))
¥ = .

X (D = Xgy)

Using the weights w = xzk(nﬁ - X, )/Nk , one can write

2
L % ¥
v, . = — (4.2.18)



Example 4.2.6 V- for the data considered in example 4.2.1 is
given by

~

v = 3.7823 .

M-H

4.2.5 Jackknife estimators -

-

The estimators that are discussed here are based on the
Jackknife principle originally proposed by Quenouille (1949). 1In
general, for an estimator o of a real valued parameter ©, the
pseudovalue J, is based on o itself and ;i which 1is Jjust the
estimate obtained if the i-th observation out of N observations,

say, is deleted; that is

g =3e)=Ne-(N-1)e, , i=1,2, ..., K

and the jackknife estimator is defined as the arithmetic mean of

the R pseudovalues.

J.
t

<
n

- [

1tz

i
with the jackknife variance (Tukey 1858) estimate

-~ 1 N 2
W= xwn B YD

Here we discuss two jackknife estimators for the comnmon odds

ratio, y, suggested by Breslow and Liang (1882) and Pigeot

(1891).

Breslow and Liang jackknife the logarithm of the Mantel -

Haenszel estimator. They calculate jackknife estimator on the
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basis of pseudovalues that are obtained by omitting one complete

table. If there are t tables, the t pseudovalues are

J, =t log Vg - (t-1) log L k=1,2,..., t (4.2.19)

k »
with
t
,-E, Xy i(ngp; — % ;)/8,
" i*k
wu-u,l: = t
jfi Xpi{hgy - X, i)/N;
ik
and the jackknife estimator
- 1 ¢
VoL = i kg‘ Jk (4.2.20)

with jackknife variance estimate

t
V(w50 = t(t-1) L -vy) (4.2.21)

k=1
This method is eppropriate, if number of tables, t, is
t
large. When the number N = I lk of all observations tends to
k=1

infinity while t is fixed, another approach of omnitting each

single observation is proposed by Pigeot (1991). We describe

this procedure for t = 2.

When esch single observation is omitted, we get the

following N pseudovalues.

I, =Ny, - (-1 v, (4.2.22)
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with

(xu"l)("zk'xzk) . }z: X, 5(n; = %5
N (Hk“l) j=1 NJ
X D =x ) . ;: X,;(n, 5 - %,
(Nk -1 j=t Nj
j*k
(4.2.23)

J£'k. J;’k. Ja'k can be obtained in a similar way (a,b,c,d denote

the cells in each contingency table). Each pseudovalue exists

exactly Xy o Dy = X, X, and n, - X, times respectively.

Thus, the Jjackknife estimator is given by

2
~ _ 1 _
Yop ° N ki_:t (R T ¥ =Xy MWy + X do p (%509, 4
- (N-1) 2 - - - ~
N v, -~ B X, ¥, (N mX, Wy (X ¥ (N =X, Wy )

(4.2.24)

A - 2 z - 2
Viy ) = Nlﬁ—l) T {x, v, - Ja’k) + (n, -x, Xv,, - Jb,k)

JPr ( x=1
~ 2 -~ 2
LR S O S A (N, = X, 0¥, = Jy .0}
1 =~ - O 7
= + - ) +
= - D Yo PRED LE D Tge P ROt Ky T,
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Now,

1 z
N(N-1) kE;{x“‘Jz RO S

@ k c,k

1 2

= Fo I OV ¥y - (D) v T

+(n, -x,) [Ny, - (N—l);’b lE]z

+x Nw, , - (N-1)$c’kf

+ (n, - X, YN v, - (R-1) ;,d,k]z}

. K -2 (N-1) ~
= W-1) Yu-u T TR kE‘ (X ¥auo b (g% Wy
“z ~2
X Vo (T - X ) ¥
d (-
-, . {5 R ¥y ™ ¥l
- _ Nz A: . -Z_N— ~ ~
(N-1) "M-H N- ¥Yun ¥y

v (o, %, W
Vo x Ny "% P x

F 2
R, Vot (M T Xy ) ¥a !

Substituting (4.2.26) in (4.2.25), we get

z
ao _ (N-1) ~2 _ “2
v(w.u-) - N kE‘ {x) Yax + (0, "Xy g K
llz l\z
* Xy Ve ¥ (ny, = %) ¥a !
1 -~ - 2
- "——'(N-l)( ¥yp " Vu’
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Example 4.2.7 :

Consider again the two 2x2 tables in example 4.2.1. Since
t=2, we do not apply method of Breslow and Liang. By applying
the method suggested by Pigeot, jackknife estimate of the common

odds ratio is given by Vip = 3.4575 with G(QLP) = 2.6000.

4.2.65 Discussion 2

The problem of zero cells also arises in multiple 2x2
tables, and we get zero or infinite estimates for the odds ratio
or log odds ratio. A possible device for handling infinite
estimates is to avoid them by adding some positive constant to

cell entry values or at least to the summary table cell entries.

Occurence of zero cells is primarily a small sample probler
and it should not be considered when dealing with asymptotic
case. In effect, if zeros or infinite estimates are other than a
fairly rare problem, that is an indicator that the estimator in
question is not appropriate with that sample size. Then forcing
application of an estimator by adding constants would be

nisleading (Hsuck 1886, Mantel 1886).

The strategy of adding constant to cell values may be viewed
as fine tuning of an estimator (Hauck 1986). It 1is obsedrved
that odds ratio (or log-odds ratio) estimators are biased to some
degree in finite samples. Hauck, Anderson and Leathy (1982)
noted that adding positive constants to all the cells would

shrink the estimators towards one or zero depending on the scale;
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thus reducing the tendency of some of these estimators to

overestimate the odds ratio and its logarithm.

4.3 ¢ Interval estimation and testing the hypothesis of

independence

In this section we describe various methods to test the

hypothesis Ho : w= 1. We alsoc describe procedures to obtain

confidence linits for the common odds ratio, w.

First method is the extension of Fisher’'s exact treatment
for single 2x2 table. Cornfield’s asymptotic method can also be
extended to 2x2x2 table. These two methods involve iterative

calculations.

The noniterative procedures to calculate confidence 1limits
for the commnon odds ratio include Woolf s (1855) method and

Mantel - Haenszel procedure (1859).

4.3,.1 Extensiocon of Fisher®"s exact treatment

As shown earlier, conditional distribution of X1 =X“+Xa

given X“ + xu and Xﬂ + Xzz is given by

h(s | m,, m,, ¥) = r:‘ Y » T, £s=r, (4.3.1)
-z . Cjwj
PP
where
c - : [“,k] [ P2k ]
PR k=1 x‘k n‘k_x‘k
2 2z
r, = ki L and r, = RE‘ Ty
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Calculation of p-values : The UMP test for v = ¥, is based on
the above conditional distribution, it has critical regions of
the form x‘. Z s (X‘. < s) for alternatives of the form vy > v, W

< ).

Hence corresponding to an observed value s; the one sided
significance level against the alternative v > ¥, is

r
z,

p= L hiG|n,, m,, ¥v) (4.3.2)

i=s

and against the alternative v < v,

o)
H
itae

h(i | m,,. m . ¥,) (4.3.3)

4 1.

Note that for particular case of ¥, = 1, (| =n,., m,, 1) is

the product of two hypergeometric probabilities.

Example 4.3.1 : Consider the data in example 4.2.1.

Age group - 40 - 44 45 - 49
QC MI control Total oC MI control Total
Yes B8 9 15 Yes 6 5 11
No 65 362 427 No 93 301 394
71 371 442 89 306 405

Suppose we want to test the hypothesis Ho t:w =1 Vs H‘ I T 1.
p-value in this case is given by 0.0015.
Confidence limits : As stated above, the UMP tst for v = v is

based on h{(s | m o, B, w) and it has critical region of the
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form x;, z s (xt_ = s) for alternatives of the form vy > v, W
<Wo)- An exact confidence interval may be constructed by

inverting this test (Mehta et al. 1885). Specifically, an exact
100(1-a)X confidence interval for v is given by {¥ (8). ¥,(s)}

where WL(S) is such that

v (s) =0 if s =r

T

z.
EhGG|m,,m,,9(s)) =5 ifr <ssr (4.3.4)

i=s

and wu(s) is such that

-
. .« .
j}i_ h(3 | o, B,, ¥(s)) =5 ifr <sc<r,
1.

Wu(s) = o if s =1r (4.3.5)

The probability that this interval fails to contain w is
P(wu(s) < y) + P(WL(S) > ). Each of these exclusion probability

can not exceed a/2. This can be shown as in a single 2x2 table

case. Hence we omit the proof.

Thus {vL(s). vu(s)} is a conservative 100(1-a)% confidence
interval for the common odds ratio. Due to discreteness of the
conditional distribution of.g', one can not guarantee coverage
of y¥ exactly 100¢(1-a)X of the time. The above procedure is exact

in the sense that it is based on exact distribution theory.

The various computer programs (Thomas 1975, Mehta et sal.

1985, Vollset et al. 1881) calculate the confidence limits.
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Example 4.3.2 : For the data considered in exanple 4.2.1, 95%

confidence limits are given by

¥, = 1.5514 v, = 9.0580

Example 4.3.3 : For the data considered in example 4.2.1, we

give 95X confidence 1limits in the following.

Table 4.3.1 : 95X exact confidence limits

Observed value 95% exact limits

of x‘_ = X“ + x‘z v, L
8 0.0755 0.8745
12 0.2597 2.6379
16 0.784 8.9805

4.3.2 Asymptotic Method :

In section 4.2; we have shown that X" = X, + X, |is
asymptotically normal with mean E(X | m,, m,, ¥) and variance

G(x‘ | »,. n,, ¥) given by (4.2.12) and (4.2.13) respectively.

This can be used to test the hypothesis Ho 1V =V,

Asymptotic Confidence Limits : (1 - «)100X confidence limits for
the comnmon odds ratio w, using the asympptotic distribution are

obtained as follows (Gart 1870).

The upper limit ¥y is obtained by finding the value of w for

which

(x, ,+%,,) - BCX, | m,. 8, %)+ 1/2

2 4 G(X‘.|n

114

= -z (4.3.8)

[ T g J

» By W)

125



and the lower limit v, by solving

(x“-i-x‘z) - E(Xt. | m ., n,,¥) - 1/2

14
/ - = Z,,, (4.3.7)
V(X |n_ . m_,¥)
where 2.2 is upper o/2 percentage point of N(O,1).
Example 4.3.4 : Consider the data in example 4.2.1. 95%

confidence limits for the common odds ratio using the asynptotic

method are given by

v, = 2.6343 ¥y 5.3830

4.3.3 Noniterative procedures :

Woolf's procedure

As shown in 4.2.4, 8 = 1ln y is estimated by the guantity

-4

2 ~
r (v))
=2

where ;L is given by (4.2.15).

Tests of significance and confidence interval assume that ﬁv

-

is normally distributed.

2 -
Let u = I (Vk)d s
k=4

Then v;r(ﬁv) = 1/u
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Thus, an approximate chisquare test of the null hypothesis
Hy : v =y, vsH : v # y_ may be based on the statistic
(B, - 1n vo)z

X = 75 (4.3.8)

Under the null hypothesis, Xt has an approximate chisquare
distribution with one degree of freedom. In particular, for

V6=1' (4.3.8) reduces to

X = u@,y (4.3.9)

Further 100(1-a)X confidence limits are given by

v, =V, exp{- za/zlih} (4.3.10)
and ¥, =¥, exp{+ za/z/fh} (4.3.11)
Example 4.3.5 : Consider the data in example 4.3.2,  95%

confidence 1limits for the common odds ratio using Woolf’'s

procedure are given by

w, = 1.7077 v, = 8.3967

Mantel - Haenszel procedure

As discussed in 4.2.4, Mantel - Haenszel (M-H) estimate for

v is defined as
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1x1k(nzk - X M/ (n,, + noy)

npMN

k

€
[

M-H =z .
kEi X Ry = % M0y, + 0g)

An approximate test of the hypothesis of no association

(Ho: ¥ = 1) is given as follows. For the k-th subtable, the

conditional mean and varisnce of Xﬂc calculated under Ho, is
given by
E(X,,) = n, m, /N
Nox Mo nsk(uk - myy)
v(xl.k) = z
Nk(Nk -1)
The Mantel - Haenszel test of Ho :w = 1 against the two
sided alternativelt:w # 1 is then given by
4 4
[l £ x, - EBX)| - 1/21°
- k=1 k=4
Xy = - (4.3.12)
b V(X‘k)
k=1

The 1/2 correction for continuity is used so that the
p-value based on X:_H nore closely approximates the value based
on exact conditional test (Li, Simon and Gart, 1878). The
statistic X:_“ has an approximate chisquare distribution with one
degree of freedom under Ho. For a one sided test, one mnay use
the approximate unit normal deviate Z = * frgzi; , the sign being
chosen by the direction of alternative hypothesis.

We now consider two asymptotic methods using M-H estimate to

obtain confidence limits for w. It is assumed that total nunmber
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of tables and each p, (i =1, 2; k = 1,2) remain fixed and n, =
Ne,, £ = 1,2; k = 1,2 where a, are constants such that
0 <g, <1,

I. The first method suggested by Miettinen (1874b, 1976a)

is called the test - based method. This method gives approximate

(1-a) 100% confidence limits for v as

v = expl(1 - z/ ¥V X2 )In v, .} (4.3.13)
by = exp((1 + 2,/ ¥ X5 dn v, ) (4.3.14)

Example 4.3.6 : For the date in example 4.2.1, 95% confidence

limits using above method are given by

¥, = 1.4358 ¥, = 10.0164.

II. The second method is based on H-H estinate and its

variance derived by Hauck (1979).

Hauck (1979) has given an estimate of the variance of

"~

1n ¥ BS .
o e Ve
V(1ln wu_ﬂ) =
2
Y w
k=1 k

"~

where W and v, are as specified earlier.
An spproximate (1-«) 100X confidence interval for In ¥ is

thus given by

~

In ¥, 4 t z,.. f/V (1n ¥, _,, ) (4.3.15)
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Approximate lower and upper confidence 1limits for w are then

obtained by taking antilogs of the lower and upper limit for 1n v.

Hence

”~

L S Vg exel -z, Y Vny, O} (4.3.18)

€
I

v V. expl + 2z 7 V(in v, )} (4.3.17)

U M -H

Example 4.3.7 : For the data in example 4.2.1, ga5% confidence
limits using above method are given by

v, = 0.8727 ¥, = 14.7851.
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Chapter O

Paradoxes



CHAPTER 5

PARADOXES

5.1 Introduction

One of the questions that often arises in the consideration
of cross classified discrete data is whether a relatively‘conplex
table can be collapsed, or a collection of individual tables
pooled in order to yield a simpler table without affecting the
conclusions regarding the relationship of interest. For example,
instead of examining the effectiveness of a treatment in two
subpopulations, one consisting of men and the other consisting of
women; one can pool the data across both the sexes and can
examine effectiveness of the treatment in the combined
population. Thus, pooling of information from subpopulations
achieves data compactification. But some characteristics of data
are.lost in the process. The greatest danger in amalgamating
contingency tables is the possibility of a resulting paradox.
Many such have been noted since 1903, when Yule first noticed the
phenomenon. Section 5.2 defines such paradoxes, viz., Yule's
association paradox (YAP), Yule's reversal paradox (YRP) or
Simpson s paradox and amalgamation paradox (AMP). Sections 5.3,
5.4 and 5.5 review sufficient conditions for avocidance of these

paradoxes.
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What would be best is to find a statistical explanation of
any paradox when it occurs, namely, a necessary and sufficient
condition for the paradox, described in statistical terms.
Unfortunately, none seems to have been discovered, so far, for
any of the three paradoxes we consider. Necessary condition for

occurrence of YRP is discussed in section 5.4.
Notation :

Let ﬂ.z (%, h.,ci, Q) j=0,1,2,..., t-1 denote the 2x2

L

contingency table corresponding to i-th of t mutually exclusive
subpopulations with a I:1t ¢ d.. = ., Here (a.t, bi) and (°1' q_)
denote the first and second row respectively for the i-th

subpopulation.

If the t tables are added together, we obtain a table

M =X Ig = (A, B; C, D) = (Z a., z bt; z c, ., z da)' The measure

& i i

of association considered is the odds ratioc, so that for %, the
a d.

< . _ ti
i-th subpopulation w(ﬁ) = B e

it

, i=0,1, ..., t-1 and for the

combined population

(£ a) (Td)

LS 1

w(H) =
(£ b.> (£ ¢)

L L

Iin this chapter, we consider two subpopulations and proofs
for various theorems are given for the case when t = 2. These
proofs easily extend to the case when t > 2. The two

subpopulations Ht’ i = 0,1 can be explicitly represented by
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S S S S
T ao bo T a_’. bi
T S d, T c, d

S.2 32 Definitions

Yule (1903) noted that a spurious association between
attributes may arise in a population as a result of amalgamation
eventhough the attributes are independent in the subpopulations.
Mittal (1991) refers to this paradoxical situation as “Yule's
association paradox’ (YAP). If the odds ratio is considered as
neasure of association; the definition of YAP is formalized in

the following.

Definition S5.2.1 : It is possible that,v(ﬁ) =1, i=0,1,...,t-1;

but w(M) # 1 where H =Z ﬁﬂ denotes the amalgamated table. In
i _

other words, it is possible that a‘cl'_ = be, i = 0,1,...,t-1;

but < :ﬁ) (X di) = (X bi) (Z ci). Such a paraoxical situation is
i i i i

termed as Yule's association paradox (YAP).

Following example will illustrate YAP (Schlesselman, 1982).

Example S5.2.1 : Suppose one wants to investigate a postulated
causal relationship between alcohol consumption and myocardial
infarction (MI). Since smoking is known to be a cause of MI,
subjects are classified into a smoking group and a nonsmncking

group as follows.
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Smokers (M) Nonsmokers (K )

Alcohol MI Control Alcohol M1 Control
Yes 63 36 Yes 8 18
No 7 4 Ho 22 44

Among smokers, odds ratio estimate of MI associated with

alcohol consumption is w(Ho) = 1, with =an identical estimate

among nonsmokers. If we pool the data by summing the entries

across the subgroups, we get the following 2x2 table

H(=M_+H)

o 1

Alcohol HI Control
Yes 71 52
No 29 48

For this pooled table, an estimated odds ratio of MI

associated with alcohol consumption is w(HK) = 2.2599;thus showing

spurious positive association between MI and alcohol consumnption.

Definition S5.2.2 : Cohen and Nagel (1934) noticed the

paradoxical behavior in the form that is now popularly known as

Simpson’s paradox, namely,

atd,‘Z(S)blc‘, i=0,1, ..., t-1

v

but (Z a) (Ed) =
i i

) (£ b) (E ¢)

where equality sign holds in only one of the two statements

above.

For the two subpopulations Ho and H‘, the statement of

Simpson’s paradox can also be given in the following way.
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It is possible to have

P(S{T) > ( < ) B(S | T

and have at the same time both
P(S|TH, > < ¢ > ) P(S|TH) (5.2.1)

and P(S|TH) < ¢ > ) P(S|TH,)

Note that here one tends to reason intuitively that this 1is
impossible because

P(S|T) = An average of P(S|TM_ ) and P(S|TH)

and P(S|T) = An average of P(S|TH ) and P(S|TH )
which is easily seen to be true if all the conditioning events
have positive probabilities :

P(S|T)

PCH | T) P(S|TH,) + PCH|T) P(S|TH)D

B(S|T) = POM|T) B(S|TH,) + BCH|T) B(S|TH)D

but the reasoning fails because these two averages have different
weightings. However, jn particular, if Ho and T are independent;
then these two weightings coincide and the reasoning correctly
shows that (5.2.1) is impossible. The.paradox can be said to

result from association of T and ﬂa. We study this in section

5.4.

Since Nagel suspected that he learned the paradox from
Yule’'s work, Mittal (1881) refers to it as Yule's reversal

paradox (YRP). Messick and van de Geer (1881) called this as
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reversal paradox’. Following numerical example will illustrate

that whenever YRP occurs, it can be misleading.

Example S.2.2 : Consider the following two tables.
MHen (Ho) Women (H1)
success failure success failure
Treatment I 60 20 Treatment I 40 80
Treatment II 100 50 Treatment II 10 30

For both the subpopulations, odds ratio estimate is 1.5
indicating that treatment I is better than treatment II. If we

combine the tables for both the sexes, we have

M (= Ho + H‘)

success failure
Treatment I 100 100
Treatment 11 110 80

The odds ratio estimate for the combined table is 0.7273
indicating that treatment II is better than treatment I; thus

reversing the direction of association.

Good and Mittal (1887) have defined amalgamation paradox
(AMP) as
Definition 5.2.3 For ¢t subpopulations; we say that
amalgamation paradox (AMP) occurs if

nax a(Hi) ¢ a(M) or a(M) < m?n a(Hi) , 1=20,1,...,t-1

i L
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where a is the measure of association and ¥ = H +K +...+H is

the amalgamated table,

If odds ratio is considered as measure of association, then

AMP is implied by YRP which in turn is implied by YAP.
Following example illustrates AMP.

Example 5.2.3 : Consider the two tables (15, 12, 5, 8) and (18,
25; 2, 5) with amalgamated table (33, 37; 7, 13). The odds
ratios for the two tables and the amalgamated table are 2, 1.8

and 1.6563 respectively, thus resulting in AMP.

5.3 : Yule’s association paradox

The main result of this section is the necessary and
sufficient condition for avoidance of YAP for two subpopulations

(Mittal 1881). Before this, we study some definitions.

Let the t subpopulations be represented by corresponding 2x2

tables H-‘ = (a.t. h) ci.’ di.)’ i = 0;1.---.t‘1.

L3

"Definition S5.3.1 : The subpopulations are called row-homogeneous

if max ﬁ.s nin S;» i=20,1,..., t=1 where (rt, g) is one of the
i i

two pairs (b/a, d/g); (d; /¢, b/a).
Definition 5.3.2 : The subpopulations are called coluen -

homogeneous if max Q.S min S.» i=20,1,..., t-1, where <Il'§)
i i

is one of the two pairs (¢/a. clt/t{); (d-;/b{‘ ct/ai).

Definition 5.3.3 : The subpopulations are called homogeneous if

they are either row or column homogeneous.
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Example 5.3.1 : Consider the tables (15, 12; 5., 8) and (18, 25;
2,5).

(a) To check whether the subpopulations are row-homogeneous,

]

let r, b{/a‘ and s, < d.‘/ct, i=1,2. Then max r, = 25/18 and

13

min s
i

25/18 < 8/5.

8/5. Thus the subpopulations are row-homogeneous as

{(b) Further, we note that if (ri. q) corresponds to either

of the pairs (c‘/al. dt/h‘); (da/b{' "i/"i); max r, > nin s .
i H

Hence the subpopulations are not column - homogeneous.
(¢) The subpopulations are homogeneous.

Definition S5.3.4 : Attributes T and S are positively associated
viz. T~ S if P(S| T) > (S| T).

Similarly, we define

Definition 5.3.5 : Attributes T and S are negatively associated

iIFEP(S| T)>P(S| T).

In the following lemma we prove reflexive property of the

relation ~ defined in the deinition 5.3.4.

-

Lemma 5.3.1 : The relation in definition 5.3.4 is reflexive.

Proof : Let T © S. Then we have to prove that S " T i.e.
P(T | $) > P(T | S). Now
T~S
=> P(S{T) > B(S{T)
P(ST) P(ST)

>
P(T) P(T)
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P(ST) P(T)
P(ST) P(T)

X P(ST) P(ST) + P(S T)
= — >
P(ST) P(ST) + P(S T)

Further

P(ST) P(ST) + P(ST) P(ST)
— > — — > ——— (5.3.1)
P(ST) P(ST) + P(ST) P(s T)

The inequality (5.3.1) above follows since the mniddle term

js a convex combination of two end terms. Thus,

P(ST) P(S T)
) ——
P(ST) P(S T)
P(S T) P(ST)
=> S >
P(S T P(ST)
P(S) P(S)
=> — >
P(ST) P(ST)
P(ST) P(ST)
=> > —
P(S) P(S)

=> P(T | S) > P(T | S

Hence, the relation 7 is reflexive.

Now, we give interpretation ‘of homogeneity in terms of

conditional probabilities in the following.

Consider first the two subpopulations ﬂn and ﬂ‘. If T and S

are positively associated in one subpopulation and negatively
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associated in the other subpopulation, then the subpopulations

are obviously nonhomogeneous.

Eventhough T and S are similarly associated in both the
subpopulations; c¢onditional probabilities nay render them

nonhomogeneous. This can be shown as follows.

Assume without loss of generality that T is positively

associated with S8 in both the subpopulations Ho and H;'

i.e. P(S|TM ) > P(S|TH,) and P(S|TH) > P(S|TH, ).

Now
_ b, d,
P(S]Tﬂo) > P(S|Tﬂo) => < — (5.3.2)
‘ o o
and
_ b‘ d1
P(S|TH1) > P(S|TH‘) => — < (5.3.3)
8 )
b, By
When max = - = we have three cases satisfying (5.3.2) and
i L o

(5.3.3), viz.

b d b d
(i) 1 « X < =2 <« 2

a, C, 8y o

b b d d
(i) Ei ¢ ;3 < Ei < 32

4 o 1 0

b b d d

1 o o 1
and (iii) — <37+ <g ‘&
a, % ®o Cs

In caées (ii) and (iii), we observe that condition of

homogeneity is satisfied. Bat in case (i) condition of

140



homogeneity is not satisfied. Thus, in case (i); we have

nax( bl d . bo bo

;: ’ E: ) <€ min( ;g . E; ) so that both the treatment and
nontreatment in populatibn M is better than treatment in M
indicating that treatment behaves differently in two
subpopulations and hence the subpopulations will be

nonhomogeneous with regards to the effect of this particular

treatment. Note that the case when max b.‘/a.t = b‘/a‘ can be
i

similarly treated.

Further, if we have t (t > 2) subpooulations that are
nonhomogeneous eventhough T and S are similarly associated in all
of them; then we must find two subpopulations M, and Hj, S0
that both treatment and nontreatment in one subpopulation is more
effective than either treatment or nontreatment in the other
subpopulation indicating that treatment acts differently in two
subpopulations M, and Hj and hence making the t  subpopulations

nonhomogeneous,

Now, we discuss the necessary and sufficient condition for

avoidance of YAP (Mittal 1991) in the following theorem.

Theorem 5.3.1 : Suppose that the attributes are independent in

each of the t subpopulations, viz.,

ad =he fori=20,1, ..., t-1 (5.3.4)
L v

If the subpopulations are homogenecus (row or column) then YAP is

avoided, viz.,

(£ a) (Zd)=(Zb) (¢ (5.3.5)

1
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On the other hand, if YAP is avoided and t = 2, then the

subpopulations must be row and column homogeneous.

Proof We first consider the case when t = 2. Without loss of

generality, suppose that max l%/q_ = min d./% , namely the
- . L

1 1
subpopulations are row-homogeneous and that (5.3.4) holds. Then

we must have

=2
o
(=)
(=)

o 1 o 1

]
»
e
"

which easily implies that

Z b, z d.
. 1 . 1
t L
= i=0,1
Z a Z c.
. L . i
L L

so that

1 L1

(Za) (Td) = (Eb) Eep

Thus, YAP is avoided.

On the other hand, suppose (5.3.4) and (5.3.5) hold. Then

r g Z b
. L
1
gives a convex combination of 2 numbers on each side, and the set
of these two numbers is the same for each side due to (5.3.4).
Further, for 2 subpopulations this will be true iff the

corresponding weights on each side are the same, that is

% Po > b that
= or equivalently = so a
a, +a, bo +b1 a, +a, bo +b;
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a b d b

1 _ 1 o o bs d1

2 -5 and hence _—_ 2 == = = = —_— Thus, the
o o Co 2 8, C,

subpopulations are row-homogeneous. Because of symmetry of the

argument, they must be column homogeneous.

Now, consider the case when t > 2. In this case, the proof
for sufficiency of the condition of homogeneity for avoidance of
YAP can be given in a similar manner to that of the case when
t =2. Following example will illustrate that condition of

homogeneity is not necessary for avoidance of YAP when t > 2.

Example S5.3.2 : Let t = 3 and consider the subpopulations

represented by the tables Ho = (B, 12; 3, 8); M = (2,3:;4,86) and

1

M = (4, 12; S, 15) with amalgasmated table M = (12,27; 12,27).

We observe that YAP is aovided. Now we check the homogeneity of

subpopulations.
(i) Let r. = b/a and s, =d/c i=20,1,2. Since r =s :
L 8 LS LY 1 8 | 9 19 L 1 8
max r, > nin s, and hence the subpopulations are not TOW
i i
homogeneous.

(ii) Now, let r. = c:'_/at and S.L = d‘/b. i=20,1,2.

Since r, = s, i=20,1,2; max r. > min Si and hence the
i i

subpopulations are not column - homogeneous.

Thus, pooling of data from three nonhomogeneous population

has not produced YAP. And hence the condition of homogeneity is
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not necessary for avoidance of YAP when more than two

subpopulations are amalgamated.

5.4t Yule’s reversal paradox

In the previous section, we have seen that homogeneity is
sufficient for avoidance of YAP. Further it is necessary for
avoidance of YAP when only two subpopulations are pooled. 1In the
following theorem, we show that the homogeneity is sufficient for

avoidance of YRP (Mittal 1981).

Theorem S.4.1 : If the subpopulations are homogeneous then YRP

is avoided.

Proof : Consider the case when t = 2. We represent a 2x2
contingency table by two vectors (a,b) and (c¢,d). Definition of
homogeneity says that the subpopulations will be homogeneous if

nax b.‘/at < mnin d.‘/.cl_, i =0,1. This is true 1if maximom slope
i t

of (a,b) vectors is less than mninimum slope o¢f (c,d) vectors.
Adding the two (a,b) vectors, the slope wil still remain smaller
than that of the sum of two (c,d) vectors, thus showing that the

condition of homogeneity is sufficient to avoid YRP.

Note that the proof easily extends to the case when t > 2.

Following example will illustrate that the condition of
homogeneity is not necessary for avoidance of YRP. i.e. if YRP is
avoided, then the subpopulations need not be homogeneous. In
other wprds, a paradox will not necessarily occur 1if non

homogeneous subpopulstions are amalgamated.
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Example 5.4.1 : Consider the two tables (13, 17; 8, 10) and (15,

23; 5, 7) with the pooled table (28, 40; 13, 17).

(i) 1Irf (r.‘,s‘) corresponds to either of the pairs (b /a,

d‘/c‘); (di./°1.’ b.t/a.._) we observe that max r. > min s . Hence,
. 18 . | 8
L L

the subpopulations are not row-homogeneous.

(ii) 1If (ri. q) corresponds to either of the pairs (‘ifﬁﬂ

d‘/bt); (di./b..' ci_/a.t) we observe that max r, > min s, - Hence,
i i

the subpopulations are not column-homogeneous.

But YRP does not occur since the odds ratio estimates are,

respectively, 0.9559, 0.9130 and 0.9154.

Thus, if the subpopulations are homogeneous, it 1is assured
that YRP is avoided and if the subpopulations are nonhomogeneous,
nothing can be said about the occurence of YRP; but second 1look
at data may reveal some characteristics originally overlooked

(Hittal 1991).

Whenever a paradox occurs, one faces difficulty with its
interpretation. We now give necessary condition for cccurence of

YRP (Mittal 1891) which may help in interpretation of YRP.

Theorem S.4.2 : If T ~ S and YRP occurs while amalgamating T x S
tables over ﬁo and PL then either (i) Ho ~ § and Ho - T or (ii)

M T S and ﬁo ~ T.

s ]

(Note that when T ~ S and YRP occurs, we only need to
jnterchange S and S to get the corresponding statement of the

theorem).
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The amalgamated table (over Ho and Hi) can be written as

Proof
M
S 5
T a +8, bﬂ|+b1
T co+c‘ do+d1
Now T ~ S, so that P(S|T) > p(S|T)
a +a ¢ +c
= [s ] 1 > [ ] 1
a°+at+b°+b1 c°+ct+do+d‘
bo+b£ d0+d1
= +8a < c_+C
a'0 4 o] 1
a +a b +b
= ;°+c‘ > é°+d1 (5.4.1)
O 4 [+ ] 1
and since YRP occurs, we have
a b a b
2 osg wa o=t (5.4.2
Lo ] [o] i &

of (5.4.1) as convex combinations of

If we write both sides
= 0,1,; namely,

ratios ai/q and bi/Q i

o
[¢)
o
"

ao+as cO o 1
+C = ¢ +c X ot o= * ¢
co 1 o] 1 o [ ] 4 1
and
b
b_+b, ) d, . b, . d, L s
- +
d +d d°+d‘ do d d1 d‘

then in view of (5.4.2), (5.4.1) is possible only if the interval
right

[a‘/c‘. bi/d‘] lies entirely to the left or entirely to the

of the interval [ao/co, bo/d°3, that is
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a2 b a b
-—i - 1 < [ < [}
£ g = —= = (5.4.3)
i dt co do
a b a b
-2 - o < 1 < 4
= I = = = - (5.4.4)
% do s ds

Also, in order to achieve (5.4.1); the weight assigned to the
spaller of the two ratios a /c, i = 0,1 nust be smaller than the

weight assigned to the smaller of the two ratios t&/q'i = 0,1.

Now (5.4.3)
a b a b
=> = < 1< 2 < B
cl d.l. cO dO
=> i < E
dl. dO
c d
=> 2 > _°
cl dl.
c d
Similarly, (5.4.4) = 32 < 32
;! 1

We note that the assunption of the theorem c¢an also be
stated by inequalities such as in (5.4.1) and (5.4.2) with e, and
q. i = 0,1 interchanged. This will give

a c a c

2 < 2 <« 2 < LA (5.4.5)
bl. dt bO dO
or
a ¢ a c
2 <« 2 << < 2 (5.4.6)
bO dO bl dl
cO dO .
It is clear that (5.4.5) = . > T while (5.4.6) implies

(]
o

reverse inequality.
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Hence, the only possible cases under the assumptions of the

theorem are

a b a b a

1 4 ¢ a ¢

S, S T TS g oad g s s g2 254
1 1 (o] o 1 1 (] o

or

8, bo a b1 a, c, a, c,

o T T T s goed g o= g5 g g (5.4.8)
(=] [=] 1 41 Q Q 1 8

Now, if M, 7 5, then E’(Slﬁo) > P(St|H’.) so that

a +c a +c
[} [} 1 1

> (5.4.9)
bo +do b +1:j1

1

and if M, © T then P(T|H ) > P(T|M) so that

2, +bo a +b’

y 2 8 (5.4.10)
co+d° c1+d‘

It is easy to see that (5.4.7) implies both (5.4.9) and (5.4.10);
while (5.4.8) inplies (5.4.9) and (5.4.10) with 1inequalities

reversed (i.e. M~ S and M, T T). This proves the theorenm.

5.5 : Amalgamation paradox

Following exsample will show that homogeneity 1is neither

sufficient nor necessary for avoidance of AMP.

Example S.5.1 : (i) Consider the two subpopulations represen

ted by the tables Ho = (15, 12; S5, 8) &and H‘ = (18, 25:; 2.,35).

In Example 5.3.1, we have shown that these subpopulations
are homogeneous. Further example 5.2.3 shows that amalgamation
of the tables (over W: and %) results in AMP. Thus, homnogeneity

is not sufficient to avoid AMP.
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(ii) Consider the tables in example 5.4.1, viz. (13, 17; 8,
10) and (15, 23; 5,7). 1In example 5.4.1, it is shown that the
subpopulations are not homogeneous. Further AMP does not occur
since the odds ratioc estimate for the pooled table is 0.8154
which lies in the interval of odds ratio estimates of the two

subpopulations viz. 0.9130, 0.8559.

Good and Mittal (1987) have shown that how AMP can be

avoided by suitable designs of the sampling experinents.

Definition 5.5.1 : An experimental design is said to

‘row-uniform’ or “row-fair® if for some A,

ai+bi
m=h, 1=0,1,...,t-1.
[ 8 1N
Definition 5.5.2 : An experimental design is said to be column

uniform or column-fair if for some 4,

Theorem 5.5.1 : If the design is both row-fair and column-fair

then

min w(Hi) < w(M) = max w(Hi), i=0,1, ..., t-1

1 L

where M = Ho + Hi-f U Hlﬂlrepresents an amalgamated table.

Proof : We prove the theorem for t = 2. For t > 2 we can first
amalganate two tables and then add further tables one at a time

to get the final result.
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Let x = ao/al, X, = bo/b‘, X, = e¢,/c, and x = d /4.

4 [ 1

For t = 2, we rewrite the conditions of row - uniform and column

- uniform design as follows. The design is row-uniform

= a0+b0 - al +b£
c°+do c1+d‘
N a +b _ c, +d,
al+bt cl+dl
S % % % % % 9 , Do
a‘+b‘ a a1+b‘ b‘ c1+d‘ c, c:1+d1 d
<=> x‘6 + xz(l-é) = xaé + x‘(l - &) (5.5.1)
a e,
with &6 = >0 and &° = >0 .
.'31‘-0—b1 c’+d’

Similarly, the design is column - uniform

=> xn + x(1 -7m) =x7n" +x(1-7n") (5.5.2)
al bl
forn:al+c‘ >0 and n :b1+di > 0 .

Equation (5.5.1) shows that the intervals (x‘.xz) and (xs,x‘)
nust overlap {(or as a special case x = X = X = x‘) while
(5.5.2) shows that the intervals (x‘,xa) and (xz,x‘) nust
overlap. Here, the notation (x‘,xz) is not intended to inply

that X < % etc.

Without loss of generality, we shall assume that
v(H ) = w(l )

8,9 < a d,
R

=>
cO bl cl.
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=> X X, < X, X, (5.5.3)

We have to show that

w(H ) = w(H) = w(H) (5.5.4)

First, let us assume that X = X, ; then X, and x, can not

both be in the interval [x‘,x‘] since x < X, = X, =< x, violates

(5.5.1) while X = X, < X, < X, violates (5.5.2). The only
exception is when X =X =X = X. but the result is then

trivially true. For the same reasons, it is not possible that
one of X, and Xy is less than X and the other 1is greater than
x, . If both X,, X, are less than X, then (5.5.3) is violated.

Thus, x, and Xg both have to exceed X,- Accordingly, we are left

with only two cases,

X, < X, < X, < %, (5.5.3)
and X, < X, <X =< X, (5.5.8)

Arguing similarly for the case x, < X, we get two more cases,

nanely,
X, p. 3 x <X = X (5.5.7)
and X, < X <X < X, (5.5.8)

For each one of the four cases above, we will show that

(5.5.4) holds.
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We note that in all four of the cases (5.5.5), (5.5.8),
(5.5.7) and (5.5.8) we have x < x, and x_ < X, . This implies

that ao/co = a‘/ct and do/bo =< d‘/b1 . Therefore

a a +8a a
o < o 1 < 1
Co co+c‘ C‘
as well as
d d +d d
5 < B 5o
0 O+b1 b1

and hence (5.5.4) holds readily.

The following example shows that just row-uniform or column

- uniform design is not sufficient for avoidance of AMP.

Example 5.5.2 : Let Ho = (3, 1; 1, 8) and H1 = (889, 203; 381,
2348). Then w(Ho) = \P(H‘) = 27. The design is row uniform with
A = 0.4, but (M) = 26.9907. Note that the design is not column-

unifornm.

It may be noted that the conditions imposed in theorem 5.35.1

are somewhat stringent as in practice it is difficult to obtain
a design which is both row and column fair. 1In practice, we =may
get a design which is row-uniform and approximately column-
uniform or vice versa. Effects of such approximations are
discussed by Good and Mittal (1987). Here we do not go into

these deteils.
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5.6 Examples

We need to worry about YAP very rarely in practice, since
the precondition v(h) =1, i=20,1,...,t-1 is unlikely to be
satisfied for observational data. Though AP is more frequent
than YRP in data it 1is YRP that poses critical problems of

interpretation and infrence when it occurs.

An actual occurrence of this paradox was observed (Cohen and
Nagel, 1934) in a comparison of tuberculosis deaths in New York
city and Richmond Virginia, during the year 1810. Although the
overall tuberculosis Mortality rate was lower in New York the
opposite was observed when the data were separated into two

racial categories. Richmond had a lower mortality rate.

Whenever a paradoxical situation arises, what needed is the
‘sensible interpretation’. Necessary condition for occurence of
YRP states that “ If T ~ S and YRP occurs while amalgamating TxS
tables over M  and M, then either (i) ¥, = S and H, © T or (ii)

Ho ~ S and ﬁo - T.

Hence apart from the pair of variables of interest; 1if we
investigate associations between remaining pairs of variables,
these investigations may help in giving sensible interpretations.
The measure of association is the odds ratio. We illustrate this

by following example.

Example 5.6.1 : Consider the example constructed by Simpson

(1951).
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Male (Ho) Female (H‘)

Alive Dead Alive Dead
Treated 8 5 Treated 12 15
Untreated 4 3 Untreated yA 3
w(M, ) = 24/20 w(M) = 36/30

Combined population (M)

Alive Dead
Treated 20 20
Untreated 6 6
w(i) = 1

We observe that there 1is positive association between
treatment and survival in both the sexes, but if we combine the
tables, we find that there is no association between treatment
and survival in the combined population. To explain such a
paradoxical situation; we now consider odds ratio between

remaining pairs of variables at each of the two levels of third

variable.
Alive (S) Dead (S)
Male Female Hale Female
Treated 8 12 Treated S 15
Untreated 4 2 Untreated 3 3
w(S) = 0.33 w(S) = 0.33 (5.6.1)

Odds ratio estimate for the combined table is 0.34. (5.6.2)

Now, consider
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Treated (T) Untreated (T)

Hale Female Male Female
Alive 8 12 Alive 4 2
Dead 5 15 Dead 3 3
w(T) = 2 w(T) = 2 (5.6.3)

I1f we combine the data over T and T, the odds ratio estimate

is 1.93. (5.6.4)

From (5.6.1) and (5.6.2) we observe that there is positive
association between females and being treated. 1In fact data says
that proportion of women being treated is three times higher than
that of men. (5.6.3) and (5.6.4) suggests that mortality rate

for women is twice than that of wmen regardless of treatment.

Hence the sensible interpretation is that "treatmoent is
beneficisal”.
Example 4.6.2 : Consider the example (Agresti, 1984) which

concerns the effect of racial characteristics on the decision
regarding whether to impose the death penalty after an individual
is convicted for a homicide. The variables considered are “race
of defendant® having two categories white and black and ‘death
penalty verdict’ having categories ‘yes’ and 'no’. The 3286
subjects cross classified according to these variables were
defendants in homicide indictments in 20 Flourida countries
during 1976-77. Following table refers only to indictments for
homicides in which defendant and victim were strangers, since

death sentences are very rarely imposed when the defendant and

the victim had a prior friendship or family relationship.
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Death Penalty

Defendant’s Yes No
race
White 19 141
Black 17 149

The odds ratio estimate for the above table is 1.1772. (5.6.5)
(Note that for this example, we have calculated odds ratio
estimate by adding 0.5 to each entry].

This value of odds ratio means that odds of getting the
death penalty were 1.18 times higher for white defendants in the
sample than for black defendants. Note that the two -
dimensional table presented above is obtained by amalgamating two
2x2 tables; corresponding to two categories of victim's race. We
present these tables in the following

Table 5.6.1

Assoclation between defendant®s race and death penalty

for two categories of victim’s race

Victin's Defendant s race Death Penalty
race Yes No
White (ﬁo) White 19 132
Black 11 52
W(Ho) = 0.6718 (5.8.8)
Black (ﬂ) White 0 9
Black 6 a7
: w(%) = 0.79 (5.6.7)
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From (5.6.5) to (5.6.7) we observe that association between
defendant’s race and death penalty is reversed when ~victim’'s

race’ is ignored.

To 1illustrate such a paradoxical situation, we study

association between other pairs of variables through odds ratio.

Table S.6.2
Association between victim®s race and defendent®s race

at each of the two levels of death penalty

Death Victim’'s race Defendant s race

Penalty White Black

Yes (8) White 19 11
Black 0

w(S) = 22.0435 (5.6.8)

No (S)) White 132 52
Black 9 a7

w(S) = 25.9023 (5.6.8)

Now consider combined table over S and S.

Victin's race Defendant's race
White Black
White 151 63
Black 9 103

For the combined table (over S and S), the odds ratio

estimate is given by 25.9828. (5.6.10)

Now consider the remaiining pair of variables.
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Table S5.6.3
Association between death penalty and victim’s race

at two levels of defendent®s race

Defendant’s Viectin“s race Death Penalty
race
Yes No
White (T)) White 19 132
Black 0 g

w(T) = 2.7962 (5.6.11)

Black (T) White 11 52
Black B a7

w(T) = 3.2857 (5.6.12)

Now consider combined table over T and T

Victimn's race Death Penalty
Yes No

White 30 184
Black g8 106

For the combined table over T and T, odds ratio estimate is

given by 2.7086. (5.6.13)

The odds ratios relating victim’'s race and defendant’s race
indicate a very strong association between these two variasbles.
To illustrate, odds of having killed a white are estimated to be

26 times higher for white defendants than for black defendants.
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The odds ratios relating death penalty verdict and victim’s

race indicate that death penalty was more likely to be imposed

when the victim was white than when the victim was black.

All these paradoxes suggest an analysis which takes 1into
account interaction between defendant’'s race and victim’'s race.
One can find details of such an analysis of this problem 1in

Adresti (1984).
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