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The purpose of tiais dissertation is to study the logistic
family of distributions, The logistic function was first used as a
model ior puman populaticn growtn by Vernulst (1945). The use of
the logistic function as a growth curve is due to its impressive

differential equatione.

{%; = a [F(y)=b] [C~F(y)] wrere a,b,c are constants with
a>0,°>bo

Recently Leacn (1981) nas re-examined the logistic curve as a
amodel for'growtn of human population. The logistic curve was used
as an alternative to the integrated normal curve in the treatment
of binomial response data in bio-assayg Tne problen of estimation
of parameters of logistic function was discussed by Berkson (1955).
Tne logistic regression analysis is widely applicable to epidemiologic
studies like follo: up study and case=control study. Kleinbaum,
Kupper and Cnambless (1932) nave illustrated it’s use in quantifying
an association between an exposure variable and a disease status,
Tne logistic distribution arises as an asymptotic distribution of
standardized mid-range of a random sample taken from a continuous
syumnetric distribution with mean zero, Logistic distribution closely

resembles the normal distribution in shape and hence can be used as



an alternative to normal distributicn, However wilike the bivariate
norizal distribution there is no unique way of defining bivariate

logistic distribution.

Here we have divided tiis dissertation into the following parts:

(i) Properties of logistic distribution and related distributions,

(ii)Estimation of parameters of logistic distribution.

(iii) Estimation of logistic function in the treatment of binomial
response data.

(iv)Bivariate logistic distributions,

A systematic study of the logistic distribution nas been done

in the present dissertation in tne light of the points mentioned

above,

Chapter 2 is regarding tne properties and related distributions .
Mouments of the logictic distribution are obtained using cumulant
generating function, The expressions for wean, mode and variance of
k=thh order statistic from a random sample drawn from logistic
distribution with mean u and variance 02 are derivea, It reveals
how: logistic distribution belongs to Perk?s family of distributionSe

In this chapter logistic function and its applications are covered,

In Chapter 3, maximum likelihood estimators, estimators based on

sanple quantiles and some other estimators of the parameters of the



logistic distribution,men complete sample is available, are given,
Different methods of estimation of the parameters from symmetrically
censored, one sided censorcd and censored sanples are described.

It 2150 includes tolerance limits and confidence limits for the

parameters of logistic distribution,

Cnapter 4 deals witn estimation of logistic function used as a
model for probability of response in binomial response data. In this
Cnhapter, the maximum likelinood estimators, minimum logit fz
estimators and minimum x? estimators are discussed with illustrative

examples,

Properties of Gumbel’s bivariate logistic distribution, it’s
generalization and another bivariate logistic distribution are

studied in Chapter 5.

Bacn Chapter of tnis dissertation consists of serially
-numbered sections, The section a.b represents Section b of Cnapter

a while the equation (a.b) represents the equation b of Chapter a,
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2.0 Introduction

In this Chapter, we discuss the gencesis and preperties of the
logistic distribution. The logistic distribution with mean zero and
variance one, called standard logistic distribution, is compared witn

other continuous distribputions,

Section 2,1 gives the genesis of the logistic distribution from

the asymptotic distribution of standardized mid-range of a random

sample taken from a syminetric continucus distribution witi mean zero,

In Section 2.2, the properties of tne distribution are studied
‘mile in Section 2,3 noment generating function of k~th ordex
statistic and distribution of the ransge in the random saaple taken

from logistic distribution are obtained,

Section 2.4 reveals tne relation between Champernown distribution
and logistic distribution., The comparative study of the nature of the
curves of standard logistic, standard normal and Laplace distribution

with mean zero and variance unity is done in Section 2.4,

In Section 2.5, we discuss tne form of logistic function and
its use as a model in diflerent situations.
We now define logistic distribution through its probability

density function (podof .) .



Definition :

A continuous randoi variable Y is said to follow logistic
distribution (or sechesquare distribution) wita location parameter

p and scale parameter o if its p.d.f. is

exp{ = =% (y= 1)}

f(y;u ’ 0’) = -—-‘J-t.-.- e e el R (2.1)
/3 i1+ expi-*‘“'"(Y“ll)}Jz
o3
=0  y { o

- 00 { u(m

g>» 0 ,

We shall denote tnis logistic distribution by L(u,0). In tne above

form p is the mean and d%is the variance of the distribution.

The distribution function of L{u,o0 ) is given by

o 1
FAYJU 50 ) = ommmwedicrsmesssinn 4 ey ( (2.2)

1+exp{=- -j}.}—(Y-u )} S
g’0

mw{ H >,
It snculd be noted that logistic distribution (2.1) is symmetric
about B e

Tnne logistic distribution with u=0 and o =1 is called

scandard logistic distribution and wvritcen as L(0,1).



The probability density functica of L{0,1l) is

-~y 5
exp{ =}

£(y) =B P ey (2.3)
3 {1+ expf —"-}-;‘-—}jz

and tihe distribution function is

+exp, ==y
7

Sometimes the protability density function of logistic

distribution is expressed in the form

exp{ -(Y-B'-“-)}

£(Y3csB) = g vome wmmnme .. (2..5)
(l+ exp{-(-‘-’-;—“—)} 12
B e (0,=)
I
- g g L o,
OR 9(yie,B) = g seeh® { 5 (59} . (2.6)

Here ¢ is the location parameter and B is the scale parameter of

the distributione.

Tie distribution functions corresponding to (2.5) and (2.6) are



r‘(y;a.lﬁ) m et r s e e T A e s - 3 - o Y { oo

{1+ tanh [-12-(3’-;-“)5}
G\y;a’p) - -.,‘..-...2,...-.—-..-. ’ - 0D < y { o

B e (0,»)
- g, (2.8)

(2.1) Genesis of the distribution :

The logistic distribution arises as an asymptoti€
discribution of standardized mid-ran:e of random sample taken

fron a continuous symaetric distribution witi mean zero.

Let x‘l:n’ x2:n"' Xn;n be order statistias corresponding to
a random sample of size n drawn from a continucus symuetric
dicstribution naving probability densitcy fuaction @(x) witn mean
zZero.

th

The m™" mid range is defined as

th
i mid range = X+ Xy ni0an

Il = 1’2'.t'|n *

If =1, ta® wmid range is called standardized mid range .



. ) [} - &
s » Otandardized mid range & xl.'n + X
[ ]

an *
We siiall denocte mt‘"I and (W-x-l')tn order statistic by mx' and
xm respeciively, dence mtn uid range = mx + )Cm = \Pm (say) .

Defiae X, = -3— qi(um) wnere u. is tie 1ode of the distrlbution of
X,+ The probability density function fm(xn) of x for large n snd

small m is

T ( ) ..Iflfl._'.' -—mym—m e—Ym (Z.
m\¥n/ = & -1y 7" © 2.9)
where y, = a (xm - um) 5
Delfine
x = -
umf.'(m ) = fm( xm) and
g n ,
, o o m g (v —~x+ W)
Py = .}rl- ccccc ; m n
.mf l@m xm) (m-1) ! €
P o T u_}
e Pl )

th

Guabel (1944) nas obtained tae distribution of m™ uid range ¥ as

E\ Vm) = fwfm(xm) mf ("{n'}ﬁn) d}:m _ (2.10)
- O | o
CI% m2:.] co -mym+mam(um...y\m+%)_m e
o g( lel = crrrers '-‘-é

,
o e’am\um"“mmm)
e ¥

putting e = Z, the integzral reduces to



o _v-
nmaov wo - L1 in-
a -2 - -1
o mom [ e Zil+e ) Z

Q

Z .,

e . . )
Thus tne distribution of m™" nid~range vecoies

mx v

v ) am(2m-l)! e o W ( )

g'v - -.u--.-._.:...-. . —.. .-...a.....:-...... . 2.11
m ;_(:n-»l)ij2 i+ e 2 K
If m =1, we got

c a ew

SV, = '["-]: ;'e'd{r'_i'z (2.12)
o

waici can be looked upon as ithe probavility density function of
logistic distribution.

2.2+ Cuaulant penerating function and mouents i

D R R

Tne probvability density function of logistic variable Y witn

. 2 .
mean u and variunce g is

' h ..
f\}r;u ,U_) =.c.. v TR AT s, \2.13)
(L+expi= -2 (y=u )}I°
where N o= -2 .
3

Tae uo.ent generating function of Y witn density (2.13) is
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(1} = Bl
n .
co exp{~ - {y=u)}
= f ety.‘;}-. -.---....Q..r.l...-..-...z. dy
-0 - . . . -
L1+ expi= -2 y=u)} .
1
put z - -—-.-..-- }looo ..... ] . tllen
1+ expy5 (y=ul}
- o 9. 1-Z
[0 ag
| 1w =9t T
Sty = STz Pz Moz
Q
= e 31-Qt, 14+ Sty ;o < B
. n"’? n ! c
=" ra-day ra.g o, 2 .14)

Takiag losritnms of bota sides of (2.14) the cumulant generating

sxetion is given by,

K,{t} =ut +en - 7 {l+ -g-t;;+.zn- ¢T (l-ﬁ-t)}; t < -%'.(2.15}

= u'+-ﬁ'fW(1+*%ft)-w(l—'g‘t)] (2.16)



1l

waere ¥ (.) is digamia function.Putting ¢ = 0 in (2.16)

A8 = B() = @ .17)
t=0

Differentiating (1.,16) witca respect to t and putting t=0, we

nave tne second cuaulant as

{2 = Var(‘;} = v e ey me
t=0
=y DY Ge)e v Q- e )]
t =0

' L] -
witn¥ (.) as trigamaa function

2 -
“ O D 29'(1);

112
= o2 . ( 2.18)

th

Froceeding ia tiuis manner, tae r' cumulant K_:(> £1) is obtained

as

"

g r-1. L, 213
K, = Fy ( vR20) « (21 ¢ g, (2,19

. . . . ) . .
If r is an odd number taen :c'tl cunuiant is zero.
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The coeriliclent or Skewness f1 is zzro and the coefiicient of

g
kurtosis p 5 =TT = 4,2, lence tne losgistic distribution i:
2

lepioinuartic,

2.5, Orqcr Statistics

X_“n < x‘23n < sean ‘{k:n onen xn:n pe order statistics
corresponding to a rando. sauple fron scandard logistic distri-

bution witn density

-nx _ . T
£{x) =n---Sciiens 3 =2 X w1tnn=-/4_--.
[1+ %32 . 3
Tne provability density function of K h order scatistic X,,,n is
n! . k-1 _~nx ¥»-K -nx
Px. (x): """ A .'.’E...‘*.L.--l--—h-j{‘.i L- 'e..-.rl-ij --.._e.-}i.‘x-d
win (k=1}! (n-kx)' 1lre l+e ™ L1l+e
nth —(n<k+llax - ~f+1)
= -..-..'.’.....'. e (n k"'l’lx \1+e—-n‘x)-
K=1)* (n=k)-
L = 1’2,0.5, n . (.2020
Tae moaent generating function of Xe.n 1s
t
LY o n--.{- Ly +l nx
. t"xk:n i [ (n+l)n oo e ' n )
Bl e 0= i ROy e T iy ainer ax
r Li) r (n K+l) —o0 dee )
Tyn+l) £ t
N B{n—lw-l-l-+l,k+h)

I'{k) I'(n-k+l)
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A el Y (2.21)

where =hk « t < n (n-k+l) ,
Gupta and Snan (1965) have s.ao.m that tne 1oment generating
function of ktn order statiscic from stancard logistic distri-

bution is given by

n-Kk
7 "'l
tkt) = 'H'-(- -)\-|- -,. . .‘ “y
\k-ll. \Ad™ ey
n i =\ \ . \d-' 1
’ [1£ ‘jgo Sii,n, \;} ‘.‘-I‘E'J (k-1) J
=1l,,.2p~
25 F 3 ()P~ (2%07) 20y (ga1ytd
p=1ixl J=0 {Z5): no() (k=1]

vnera Bn = Bn(O) wita Bn(:{) as coeflicient of

n n xt

t by , t t e
----- in 2 B \x) ..'- - - > m v
n:! n=C n n: e-t-l

and S(i,n) stirlinz nuaber ol the first kind.

t
(ke 3':.) I {n-lk+l-— 'ﬁ')
E[ etx]="c.vq.n__ru...‘.'.r-‘...'
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" s t ] Lt
= L(k—l'P h') (1:—2-!- 'n ) ,,.(J_.!. i’t“? %.. B

Nne=K -/, t. t- . -
(-—l) LA 1t h‘, \L\_--n-[-l-p h:} s e t—l.'. -:IE-) S
t .
I T(=3

LK R I R it m s e s e wm

R
. - \nn)
\"1)n K (k=14 f; ). i cosee (n.g'. )

P E Y

(k=1) ' (a-k)!
where X(n)a X(x=1) soe (c=n4l)

(=1)7 ¢ o (—l)p-l(Zzp"l-ljnZP"l 2p-1
. 2 I ..........{.Z.p.).i.......--- g%(.h, _].-—?

C(k=1) ! {n-k)t p=l

[ n i. .3 i- j j . " e
D35 45, ) e Y sem);
. n-=k
v~1) ®* _ n i .. ; im3
e L L s et
- . n-n l!. = -

sP=l,,2p=1 44
w n i (=11 (2 -1) -
+2 % ¥ =L PERFREPRER 2P (3 (k1)
p=l i=1 j=0 (2p) !
- ) sty J+2p=1..
.LJZD S(l’n) \‘n'/ de (2-23)
Colleccing the coeflicient: of £L ana +2° from {2.23) we havz

(1377 (2r-)

* > e r s aae

. a cepiulesine .
2r=l ¥ (e} fnek)!
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and

r
x b S{i,n, +2 X z . S{i,n
by Theen SWIe2 B B s 25 Pa,2r25a 8000
{2.25)
..1)”‘1(225"'1 -1) B,, 0
viieire 2p = seasns s cae - R .
()
and by = (%) =)0 s 003 < i

.
. . A L th s .
It is easy to obtaia wmouents ol k™ oraer stacistic using
cunulant gencrating fuaction,
Tne cwaulunt pzenerating fuanctioan of ktn order statistic can

be obtained taking losritnm of (2.71) as

anl T{ceE)l +an [ rinsiele =53]
-0 P{k), =an [ Iin-k+l)] - (2.26)

Dilferentiating (2 .26) wita respect to t and putting t=0, we

set the fist cumulant
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5 Ky = i [ ¥(k) =¥ (n-kel)’ (2..27)
wiaer? UV(m) = é% L Enﬁ%ﬂ] .

Dilferentiating (2..26) with respect to t r times and putting t =0,

tae r® cumulant is given as
- -1 “lopy ooyt o1 '3
Keix . T F L ¥ook) ¢ (-1)7 ¢TT (n-kd)]
r-l
wlere ¢r-l(m) = 'ﬁ}Laf [elm)]
dm .
relit (17
n?
LT L) 3 -_~--lo----v1; jry 2. (2.28)
j=l (g+i=l)" J=l | g+n=k)

Gupta and sitah (19055) nave tabulatea wie values of first four
th et s . ~ s
raw noizents of k ordei stalistic irn a random sample of size n

rou a scandard logistic distridbution for n=1 to 10.

LY

If tne distribution Tunction of tine ktn order statistic from

)

scandard logistic distribution is I %, taen

k;n\
. - - TS T
dkin(“) + ‘In—k'{'l;n\ -u) - 1.

L1 taole No.l., Tae nuaerical values of ueuns and standard
deviations of order statistics frou staadard leogistic distribution

couputed dy
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Birnbawn and Dudwan (1963) are given for n=1 to 10, 15, 20,
50, 100 .

. ) . . ot . ot e s
The expected value aand variance of k™ order statistic in a
randon swmple Iroin logistic aistribution wita nean ¥ and variance

02 cal be obtained as follo:s :

. 2 . _ o .
Etxkgn/l-lsc PRIV OELszn/u=O, c =1 |
and

"fa.’.'i:xk;n/u ,02]=02 VaI‘[Kkzn/u=0, 02=1;:o
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Lfable Ho.l.

ilean and stmndard deviatvions of order statistics

candord legistic distribution

(28
el e e s w w e ow

K X7 S.DO.Tx, T
2 1 0 1.0C00
2 1 045513 0.6343
3 1 0 .£270 07374
3 2 0.0000 C.5262
T | 1.0108 047657
4 2 00,2757 0.5622
5 1 1.1456 0.7532
5 2 044594 0.5313
5 3 0.0000 0 +4900
6 1 1.25G9 07451
6 2 0.5973 0.5131
6 3 0,1333 04542
7 1 1,350C | 0.739%
7 2 G.7075 0,5012
7 3 0,221€ 0,.4325
7 A 0,00C0 0.4154
& 1 1.4295 0.7322
3 2 0,799% 0.4927
3 3 0.,4314 G152
8 4 0,1373 0.39186

S S A TS EE L WP B 0 b Rl B S el R A ST % S B 4 ST S A S P WA wrwemm A = LS WS
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n Tk CUEX,: sl
9 1 1,490k 0.7319
9 2 0.8782 0.4863
9 3 0.5232 0.4083
9 4. 0.2481 0.3760
9 5 0.0000 " 0.3668
10 1 145557 0.72%%
10 2 0.9471 0.4314
10 3 0.6025 0.4006
10 4 0.3340 0.3646
10 5 0.1103 0.3498

Source 3 Birnbaua and Dudman (1583) .
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ilode of k' order Statistic

ST P AP N i O s i oo, & s ol &

th

The density function of k" order statistic in a randowm sample

of zize n from standard logistic distribution is given as

(e
‘n N (n-k+1)x

P L A A -.....A.o;naa..-.--.-n.-. . _w(x(m

h (x
k,n /3 B{ic,n=k+l) [l+exp{- ; x}_ln-n-l

Gupta and Shah (1995) have given tiae expression of mode of o

order statistic, Tne mode of kt‘n order statistic can be cbtained by

differentiating h, n(::.) with respect to x and equating tne expression
bt J

to zero.
<h, --E.(n-k+1) -
.“.n_:_...(.f.?. e T WD o /3(n X( '75:{)
ox /35 (k,n=ic+l)
-.!t. - - -nu.nx
(n#l) € /3 7 ~(n-k+1) {1ee 73 )
[ ey
(1+e )
“b:\:,n(x)
reretem—s O
‘- - ;Ir-- X -— "TI“ x
2> (n-k+l) (e V3 +1) = (n4l) e
T
-2 x
> (n=k+l) =k e 73
43
D X = gn (n-l{+1 ) . (2.29)



from (2.29) , we see that the iode of cawple median is zero wnile
modes of tne minimum and maximum obzervatisns in the samples are
/3 3

3 .
-— ...T;... k“n n and o-;t-- 2" n I‘QSpeC'thGlY.

2.4. Relation witn other distributions s
Tne general form of probability denzity function of Perks

fanily of distributions-irita parameters a., . and } is

m -t Ax n =t AX -1
fx(x)=[ Eo a, e 1L 2o Pt © j (2.30)

In (2.30) taking i=1

at = 0 i'O.".' m = O,2’3..-.

@ =8
[ 28, if n=1
Bt =< ﬁo | if n = 2
| 0 if no= 3,4 peey
Tnen,
3, —-X
B
=X

= Sl M.y T B wme »

2
1+ ™)
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waich reprezents probability density function of standard logistic
distribution. We now uefine cnampernowne distribution. The

distrioution function of Cr.aapernowne variable T is given by

bg(t) =1 "":eL' tan™L { Si.??.l.m }, (2.31)
cos 8 +{~F")%

o
t >0, 0<K8<® witia to and ¢ as median and shape

parameter respectively, Taking liait of (2.31) as 6-+0

ta
Fp(t) _1--1-:--9-{-- 3 E>U . (2.32)
+

Differentiating (2.32) witn respect to t, tiie density function

is giVC'u as

a (38 ol
£2(8) == B e

t L1+ ~)]

After maling tne transiormation
T & i
() =e , we get

ey

B e 4 Bew.8 svm

[1+ e ]2

Py(Y)

-\r
,e3-

rme e e e e B L 00K oo.. 2.3
(1+e_y_)2 H Ly« ( 3)



(2.33) is the density of tiiez standard logistic distribution.
Suppose that continuous r.v. X has extreme value distribution witn

distrivution function

: ¢ . el T
P[X__(_xj=expi—ek‘5 );;B>O.

Tne fornr ol generalized extreme value distritution after introducing

an exttra parameter v defined by Dubey (1962) is given by

PLXs /1] =exp {~-78 exp [-(-"-‘-g-“--)]}

==k,
( A )} '

= €p { —e
wnere § =g + B 20 (13) .

Let thave an expouential distribution witn density function
P(t) =peP® (t>0).

The resulting compound distribution nas distribution functicn
is Yiven by
] - & ‘ - 3TN Y Y e
PLX S x]=p Jooxp {-ptileenp(-(39))i) 6t
o

r{1)

B RS S B S BeAAea . YW

- ‘- x . -
L exp 1-(--.'-?") ¥,

Lo e
~(55%)}]

(1+ exp:



wiiicn is distribufion functicn of.logistic distribution with nean ¢
and variance ~E§ﬁi W« Coparision between the standard logistic
distrivution and standard normal distribution is done witn the help
of distribution function undi ordinates at different values. They
indica®te that the tails ol standard logistic distribution are

longer than tnhnose of standard normal distribution,

Un the othsr hand in a coaparative study of the nature of
standard logistic distrioution and Laplace distribution with mean
zero and variance one, it is observed that the tails of this
Laplace distribution are longer than taose of standara logistic

distribution.

Tne table no.2 gives the figures cerresponding to the
distriouticen functicn and ordinates at daifferent values of the
varianle for standard normal distribution, standard logistic
distribution and Laplace distribution witi mean zero and variance

one,
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TA-LS H0.2

Z ; Standard llormal Variate,L : Standard logistic variable,
T i Laplace Variable with mean Zero and varjiance one.

s w e @ 0.0 A STTIEL R B B R 4 R P8 S TE ST TRWN P A A B A o LS Sl el T ke S P . A w——

Value Oruinate for T »dinate for Crdinate feor

of Z L T
X

0.0 0.3989423 0.4534498 0.3535533
0.1 0.39€9525 C . 4497712 0.3294167
C.2 0.3910427 C.4388403 0.3069278
0.3 0.3813873 0.4214739 0.2859743
0.4 0.3682701 0 .39c6478 0.2664513
0.5 0.3520653 0.3716492 0.248281

0.6 043332246 0.341842 0.2313126
0.7 0.3122559 0.3105517 0.2155212
0.5 0.2896916 0.2739654 0 .2008079
0.9 0.2660352 0.2430632 0.127C93

1.0 0.2415707 0.2186153 0.174326

l.2 0.1941461 0.1347812 0.1513364
l.4 0.1497275 0.1225597 C.1313788
1.5 0.1105208 0.0394956 0.114053

1.2 0.0739502 C.C642863 0.095C121
2.0 0,0539910 0.0457489 C.03859547
2.5 0.0285270 0.0271349 0.0095251
2.0 0.0135350 0.0159502 0.0562359
2.9 0.0059525 0.209325859 0.0454859
3.0 0.0044318 0.00779267 0.0423815
3.4 C.0012322 0.00378871 0.0319403

R S

P R X

R R S G S B A P W A AR AR - - e

s B WY EA B e emas

LTS



Z 3 Standard Normal Variate, L : Standard Logistic Variable,

T 3 Laplace Variable with mean zero and variance one.

PR F W B P CATREAR T e Ww Bell WD A F AR Ar 8 B R S At § WEmS 1 W @ oard WA S S W ST A W S Y SRS

Values of x Pz < x] P[L g x] P[T € x]

0.0 0.5 0.5 0.5

0.1 0,53983 045449731 0,5341343
0.2 0.57926 0.5397083 0.5659383
0.3 0461791 0,.6327749 0,5955712
C.4 0.65542 0.6738213 0.6231808
0.5 0.6914625 0.7123654 0,.648%9057
0.6 0.72575 0.7480576 0.6728744
0.7 0.75804 0.,7206844 0,6552068
0.8 0.78314 0.810583 0.71€0145
0.9 0.81595 0.8365008 0.,7354019
1.0 0.8413447 0.3598204 0.7534656
1.2 0.88493 0.8981246 0.7859777
1.4 0.919243 C.9268526 0.8142022
1.6 0.945291 0.,9479491 0.8387046
1.8 0.96407 0,9632026 0.8599757
2.0 0.9772499 0.97410E2 0.8784416
2.3 0.939276 0.,9848089 0,9016765
2,6 0.99553¢8 0.,9911274 0.9204703
2.9 0.9981342 0,99438316 0.9356718
3.0 0.998¢501 0.9956852 0.9400634
34 0,9996631 0,9979067 0.9548294

B Rl § P G Tl e, 4= FE e - R A

PR X e N e o L L B R

A A A — A S —
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2.5 Logizstic function,.

Tne logistic function is —given by

(2.34)

1
P(Y3 @y B) = o e
yhas P 1 +exp {-(a+ By)}

X o and X
1e'@ = oo £ oo = e — .
W <y s @ = =g B A

Thus P(yj a, B ) is also a function of wand o, It can be viewed

as distribution function of logistic random variable.

The straignt line transform of (2.34) witn a as tnhe intercept

and B as slope can be written as
T P
logit P = in (3)=ca+By (2.35)

P(y;a,B) «

Tne Giflferential equation of logistic function (2.34) is

with 2 =1=P » P

dapP
-a-fu = —ap(l—P) .

In bioassay the function (2.34) is taken as a model for true
probabilities of response at aifferent doses. It is discussed in

detail in chapter &4 ,

Lagistic function is also applicable as .a model in epideniologic

studies like case=control study of follow=up study. In follow-up



study suppose that study period of specific disease development

in an individual, disease-free at time t,, is from time t,

to time tl'Y is a variable taking value one if the disease develops
in the individual during study period and velue zero otherwise,
Then tne probability of disease development is a function of
indepenient variables xi,xz,...,xk measuged at to wiich are related

to disease development process. This pmobability of

{ Y =1/%, x,5000,%, } = P(X) ( say)
is modelled wusing logistic function as
. l 4
P(X) = re-reecaromenosm (2.36)
L+ erpie (gD }
wnere p'= ( 51aﬁ2’---3ﬁk)

.J.{."= (xl’ xzt--ka) .
Kleinbawn, {upper, Chambless (1982) nave used logistic regression
analysis to epidemiologib studies concerned witn quantifying an
association between a study factor (i.e. an exposure variable) and
a nealtn outcome (i.e. disease status). If there is a positive
association between the factor and the disease, those exposed will
tend to develop tne disease waile those not exposed will tend not
to develop it. Techiiques for fitting logistic models to data and

for making statisticel inferences concerning ratic measures of
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association (i.e. risk ratio and odds ratio) were also discussed.
Particular attention was given to conditional and unconditioaal
maximum likelinood (ML) procadures and specific numerical
applications were presented. Tne use of logistic function as a
model for auman gopulation grouth is re—examinec by Leach (1981).

He has uszseda the model

PS
Py = = e — (2.37)
1+ (= = 1)exp(-rt)
o]

where Pt = the population after time t

P_ = the asywptotic maximum or saturation level
of the population
P = Population at t =0

'r = growth rate constant .

1t is observed tnat the generalization of tne logistic function
fits subztentially better tnan tae model (2.37) for the population
of Creat Britain from 21801 +to 1971.

Genciralization of logisvic function as a wcdel for human

population growtn is
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A
F' =d+ “n-o..‘“.sm.‘,...,.,.,,w
t N ’
L+ (=57 «1) expi-rt}

0

wnere population at t=0 is d + LW anl saturation level is

d-"'xso



ESTL:ATIO; O PARASTERS OF THE
LOGISTIC DISTRIBUTION

3.0 ntroduction i

In this chapter different metnods of estimation of
parameters of logistic distribution from complete sample and

censored sample are discussed.

The metnod of finding maximwa likelinood estimator when
complete sample is available is described in Section 3.1,
‘Minimal suflicient statistic for tne family of logistic distri-

bution is obtained in tne same section.

In Section 3.2, wie method of estimation of tine parameters
based on sample quantiles is considered., It also gives review of
L, R, aw Wh estimators lor the location parameter, Tolerance
limits and confidence incervals {or the parameters are obtained in

3ection 3.3 and 3.4 respectively.

rietnod of estimacion of the parameters from symaetrically
censored and one sided censored samples using simple estimators is
described in Section J.5. Tne estiaators proposed by Plackett
(1958) and Gupta, Qureisai, Snan (1967) for estimating tne

parameters from censored saasple are discussed in Section 3.6.
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5el. dlaxipun Likelinood Sstir

L e
L.)‘
-. .-- -

Let X, sX;5400,X be independent random variables eacn having

L, o) distribution witn p.d. .

extpy= e (x=u)}
. 3
f(x; u » c) = S e . W — -/--nn.-- .y (3.1)
[1+expi~ -z (x- u)}12

- { X( =, mxmu{ ®, 0 0,

After observing X = X= (xl,xz,...,xn), tne likelinood function of
(4, 0) is given by '

n

S i_l(x ;=)
L-x-(ugo) = ( 0/3) e a/3
n . T . =2
n_Ll+exp{= 7= (x;- wli . (3.2)
i=1 ov3

Taking logaritams of both sides of (3.2)

- B T
= e et oy "™ WS -l.l —2 z R-n 1 - -y -u -
Ln Lx(u,o) n 9.11\0/3) o i (x ) 2 { l+expr cﬂ(x 1]

(3.3)
Differentiating &n I‘ic(“'O) witua respect to u and ¢ and equating

to zero, we nave
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d nnr 21'5
2 i L(ua) = <7

n -1
=g = ik [lmexpim -5i(xy =)} ] exp{= -=750x; -1}
=+ Fer(ne2 >.. L1+ exp{-‘-- (x, -u)} (3.4)
av'3 i=) ov'3
3an Ly(u,0)
—- S
1 2 1 L
o X F e : (3.5)

n 15 l+exp{-—€-- (x;~u)} 2

Now

an Ly(w,0) 1

S SN/ ¢ S | S -

5 - +°2-'.‘3 lfl(xl M)
n -l m \
-2 .'I.E‘.l"l + 2Xp{- 0/3 (x -u)}_| exp= -;-;;(xi-u,}
- (X, - u)
2/3 1
exp{vuw(x i) jeld
! SRE ) U4 S-SR | B
cv3 i=1

(3.6)
”
1+exp 1“""(): M)

i
_-—aoo...-v-s-Ono-—- = 0
L
expi{~= (x,-u)}=2
N SR Qi S
nizl o/3 1

} = 1l (3.7)
1+ exp{;%"(xi- u)}
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Thus in order to get tne mazimum liltelinood estimates, we aave to
solve equations (3.5) and (3,7). Antle, Kliimko and darkness (1970)
have snown that the likelihood equations nave a unique set of

solutions. Hence the WNewton-Rapnson method can be applied to solve

these equations,

s DU .
Let 0= (u,0) and 8(0) = ( u(0), 0(0)) be the first approxi-
mation to maximum lixelinood estimates. The second approximation

to 6 is given by

6(1) = 6(0) = D(6(0)) E-2(e(0))

wnere :
- 3fn Ly(u,0) dnly(u,0) _
D( 0(0)) = [._..."":J-""“", e s R e e J- -~ ~ ~ .
e (8(0)=(»(0),9(0)) ]
~ azL;:(u !G) azf.n Lx(l-l ’0)
B(#(C)) = e e e
"znan(u c) 2 L
i A7’ 2. N luagd
L ¢uJo

.2 I
90 o{0) .

This iterative procedure is continued taxing ktn step as

0 (k) = 0(k=1) = D( 6(x-1)) B L(o (k-1)). (5.8)
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We stop at pth iteration if

| 6“‘:3) - 6(1‘—1,3) | < E,j for j = 1,2 where g is the

desired level of accuracy,

We can start witn initial solution §(C) as (x, s) where

. .
X S =+ na g5y 45 .
Then D(8(x-1)) =

vhiere
n . n n (x -u(lu-l))
o e e -2 ¥ (1 gt A
U= SEys L el ek
dy = leem =L T (- (k-l)){""“{'q('k'-'l) ~-(-k-—1-))—}-~1- ]
2 i=l = e R A }
52 (ic- 13 1+expi (%~ k1)
L U(k- 1)v3

k
In order to cbtaira B( 'gﬂ-l)),\:c must £ind se2cond order derivatives

In Lx(u,c) witii respect o p and g .

of
Differentiating both silwss of (3.4) witn respect to M, we nave
2Zgn L (u »0) 2e? n ex')t 5 (%= w}
e m e s o o an A—— cevees SZo L. TS . (3.9}
su? o2i=l Ll-!-e*:p{ - 5 (5= w}]

Dilierentiating botan sides of (3.6) with respect to o, we get
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2
3 n L.J_C.ol »%) 2 . n e;:p{;;;‘*-(xi #)j~l1
e B B = 2 Y

0 l+exp{- (x,=u)}

o3 "4
2 )
.?.f_ n (x l-l) .e.x.p_i.g.‘/:..sx...i_).f_] + 2 (3.10)
- 300 i-l 02 ’ )

(L+expi-"— (x,- u)}32
av3

Differentiating (3.4) wita respect to O we nave

2
380 Ly(u,0)

_ nn o n n -1
e 2 - vy 2 iil [(1+ exp{~ (xi W}l
» exp {-= (x - u)}

cat n L Gan
37 1=l [i+ exp{*’;(x-u)}

G
Taen,
™ ]
LS P
B (6(k-1)) = vinere
b2y b22
3%n L. (u,o)
b ® T T ey

82nL(u 0)

= by = erestemmems Y,
2 o Xk-1)

2
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Y4
3 L_(u,0)

b = .-

Pt
5o = g

- 4w

36 ]ezk_l) ’

Thus maximwa likelinood eatisators of M and ¢ can be found by
th

iterative procedure ol desired level of accuracy with k° iteration
as
- b b.
-~ . » -~ . - 11 12
[o(k),0(k)]= {u (k=1),0(k=1)]= [d),d,] . (3.a12)
bo1 Py

But this method sufilers from spider webb efiect (see: Discrete
Statiustical rodels Social Science Applications page No.49-50),
Hence some times this inetnod does not comnvergze to the maximum

likelihood estimators.

We are interested in ¢ovtaining the maximum likelinood estiaators
of the following random sample generated from standard logistic

distribution,
1.4550166, ~0.3115273, 1.03015834, -0 4,301224,

=2.044C766, <0.7087509 .
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Suppose that desired level of accuracy

-E_ = (0.001’ 0000130
iiere,
8(C) = (X,8) = (=0.0687992, 1.0406104)

D(6(0))= [ 0.3707531, 0.0218486 ]

—9.8350563 , -0.1462927

B(6(0))=
-0 01&629'37 ? -1&.. 31“‘756 )

B -

Hence,

8(1) = [ =0.0637992, 1.0406104 ] =

-0.1016925 , 0.0010393
[ 0.3707571, 0.0218486]
0.0010393 , =0.0698686

[ 0.0376752 , G.0011412 } .

s o) - e(0)]
Since lezl) -8(0)| » & s we go to the next iteration.
612y = 1) = D:B(1)) BH(e(1)).

D(6(1)}= | ~0.00550U5, =0.0097009 j.



) M7.2510843 0.1261233 "
B(s (1))

0.2251233 -14,C23511

8(2) [-0.031124, 1.0417516] -

~0.1379319 -0.00124

[ -0.0055005, ~0.0097C09]
-0,00124 0.,0712945

. —

= | -0,0318956, 1.0410532 ;.

S le(2) - 8(1)) = [0.00C7706 , 0.0006984 ].

As | 8(2) = 9(1) | < £ , we stop caking iterations., Thus the
required maximum likelinood estimates of § and O are
- 0.0318956 ani 1.0410532 respectively.

Statistic for tne family of logistic

piinimal sufuicient

disctribution :

i mtte & " A ™ P

Consider tne joint ue.sity of sample drawa from L(¥,1) waicn

is given by
- .Iﬂ“ n 'I"“l-l n —
PE P, 4)) = (5 exp { 7 ;L (2= W}

n ¢ S -2
T 1+expi~ — (x,= W} %
& [ pim e (% }



40

Let IPO be subfamily of I vith by = O’Ui""”"k' AS per tneorem
53« in Lenmann (1983), we nave that T(X) = [Tl(x) ’Tz(x)"'Tk(x)]

where
- .
1+ e '/3 xi

[......... ..----....---J ; r=l,2,-.0’ k’
leexp{e ——(x,=n.)

iy n

Tr(x)a e n
i=l

is minimal sufficient for I% e It will be ainipal sufficient for IP

provided T{X) is equi-alent to order stavistics.

Tnat iS if X = (xl,ngouo,)(n) ] x= (yl’yzgoou’yn)a.nd k = n"'l’

-

tnen Trtgg) = Tr(y_) forr =1,2,..., n+l,

or
- St
. 1+ expi= = xi} - Lrexpis yi} _
. n [-‘---——--ﬁ Bt s s B R B &8 '] b4 . n [ WS The b g A e W .ﬂ. 0T —— J ’r=l,2’ - .n+1.
i=1 i=l leexp{- v (Y_.-L-ur)}

1 = (g )
+ expi- (x;=u,.)}

oo It is equivalent tc snow that

1+ du 1+ 89
11':1 oo S % —— fOP¢-¢1"‘ ¢n+l ;
1=1 1+ ug 1=l 1+ v;
i pid
where = Y B R
()br = e V3 r y U, = € v3 * !
n
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Both sides ol above equation nre polynonials of degree n

provided coefficlents of gbg on botn sides are equal.
n . n

If p =0, then % (i+u.) = v
& (i i) {1+ A

Hence,

suppose Ef-gbc, » then

n .
iny (EI ui) = i1=t1(£+ vi) for = gl... Enel *

T

1, o7

]

S0 that two polynomials in ¢ have same roots, Tnis means tnat xi’s
and y{S have tne same ordar statistics.,

dence T(X) is minimal suliicient for IF.

J3.24 iletnod of estimation bas_ on sample gquantiles

.- - e a -

Let xl,xz,...,xn be a random saople {rom a logistic distribution

witn distribution function !

1
F\XjHy O) mmmeberrertsmmmnmne ) o & X (o

1+ exp {7s—(x=4)}  uc

¢G>0 .
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suppose that x( ) < x(n ) Ceeel X(p ) are I sample quantiles in
2
a sample of size n {rom logistic distribution.

Let us define

n.
1
\j_ = —n— for 1 = 1,2;---, L AO =0 7\l{-l-:l. =1

o .
u, =2en {i‘:{'j: } ; l=l’2’..o’k.

0

i

£y = ‘i(l-\i) j f"o = fk-l-l

kel
Yo B O ) 1G9 Xy =X Amh)xe, )

[‘ (1-%) 2n { \1 —}-% _(1=% _4) 2n {"'_,;Ll'“ 1 1

kel [A (1~ i)ﬁ( ) -1(1..1 1) x(n.

-
f= £<—_-"o-.t L T R T R T T T T ey

1=l M7 Ma )

\

C = j (y=agg) ==y )P
(3 (2=3)4n {111; Fory g =y 5 2em {_5_..11]2
k+l

C —— 2 s i e @ e B F B o mwem—m A @ P Bl m R B d B B S dadn e R AR e W W s
=

2 ia Mot Ao

Ay
Co= k;:'l(l-x iy 1) [x (1=-3, )&n {1 i - l(1-- )An{1 ’51’3 }].
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Estination of parameters in three different cases viz., esti-

mation of ¥ when 0 is knowvm, estimation of 0 when ¥ is knowm

and estimation of bothu ando is considered
(i) Estimation of y with ¢ known.
0 is known, the optimum spacing of the

wnen the scale parameter
sample quantiles for estimating the location parameter ¥ is

obtained for a given number of quantiles., The general expressions

for the best linear unbiased estimator were derived by Ogawa

(1951) . These expressions are
(3.13)

po=TE
“l
of quantiles k and for fixed values af}i’s

for a2 fixed nuaber

and 62
*y . 1
var(p ) & ol (3.14)
Gupta and Gnanadesikan (1966) have sho.m that var({e*) is
i
ninimized at xi =T
For li = 'E_‘j.:i' »
(3.15)

&*Mau“l'%*%dﬂ=°l

for i -_-1’2,...’ kJ

£, = frim
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From (3.15) it can be seen that the spacing is symmetric and

Cy = (1""‘1"1 1) 1f u £, o l__1}

k+l ¢ kri
=BV T ualsn

W fguie 6y g Fouieny £ quy g=dy g B35 W 5)
K+l A g k+l A
Ly i fia W - E a5y

> k
T L
Kel 3 174

If k i< an even nuaber,

fiu ==y

f.u =-af,, uk

gz K=l -1

* f

* k2 u‘.S.:".?.
fﬁul{.:-., > 5
2

k - _
o.o z f u, = 0 [ (3.16)

_lJ.J.

If k i3 an odd nuw.aber,
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Ly =-fu

k=l kel Tkes Uxes
2 2 7T 2 2

kel ke,

k
oo 121 fiui = 0 , (3.17)

From (3.16) and (3.17), we have

i
C3—0 "‘fk if li=k .

In this case, u*::-}L-, and X simplifies to

“

K+l

£ = izl(l-xi-\i-l) {\i(l-li)x(ni)“xi_l(l—Ai_l)X(ni.l)}

kel (k#2-21) 4 Ly x

¢ AL Sk (i (Bre=i
=5 Tka kel ‘(lce1) G ¢

(ny) =41 Cheal X(n, )}
1 kil N g : : ,
= )3 Y (k+2-2i) {1(k+1-1)x(ni)-(.1-1)(k+2-1) x(ni_l)}

kel >
J.L;l( XJ_"'AJ__]_) (1-li -xi-l)

How » Cl

Kl 3 (x2-28 2

-

z
101 K (k1)
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1 k+l

2
= ) Re2a2i .
(re1)3 15 (e+2-21)

Hence the best linear unbiased estimator of the unknom

parameter u is given by

K[k X(nl}- 0 J+(x-2) [2(1{—1)X(n2)-1< x(nl)]

+(k—4){3(k-2)x(n )-z(k-l)x(n2)3+...+(-k)[o-k x(nk)]

B o= e A iy

v _5:12
i5 (k+2-21)

k
12 I i (k+l-1) X(n;)

;—
— u—— * % 9 @ - e e B u e -

- vkel; (k+2) [Bk +12=12ik=24 + Bk+12]

K
6 i§11 (k4l=i) ‘{(n.)

4 b omew srmenm,w b -.-l- - V
= T R(kR1) (x+2) . (5.18)

- * - -
Trhe expression for ap;roximate var(¥” ) can be obtained from

(3-14) as
. o2 (k+1)j
varw®) = F E T
I (k+2=21i)
i=1
2 (k-l-l)3

- % i a2 Gy tea?

, L(kel) (k+2) (2k+3)

R —— . o - ‘g-o-n A P P —
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_2_% (x+1)7
T n Eﬁ&l')'t("?{;})_

2 2

= 0= (k1)<
- n k{(e2) =7 » | (3.19)
Gupta and Gnanadesikan (1966) have obtained the exact varimrce

of u* as

2 pd
var(w) = 3 R B (3.20)
The Cramer=Rao lower bound for variance of an unbiased estimator

of p withg known is —Qé- .
1ln
tflence tae relative efriciency of the unbiased estiaator ywhen ©

is known based oa optiaum spacing of sample quantiles

Cramer=.20 lower bound of u*

S N R S )

ver (u*)

- K(e2)

(k-l-fl.):2

- [[1 = omgede =], (3.21)

From (3.21) we observe that with increase in number of sample

quantiles Kk, relative efficiency of ®* also increases, For

k=,
approximately 0.98.

the efficiency is 0.96 wnile for k=6, the efficiency is
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Illustrative Exanple 3.2.

Suppose that following are the observations in a random sample
from logistic distribution with standard deviation cne we want to

estimate mean of tuae distrioution using equal and unequal spacing

of sauple quantiles,

0.06€8 , 1,444, 0,8532, <0.3125, =1.4761,
-0.9175 , 0.6479, <0.2314, -1.,3012, 0.,3232,
1.4576 , 0.1257.

Tne parameter 4 ¢can be estimated as follows 1
Crdered Cbservations
~1.4761
~1,3012
~0.9175
=0.3125
-0,.2314
0.0668
0.1257
0.3252
0.6479

0.8352
1.4576
1.40644,
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(1) Estimation of y using equal spacing of sample quantiles,

Suppose we tale k=3 wita equal spacings. Then n,=3, n2=6,n3=9

X(nl) = «0,9175, x(nz) = 0,05€8, X(nj) = 0.6479.

Thus
' 6 )Eli (L~1) X(ni)

u — VTR et M S W W WA pans

60
= "0.05416 .

(ii) gstimation of ¥ using unequal spacing of sample quantiles.
Suppose we consider first tnree observations only to estimate

tne value of y.

_ ; - 1.. _ 2. o e -
5
Here ©C) = % (x =% o) (1-3 = 1)2 wnere A, =0 and i, =1

0. 1921296,

4 - -

X = J.E (L-y=x ) {4 Q= )x(n ) 4 1(1-\--1)’{&1_&)}
- -0o2206cﬂ2.

: 1 "1 -] 1

Cs = iil(l-xi-x )[x (1..x ,m{-n j_x (1..,\1 1)2n1 ..... - _-l,.}j

= « 0,2394423 ,



oC

| £-C
Hence s swmsc-e

= 000977574 .
Estimation of o wmen p is_ known s

Ogawa (1951) nas snown that the best linear unbiased estimator

of o wnen u is krno.m ou tne basis of kX sample quantiles is

‘.L-""' IJC *
R . = ..
o*= ¢ and  var(o ) = nC'Z .

»*
In this case, the optimum spacing of sample quantiles for ¢ can be
obtained by maximizing CZ' But it is not possible to solve tne set

of equations

'dCz
rewee =0 3 12125400, k
3y

explicitly for & .

Tllustrative Examnle 3.3%

———— & e ey e

A random sample of 12 cbservations was generated from standard

logistic distributicn. The observations were found to be

—0.9994325, 0,2006645, 0.4411288, =0.452088,
=0.0884015, -0,493651 , 0.9563355, «0.2934264,
0.2b66161, -0.52 0708, 2,1456726, 0,3656932 ,



We want to estimate the value of tne parameter 0 on the basis of
this sample.
The ordered observations are 3

~0,9994325, «0,5207088, «0,493651, ~0,4520285,

~0+2934264, -0,0804015, 0.,2006645, 0,2463161,
0.3656932, 0.4411288, 0,9563355, 2.1456726 &

Let
By =1,mn,=7my =11
- 1,
Al =l/12’ 12 =12 ] 13 = 12
4 ~ Ay 1)"(n )1
Y=Z-——--—--o.-o-oo..-...- S W - Bt B GRSA S APt S P EEETRrw-aa ¢ ...-..“m—n-—-'—
=l =i

= O, 6917395 .

[3@=2)en (1-%—-) =% (1= 5)en (1"l -~)4

2 RS e B S S § e T SRS =i Geldede $ ST 8 Thamw 4 fueker . B AR B W bab S s G wEES

02 = N

= 0.,9765202.
S 0= -
2

= 0.7083719.
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Estimation of p and o

In case botn tne parameters ¥ and 0 are unknown tnen the

FPRTITE® estinators given by Gupta and Gnanadesikan (1966) are

R e &
Clcz— 03

and

C.Y - CX
0 = s D

2

C

Also var(y*) = %= caecf o

n ~ ™ ~y
ulbz u3

C

* 0 1
and var(o) = -y -C-E-...z..
1°2- &
2 C
Cov(n*,o*) = = »f:l- _-H_j,..,z_- .
C,C, -
12 03

It is very complicaced to obtain the optimum spacing of sample
quantiles as the meinod of minimizing the generalized variance
involves tne simultaneous eguations which cannot be solved

explicitly.,
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Illustretive Jdxample 3,43

The observations given below are in a random sample of size 12

drawn from standard logistic distribution.

0.0725934, 0,7747002, <0,9388369, 0.,0952855,
=1.5669434, 0,2363472, <0.8796116, =-0.388009
1.2568196, 0.8c35079, «1.9787879, 1.196125S

Ordered Observations 3

. LR R Y - s Fe v

=0 388009, 0.,0725934, 0,0952855, 0.2363472,
0.7747002, 0.5885079, 1.1961259, 1.25858196,

Wwe want to estiuate the values of y and o
Let n1=2. n2=7, n3=10
1 A 2
h=3"2=m"3“2
K(nl) = —105669434, X(nz) = 0.0952855,

X(n ) = -1,1961259.

3
X = - 0,0600931
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= 0,9036968
= 0,0172654

C - C.Y
Tl .....g..

a O
W

= = 0,3854336,

R Ko 1

C]_C2 - (33

= 0,769008 ,

L estimator for location parameter u:

Lehmann (1983).discusses L, R and W estimators for tne
location parameter u. Let xlm, xzm,...,xmn be order statistics
in a randoan sample of size n from logistic distribution with
distribution fuaction #{x; and density f£(x). An estimator of tne
form igl ‘Ji n Xi n witn igl Win =1 is called L estimator of
the location parameter y , we shall denote it by ﬁL'

In oraer to find asymptotic distribution of ﬁL, suppose tnat

the weights are specified by means of a probability distribution

A

A defined on (0,1) witn density a(t) and W@ k(n+l .
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£(x)
£(x)
and A(t) is a functioiu with

Define () = =

It can be shown that {See 3 Lehmann (1983), if / is symaetric

about ¥ and A (t) is symaetric about 1.

3 tiien

£ . KPR ) L
/-n ( J_Elwln xi;n— Of A(U.) £ l(U.)Clu) - NEOaUZ\F,\)_;

1 1
waere 2, = [ 2%t at = f Alt) a)?,
C 0
Further, the variance o (#,\) is miniium winen

1.-_'_ -
A (6 =L Y 1(t),

a s se s v

_l: Y(x) £ {x)dx

Tne L estimator corresponding to A o(t) will be denoted by ﬁL(O).

for logistic distribution,
Y(x) = 2 f(x) =1L and Y(x) = 2 £(x)

. »
W 718} = 2t(1-t) .



o ln(t) is proportional to t{(1l-t].

i i . . .
Hence W, a« oy (1~ 'n'+'l') minimize the asymptotic variance,

If A(t) is taken to be tne density function of uniform

distribut%pp_.{.ﬁ l-k) i.e. . A(t) = '1‘-'12'!&' 3 k< t< 1=k tnen

~ R et —_

uL becommes equivalent to the trimmed uwean with k observations

censored from each end {(Dztails are in Section 3:5.)

ooooooooooooooo

xjk = ..o'?.. L N T J S_' k
j =1’2’...’ n
k =l’2,.o-] .

n{n+l)

There are -~ '2" s values of xjk- Suppose that q‘.n’ dzn’ "sey %zn

are non-nevative conscants., I we assign probability

dg-{!:—;j) tn
= 5

ceien to XJK, tnen
.14,
i=1” i:n

Wk

median of tals prob.bility distribution is c¢allea Rn estiator.

A
we snall denote it by uRn. In order to obtain an asymptotic
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A

distribution of #, define a non-decreasing function R over

, n
(0,1) as
2\1-t) = R(t)
and
ALy o AL,
di: = 2 (An+l ) - R 2n+1)

It can be snown twnac under regularity condition on R and ¥,

L .
va (Rn - M) - o,oz(F,R)J

where
12
, S R3(t) at
o o]
0 (M,R) =+~ e — s oy
[ f R [# (x) i£2(x) dx]2
b corresponding to R{t} = Y[F1{t)] to be denoted by up (0)
n n

is asympcotically efiicient,

()

If d-. = l fOI‘ i = 1,2,-..’ n’ tnen u% iS median Of

s.g“’ll values of xak since the weignts are equal. It is callea

dodges-Lenmann estiusnators or wn estimator, We snall denote it by

le ]
n

For logistic dustribution witn distribution function F,

R(t) = 2t-1,
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’ .i -I-_l _) 21

. di: 2\"2 :'+]" -—] '2""]"' + 1
2 o .
...... 1 .
; i for all i

de observe tnat di'n ig independ=nt of i.

= e 2- o" -1
wjk ni{n+l) ? JLK
j = 1’2'000’ n
l’[ = 1,2,..-, n.
Tnis means thzt to ecacn value of Kjk equal probability nlnery
is assigned. Thus up (G} and uy for logistic distribution are
“ n n

tne same.

In case of loéistic disctribution absolute efiiciency of
ﬁw is one and hence ﬁ% is the best possible estimator,of A\ ¢
Asygptotir efi{ieiency of Sﬁn witn respect to X is 1.10. '
[See: Lenmana (1933), pa_e 384,. Taerefore absolute ef:iciency

of X is 0.,9090909,

Illustrative Example 3.5.3
Consider example 3.2. We are interested in finding numerical
values of uL(O) and u; (0) estimators of tne location parameter u

n
of logistic distribution
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L - estimator [w (0)]

"‘co)= E‘l W, X where WV . (1 | g
L iz1 in “iin in % nel N+l
o’ "IEO) k 21 n-l-l (1~ n-l-l) n With k= constant of
proportionality.
n
2
i i
3 ko # i=l ", 1
iilwi‘ =1 D> +1[ El e+l i =1
=> k(n+2)n = 6(n+1) .
s k=) o senoasy |
nya+2

i Weo = ( 0.0027472) i (n+l-i) i LA
1 0.,0325664 11 0.0804384
2 0.0604334 12 0.0329664
3 0.082416
5 0.109388
6 0.1153324
7 0.1153824
8 0.109883
9 0.0983992
10 0.082416
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R, and W estimators ( ¥ Rn(O)ﬁ_a_nd, _uwn);

t

p& \0) is median of probability discribution of ijk with
n .

M - -297- - = -J'- g
T3 = 5(ne1Y = 75
iere 1y (0) = u:‘, = 0.0668.
n n

Comparison of sample mealan with sa

Let X be a continuous random variavle witn density £(x) and
distribution function F{(x} = . from theorem 3.2. in Leamann (1983)
the efliciency of sanple median x with respect to samgle mean X

is given as

1+f2(0) 6= wnere

e, L\ %
X X
02 = Va.r(X) .
: 2
< e, _ (standard logistic)m -3y - 282

X, X

waile e, _ (standard normal) = 0.637.
X, X
Tnis indicates the facc tnat the wmedian of a samrle drawn {rom

standard logistic discribution is relatively more efiicient tnan

tnat in case of standard nor.ial distribution.,



3.3 Tolerance Limits

An interval (L(X), U(X)) is said to be a ¥ probability tolerance

linit for proportion g if

U(X)
P , 0
[L(g[;f(x ) dx 2 g ]

= P{[ F(UQ) ~ FILEN] 2 pll= 7 .
One sided lower (Y,g) #o tolerance limit L(X) is défined as
P{[ A (p(X)) €1 = pl}= v,
Similarly one sided upper (V,B) tolerance limit U(X) is defined as

PIFUD) 28] =Y.

One sided tolerance limits for jogistic distribution s

Suppose that L(X) is a lower (Y,B) tolerance limit

Pl F(LAX) < 1-B) = v
or p[ LX) ¢ F~t (-p)] = .

o PLFL Q) 2L(n]=Y . (5.22)

The distribution function of logistic distridbution is

O

o3

(x=~#)

l+ e
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V3
:-_-). X = Mok eoe 0 %n (]-iﬁ"ﬁ-)
From (3.23) we nave

F-l(l"ﬁ) =)+ ‘/3‘,;2“ in ('1—5‘?‘).

In particular if ¥ «0,0=1

gt (1-a)=-?m(1—;ﬁ).
Hence,

F"l(l—p) =¥ + OF;’l(l-B) .
Thus we nave to find L(X) sucn that

Plu+075 (1=p) 2 LX) =v

Let and G be mel.e,5 of p and o respectively.
Def ine

0 = a0 FH0-p))

Y T S Y
-~

g

which is a pivotal quantity and t‘r such that

(3.23)

(3.24)

(3.25)
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P{T(X) < t? ]l =v

= PLw +oF;1(1-3) 20 - St\b =y & (3.26)
fFrom (3.22) and (3.26)

L(X) =i~ 4. (3.27)

The values of tolerance factor tY are tabulated for different

values of f. Similarly by symmetry an upper (y,8) tolerance limit
u(x) is

U(X) = i+ & (3.28)

5.4+ Confidence intervals for tne parameters of the logistic

" - - - - ——

distribution 3

One of the forms of logistic distribution function is

IO TN S (3.29)
iuad) = (&)

where

Suppose that i and 5 denote the maximum likelihcod estimators of u

and p respectively, Antle and Bain (1969) have snown that for any

given n,
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(B-u) A A (W -¥)h
by ===~ , B, = -g- , A = -

are pivotal quantities.

Antle, Klimko and Harkness (1970) have obtained exact
distributions of 4 , B and A for n = 2 and estimated by simulation
for n=5, 10, 20 and 40. The consiruction of confidence limits for the

parameters is based on these distributions,

Confidence limits for ¥ vmen B  is known s

- % F R T w—emmy = &

Let H* be the maximum likelihood estimator of U waen g is
known. The distribution of #"is symmetric about M

"~y
The critical values for uﬁ)_ﬁ are as follows :

cumulativel probability

- e - ——

0 .r9_0 0,95 0.975 0.98 0 .'99
2 2.25 2.96 3.62 3'82 4.1}3
5 220 2,87 3448 3466 4.23
10 2.22 2,86 347 3.63 4,13
0 2,22 2.85 345 3.61 4,03
LI-O 2. 22 2.83 3039 3.53 4-05
o 2,22 2,85 3.40 3.56 4,03

Suppose ‘S"l,a is such that P { Ar'l < Alfl’a } =a .
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* - ' A ' ! '9 - -
oo P[ An,I__%_ <A< An;l_.% }J]=1-a
~ 9
i-e. P -A' ( u -u /_ ' " ' = - '}
[ N, 1~ _%_ ( B Wn < An','j_.. %] l-=q0

Hence 100 (l1-g ) percent confidence interval for m is given as
(ﬁ*- -% - A*"' £ A' . .

Il1lustrative Example 3,6 :

A random sample of 10 observations was drawn {roix standard
logistic distribution, The observations in the random sample were

as follows ¢

1.3598546, =0,3736968, ~0.928799, 1,071985
-0.0691€1 , 0.4379852, +0,037858, 0.876197
0.1989784, «0,6051€74 .

We want to find out 95 percent confidence interval foru

assuming that p iz known, The maximum likelinood estimator of u

~

u*;:= 0.01930318 .

Hdence 95 percent confidence limits for u are

(<0. 5855973 , 0.6242035).
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Confidence limits for M if 8 is unknown &

In this case the confidence interval for g can be obtained by

s , H-u
using the fact that the distribution of ( 3 /A is symmetric about

zero and using critical values given below 3

Critical points for the distribution

of A= _(_u.ﬁ-_u)/ﬁ for logistic distribution

Cumulative probability

-‘aat-n]-—_-_- e— 4w — I

n o.r9-o 0.95 0.975 0.98 0.99

6.3 12.8 25.7 32,2  6hub
5 2.9 4.0 5.0 Sk 6.7
10 2,50 3.29 4,07 4,30 5.06
20 2.34 3,06 3,67 3.87 445
%0 2.5 2.93 3.54 3.70 l4,19
o 2.22 2.85 3.40 3.56 4.03

Let A, be such that P{ A, < %’a] =

* A 100(1-q) percent confidence interval for u is

~ -~

. 54 B '
(=S, g Frtmbneg) (3.31)
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Illustrative example 3.7:

The following are observations in a random sample of size 10
from standard logistic distribution, We are interested in finding

95 percent confidence limits for ¥ assuming that botn mand $ are

unknowne.

1,4550166, -0,3115278, 1.031834, -0.301224,
=2.0440766, -0,70875G9 .

In section 3.1, we have obtained

i ==-0,0318956 , ¢ = 1.0410532

~

- /3
B e e = 0.5764478.

dence, 95 percent confidence limits for u

are (=0, 7737284 , 0.7101014 ) .,

Confidence limits

e SR

for p_witn U unknown $

P = O

The distribution of -%— is not symmetrie¢, The critical

I e piven below i
points of Bn- 5 are g



Critical points for the distribution

of —g— for logistic distribution

n T T dmulative probability

T . Ay b e A TR s P e B

- ko

P ared L P S M SR e #

0.01 0,0a 0,023 ¢.05 .0,10 0,90 0,95 0.975 0.98

2 0,01 0,02 0.024 0.049 0,098 1.36 1.66 1,94 2.03
5 0424 0,29 0,304 0,367 0,454 1,36 1.53 1.66 1.75
10 0,436 0.475 0,492 0,551 0,626 1.28 1.45 1.52 1.55
20 0.583 0.623 0.640 0,689 0,745 1,21 1.29 1.36 1,38

. . o Y ek L N . Y S I e P ot W S D A i B " W e em——y—

Let us take Bn,cx as the upper a ~percent point of the distribution of
B, i.e.

P[Bn<Bn,a] = d e

Then a 100(1-qa ) percent confidence interval for g is

(b, B (3.32)
Bn,l"-g' Bn,%

Illustrative Example 3.83

Suppose that following are the observations in a random
Sample drawn from logistic distribution with mean zero and variance
one. We have to £ind out 95 percent coniidence limits for parameter

¢ with known value of o which is zero,.
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It is found that maximum likelinood estimate of 0 =0 = 1.0335565

g vz
b= ."_1_“_5_ = 0.5697556.

Hence 95 percent conlidence interval for g is (0.3748392, 1.1580398).

This means that 95 percent confidznce interval for o is

{0.6799712 , 2,1007241) .

3.5« Estimation of paramete

Jlozistic distribution

- L2

of 1
from symmetrically censored sample and ene sided

o R .- --v - wew— W

censored sample

Let X n? Xosnree Xnn be an ordered random sample of size n

from a logistic distribution with distribution function

1
F(xjuy0) 2 —-=-m - — .

1+ exp -;—}t;-(x-u)}

Suppose that 9 and q, are proportions of observations censored

from below and above respectively.
Simple estimators for symmetrically censored samples

+shen a sample iS5 symmetrically censored, Cll = q2 = -Irl— where r

is the number of observations censored at each end. Let

' ' ] . i ization
Xy :n? *¥2:n seeesRpen denote the windsorized sample. In windsorization,
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sample is obtained by replacing the censored extreme observations by
the nearest available observation.

Hence,

Xiin ™ Xqdgn O lgigr

= X

{n for r+l<{ig n-r

Xiin
] -
Xisn = Xnerin for n-r+l { i {n.

The general form of the simple unbiased estimator of u having
efficiency nearly equal to that of BLUE of ¥ is proposed by
Engelhardt (1975). By trimming we mean the removal of observations
at either or both extremes with equal weights assigned to the

remaining observations. Thus a simple unbiased estimator of M is

given by
n'ft x|
. istsl L3R
L ] (3-33)
n- 2t
where t is the number of observations trimmed from eacn 1 end of

the sample, Tne mumber t = [n 8] is determined in such a way that
the asymptotic variance of the estimators of the form (3.33) is
minimum, The optimum values of § for different valyes of Ql and q2

have been tabulated.
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If 9 =9, = q < 0,11, tnen thne optimum value of & = 0,11.

On the otner hani when ¢ =9, =q> 0,11, §<q.

As ¥ is linear combination of order statistics, var( h } can
be computed and compared with that of BLUE, The asymptotic effici-
encies of ﬁwith respect to BLUE are obtained by Chernoff, Gastwirth
and Johns (1967).

In this case proposed unbiased estimator of ¢ wnich has

asymptotic efficiency quite close to that of BLUE cf ¢ is

’ (3 .34)

vhere kn is unbi-sing constant and m is median of complete sample,
E(C) =0

> E{ 3

i=l

Let n=2p and n be an even number

o onk, ' :

X +X '
=E{[—9—°-’-‘-2-P-ﬂ-'—’3-x.lm]+

EEl . + EEI
[ == 2 =B x'2=n] F o eee
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! '
[ fgz,n.:z: - RAlin - ﬁ‘.n_;. .)5)."'.1...3.2 ] Fens

] &
Kol * L X000 -

X' + X
! pin +1l:n
+ [ xnm - __2.1&’ ]}

E "'x:'Lan - x'2=n T oeee T xg.)zn + x;')+l= Fooot xﬂ%ﬁ}

- [ue o (1,m)] = [usoul(2,m)] ...
...[U-lnalli(p,n)] + [I-I-I-Ull'l (P'l'lin)] soe
ton "|'[ H¥ Oui (n,n)],

where

u:'L(i,n) = mean of 1™

order statistic from standard
logistic distribution

i= 1,2,.0-’ e

-.o kn = - -Igl- nz ll' ( i;n) . (3035)
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nk o= E{[m-}dlml-l-[m- X'Zm] +oaat [m-x;.n]

+ [mem] & [ x;'>+2:n"m] oot [Xllrun -m]]}
==~[u+ oul'_(l.n)] = (¥ +oui(2,n)]- . [u +°u:-|_ (pyn)]

+[u+0ui(p+2.n)] caet LM Wui(n,n)]

2 '
oe k = "'n i§1 ul(i!n)

n
e
2 .
=—-E i?—d l-&(l,n) . (3'36)
From (3.35) and (3.36)
(5]
k 2 3 M'(4
n = o= n i& 1 ’n) » (3.37)

where [-g-] = largest integer not exceeding -‘% e« The values of %
for n = 10, 20, 40, 80 and « are tabulated ror different values of

%, and Q, by Engelhardt M, (1975).

Illustrative Example 3.3 ¢

The observations given below are the observations in an ordered

random sample in wanicin ene observation is censored at each end.
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-~ 0.7865574, «0,6921597, -0.6451308,
~ 0.4598864, 0,0573899, O 3944624,
0,6338744, 0.7119401 .

Here

-

9, = & =0.1, t=[n é6]=[11]=1

k = 0.5894 , m = 0.,2012432 ,
?
35 Xin0
& fi= rem——— = - 0. 0982584 .
10 °
) Iy Ixi:lO + 0,20124321|
c = e - —ral v et
5.894
= 0,99760749915.

The above random sample was in fact taken from standard logistic

distribution,

Simple estimators in case of one sided censoring :

Suppose that S observaticns are censored {rom above. In this
s
case ql =0, q2 = = q (say)
xl',n, xém,...,x;lm denote the windsorized sample.The simple
unbiased estimator of © with efficiency nearly equal to BJ.L.UsiZe

given by Engelhardt (1975) is
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rﬁ- '
12 Xl

nk_ , (3.38)

c* =

where kn is unbiasing constant,
In this case the simple unbiased estimator of u wita asymptotic

efCiciency nearly equal to BLUE of ¥ is given by

»* ~ »*
U = I-l.b + cn g (3-39)
where
n-t ,
- i=¥+1 xi:n
b !
ne-2t

t =[(néj with § as triaming fraction and C, is unbiasing constant.
E{vw'} =u
> E i'?.lb * Cncr*} =u
= E{f )} +0C =u

Fmu
- E( -

n
How
(ne2t) 0. =Z° X'
e v =
b jote 1D
Ne=s~1

= £ X, o+ (s=t+1) X .
i=st+l isn xn sin
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B o=H  nNes=l

. - _b___'__ v, .
o (n=2t) E(—2g~)= i=§+l W (i) + (s=t+l) Hi(n-s.n)

vhere ui (i:n) = mean of i-tn order statistic

from standard logistic distribution.

o C, = -(H:%?T—[zzg:i ﬁi(i;n)+(s-t+l) q{(n—s:n)] . (3.40)
Tne values of C_ are tabulated for n = 10, 20, 40, €0 and « at

q = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 by Engelnardt
(1975). Tae values of § are selected in such a way that tne
asymptotic variance of (3.39) is minimum. The values of § are
provided in the table for @; =0 and 9, = 0.0 (0.1) 0.9, If

1
q £ 0.11, tne best value of & = 0,11 like symmetric case.

Illustrative Example 3,10 @

The ordered sample of size 20 from standard logistic distri-

bution in wvnicn 6 observations are censored Irom above is as follows:

0.7720175, =2,0914868, -1.5531182, «0.8350532,
-0,6322761, ~0,545905, <0.3967889, -0.131908 ,
-0,1245316, =0.,0719511, 0.0164528, 0.0385425,
0.1664982, 0.2744932, — -

— —— —— -———
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q.2 = 003 3 kn = 0.5347 ’ 020 = 0.0614 F
5 IX 0 4
. 35 1Kot 0277491 |

) T B B P A P TS s S A M St

Q
!

= O. &9"’2048812 ‘a

t ={né] =((20) (0.14)] =2,

¥t = = 0.13492962203 .

5.6+ Estimation from censored data s

( Best Linear Unbiasad Estimators for ¥ and ©).

Gupta , Qureishi and Shah (19€7) have constructed linear
unbiased estimators with minimum variance (Best Linear Unbiased
Estimators) for the parameters of logistic distribution based on
ordered observations in the samples with sizes n = 2, 5, 10, 15,

20, 25 for complete as well as censored sample cases,

Suppose X1 :n® Xointee 2 Xn:n are n ordered observations from
logistic distribution with mean ¥ and variance 02 given by density

function
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exp{- —xs(x~ 1)}
fx; ,9) = -..-...........----..___._

3 {1+ exp[- ';'/'g(x- w) )2

With «® {X{® , e {p <=1 06>0,
Then the best linear unbiased estimators for ¥ and O - based on

n.- - r observations

xrl-i-l;n < xrl+2;n < eee & xn-rz’f‘ where rl

observations are missing in the beginning and r2 observations are

missing at the end are givea by

2 .
ﬁ = )X a. X. (3 .l}l)
sn “in
i= rl-l-l
n-r
g 2 (3.42)
1

The coefficients a,., and b, can be obtained in such a way that p

and & will have minimum variance in the class of linear unbiased

estimator's e

2
E[ij"l iin in]="
1
n=-r
2
> (L3I 8., lve oy (im)] =u
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n—r ”

' DY ayp=tad T ! (1:n) (5.43)
o = a,, in) =0 3 .43
while |
n-r2
. (i-.—rz-g.]_ iin Xan) = @
2
n-r2 n_rz o
Tnus,
n-r'z n--.r'2 > ) (
z b-. "-=0 and 2 b.. n ign = 1. 3.44
i=r1-0-l 1in i=r1‘|'1 i:n 1 )

We note taat (3.43) and (3.44) are necessary conditions,

Thne estimators i and 6 can be written down in the matrix
notation using generalized least square tneory by Lloyd (1952).

Under the set up described above
E(X) =P 8 where

' .
£ = (xrlq-lan, ‘irl+2;n""'xn-r2:n)'



u'l (r1+1=n) -?
Hi (ry+2:n)

. L]
»
)

v, (n-r.in)
1 2 ,
— \n-rl-rz) X 2.

The least square estimates are ziven by

e F-&'T X
0" = =
( O") t ’ (3-45)
L TX
where
V-l(l =-g1) an

r -— [ A Dl I LT
-—

Fa
A= Determinant of (P“.’”l P)
= (vt (g vlg)-(avtg?,

with V as fae variance-govariance matrix of n=ry=r, appropriate

order statisztics.

Tne estimators of ¥ and @ given by expressions (3.41),(3.42)

and (3.45) are equivalent,

Tne table of variances and covariances of order statistics in

s D,

sanples of size n ® 10,(5) 25 and table of coefficients a i:n

i:in
for voth complete and censored samples for n=2, 5, 10, 11, 15, 20,

25 are given by Gupta, Qureishi and Snah (156€7).



Lllustrative Example 3,11

The following are observalions arrangea in an ascending order

with smallest observation and two largest observations missing in a

random sample drawn from a logistic distribution.

Ve snall £find out tne best linear unbiased estimator for ¥ and o,

e - B e AP N S

P N et W W W S -

Sr.No. Ordered Coefficient for Coeflicient for
(})c‘r-aser'vation 3 4n Bi.n
in
1 — — —
2 -1,2281979 00420 =0 ,2524
3 ~1,0496148 0.0528 -0.1236
4 -0 .8041016 0.0697 -0.1069
g -0 . 3964635 0.0331 ~C 0842
6 -G« 2948933 0.0929 -0 ,0576
7 =0.032913 0.,0990 ~0.0286
8 0.1876775 0.1014 - 0.0016
9 0.2€90597 0.1000 0,0316
10 0.35218355 0.0949 0.0604
11 0.5588153 0.0880 0.0865
12 0.826016 0.0783 0.1084
13 1.1286019 V0L 0.3649
14 - - -

- Biem s .

. Bk P adn o Y P Sd A b AR

p——

W aR W e AT E N A L 8" el i Ve A ek o P S EP————
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Tnen best linear unbiased estimators of u and o are

B o= 0,075064 , & = 1.1520245 .

Plackett (1958) has discussed tne problem of estimating the y and o

based on K successive variables

Yu < Yael € eoe £ Yo where "v = Uskel

from logistic distribution with mean Mand variance 02 .

He obtained least square estimator as

-*
0= [ ] = (arvt )t a vty (3.46)
where
1 1 1
A )
- Y =¥ Y L q-u Y, ~u
E( _u"&""'), E("I:l*g. ),o..,E("%'_")
y'= ‘: Yu' Yu+l ’-ou-’!v ] .
V = Variance=covariance matrix of m
‘ , Yoor o Yy ¥ Ly~
Cowitnm = . g TS """_TJ‘- .
g Y .

Further he replaced V by syminetric matrix W as V 1s very difficult

to nandle analytically,.



where

p. = F { E(""é'-—)} ’ l=u, U+l o, Ve

and

Define Py

P qu_-t_-_ ST VL
LT s

u+l P!
fﬁg;k.ﬁuﬁﬂ;-. veer gl v ]
fun url M

.l:l 'loocnooic pq
fv -

Then unbiased estimate of 6 is

¢ = (A WAL oA

-1 y with

u+l §u+l © .
u+l Cue2 die2 K
0 . ’ Cv-1
0 . c-L'v.r-ll.

kxk

(3.47)



where
C., = -—-.-(-.p.i.tl. pl'-l)
1
and
d, = Ty lia
i - -
isel ~Ps

Maximum likelihood Estimators of the Parameters of a logistic

Distribution From Censored Samples 3

Let }&'1"'1“1' X 4oin 0000 xn-rzzn be an ordered sample of
size n from L(M,0 ) distribution from wnich smallest r, and largest

r"2 values are censored, The likelinood function of this sample is

v r
— .-'-n‘.- L " q b 2
Lr]_.r2 - ry! :{" (xrl-l-lcnn {ij;ﬂf( :n)} {1+ (‘"n-rzm)}_
"T2 g (x,.) +r, in {15 )}
+ 2 inf (x,,. ) +r, n s .

=4n Dl=gn Ty =gn r,!
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¢ =T
n-r, n exXply A (x -¥4)}
+ 2+1 ln[og - ——- - ]
1 {1 + exp{- (x-u)}]2
. c 3
-I-I‘l R.nF(xr‘_Ln) + r ﬂ,ntl_p(xn 2 1}
= n-nn:_ m.- I‘l! - Ep rZ! -+ (n_rl 5 01;3_
ner., 1
+2 1 R,n{l+exp-'—-: (x—u)]}
i=r_ +1 a/3
1
N~-I'
2
- lj. +1 7 (X;;p=¥) + 1y in F(xr #isn)

* r‘z an i l'F(ﬁ-rzsn)} .

n (%, .~ u)
Put  Z. moeendD Tl ond F(Z.) m —ememeem—
* o /3 l+exp(~2 )

<o Lrl,r =2n ny —gnryt =2 e (o-ry

2
Ny nNer
+2 12 inF(2)= I 2Zo+r MF(Z, )
i.-.-rl-l-l l-rl'i'l l

+7T,4n f1- F(zn_ra)] . (3.48)
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The likelinocod equations are obtained by differentiating (3.48) with
respect to ¥ and ¢ and equating those expressions to zero. The
maximum likelihood estimators for u and ¢ can be obtained by
solving tnese equations iteratively on an electronic computer.
Harter and Hoore (1967) have obtained asyuptotic variances and
covariances of the maximum likelinood estimators and tabulated
them for censoring proportions a9y = 0.,0(0.1) 0.4 from below and
3, ==ql(0.1) (0.9-q1) from above, They have alsd found out the
mean square errors of the maximum likelihood estimates for small
samples by a Monte=Carlo study of 1000 samples each of size 10
and compared with the asymptotic variances of the maximum likeliw
hood estimators as well as witn the variances of tne best linear

unbiased estimators.

It was observed that the maximum likelihood estimators and the
best linear unbiased estimators are approximately equally efficienc
for symumetri¢ or nearly symmetric censoring wnile maximum likelihoc?.
estimators are more efficient than best linear unbiased estimator

{n case of strongly asymmeiric censoing,



CHAPTER 4

Sl S ——— -

ESTTHATION OF LOGISTIC FUNCTION I THE

TREAT; ENT 07 BINOMIAL RESPONSE DATA

i e W e Wt Sk

4 pIntroduction s

We have already remarked that logistic function can be used as
a model for probability of response in binomial response data, In
this chapter the methods of estimating parameters of logistic.

function are discussed with the help of illustrative examples.

In Section 4.1 the maximum likelihood estimators are found
while minimum logit x2 estimator and minimunm x2 estimators are

obtained in Sections 4,2 and 4,3 respectively.

The logistic function as a model for binomial response data

corresponding to (1.2) is

)
p. = i . (4.1)
T 1 eelaexy)

where p; = true probability of response (death) at dose X,

av3 '

a4 = -
o3
The response (Pi) is measured in terms of observed proportion of

deaths of animals A

In the model (&4.l), we have assumed that number of animals

responded at does Xy is binomially distributed wita itrue probability



of response pi. We are interested in finding out estimates of ¢ andg.
Berkson (1955) has discussed maximum likelihood, minimum logit x2 and

minimum x2 estimators of ¢ and B.

4.l. Maximum Likelihood Estimators of o and g

Let n, = number of animals exposed at

d.ose xi ; i = 1,2,..., k

A
n

observeé proportion of response at doxe X;

p; = true probavility of response at dose X

r. = number of animals responded at dose Xy 0
=1, Py

The likelihood function of the number of deatns is tnen given by

k n, . N.=rT

. i i i i
L(rl,rz,.o.,rk.asﬁ) = i-—-'Ig. (I'i) pi q’i

n k -l
- B 6D T [+ exf-arpx)})

k K k Kk
ki R T R ERL =

k . -1, -
o B, G [ e el pr)H] LR

-gznixi BIr.X.

(e o ATy (4.2)
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k k k k
Tnus ( iﬁl ry = 1£1nipi' iilrixi = iilnip ixi)

is sufficient for («, ).
Now we proceed to find out likelihood equations for « and B.

Note that

\np, = - [ 1+ exp{~ (a+ 3351)}]

agn p; exp { =(a+px;)} _
d¢ T [1eexp{=(a+ Bx;)}] "
: 3

--o-ji'-n- qi = "-a‘&' m(l—Pi)

= 1-ps s Pi

4

-pi.

o0 ..35--- pi = pi qi .



90

R.nL(rl,rz ’o--srkv Xy 3)

= E { En(:i) +r; in p1+(ni-ri) n qi} (4.3
-a—mL=Zri-§-'9-np+(n.-r)-%—'m .
da o i i i’ 6o 5
= 2lg g - (n-r) p; ]
= Zr;l tri+ni-ri) Py
= Lr, -Zn;p;o (4.4
~>~n L =0 >In (Pj-g,) =0 (4.5)
Similar}y 15;-2n L=0=2EZ nixi(EE-pi) = 0. (4,.6)

Solving (4.5) and (4.6) by iterative procedure, maximum likelihcof

estimates can be obtained.

Tllustrative Example 4,13

Suppose that in an experiment out of 10 animals exposed, numb-~
of animals responded at 3 doses taken as 1,0 and 1 are 2,5 and 7
respectively,The maximum likelihood estimates of ¢ and g are

obtained as follows :



9l

dere n, =10 (const)

Dose (xi) H - . -l -y 0 ? 1
No,of animals 2 5 4 7
responded (ri)

PYe o2 oden, A

prcportion

Let f)l R ﬁz and §3 be estimates of Pys P, and ps respectively,

Then
2 o (P.-p.) =0 3 (P.b,) =0
o MR =0 s Vet T
= 3. %) 5 = .ll- ‘e
Similarly,
P ~.p.) =
Eng % ( N pi) 0
=> 133 - B, = 0.5.
We have
Pi .
Fop, = o {o+px}
p
.e 'i'_'_‘l';i“'=exp { a=p }

i§§; wexp { a}

P
s - o fans) -

(4.7)

(4.8)

(4.9)
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We have to solve (4,7) and (4.8) using (4.9) by iterative procedurc?
Tne initial solutions of ¢ and § can be taken as the values corres-—
ponding to cbserved proportions Pl, PZ’ 53. From ﬁl and 52 one can

find out values of q,p using (4,9) wnile 53 will yield the estimatc

of ¢« +f . Tous we can obtain the estimate of ¢ + p from f)l and '132 cs

. e e pamo s o e

well as from 533 separately. The desired estimates of g and g will le
those for whicn the difierence between the estimates of a + by

these two ways is approximately zero.



g3

Sre T ' 11 I1T TV

No« Valuss of ﬁ‘l,p‘ . Estimates of «,g Estimate of Difference in the
and 63 and « + g from %+g from ‘i‘::; estimates of «+
Pl av B obtained in II and III
1 pm0.2 30, §=1.38636866 X +p=0.847296% 0.539072h
A
£290.5 <+§ =1.3863688
§5=0-7
-------- --‘-‘---------‘-Pﬁ---‘---------------‘—--------ﬁ---------------------------‘-
4l
2 £20.22 fz0.46 & = -0.160342% L+ B= 0.9444616  0.0005197
- ' b = 1.053239
p =D'72 ~ ~ :
3 « + g=0.9449813
3 p,=0-220019 & = -0.1604956 <+§ = 0. 9443558  0.0000099
P,=0+459962 B = 1.1050613 g 0
f;=0.720019 X+ = 09445657
)
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dence the maxiuum likelinood estimates of o and g are ~0,1604956 and

1,1050613 respectively,

These estimates of ¢ and p can be used to £ind out the estimate
of quantity of dose at cdecired percentage of response. For example,
we may be interested in finding out estimate of dose x; for waich

95 percent response is observed, i.e.

0.95 = e e e - )
1+ exp{~(-0.1604956 + 1.1050613 x,)}
X exp { 0.1604956 + 1.1050613 x.} ==g'§§ .
'... )Ei = 208097396 -

There are some situations for whica the iterative method works but
we do not get permissible solutions, Fo—~ instance let us consider

tne following examnple,

Dose x; ¢ -] 0 1

No.of s

animals ¢

responded @
(ry)

Qbserveds 0.7 0.5 0.2
progprtion:
(%)

i
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2 n (BB )
n., - =
im TaMaTPy
-_> ﬁl + ﬁz + _63 = 1."‘ [ ] (Ll"lo)
> .‘33-’1‘)1 = "035 ™ (4.11)
Now,
Ph {a+px,} i - 1,2,3 (4.12)
TIop, T = SR LavExgd B = HSIe |

Tne equations (4.10) ard (4,11) are to be solved iteratively
subject to tne condition (4.12). It is found that for q =-0.1604956

and f= =1.,1050613, tnese equations are satisfied,

But as the value of p is negative, the solution of likelihood

P
2) 3foz‘

X <x, < %3 wnich dozs not satisfy assumption in the model.

equations are not consistent, In this case Pl > P

However probability ol getting such a sample is positive,

4o2. Minimum logit _X° estinatorss

2

Logit X~ is definecd as

xatlogit) = EniPi ui( 9.1- 9;)2 ’ (4.13)
P -

i.. ~ A ﬁq .
where £ = En(u-i) and zi=a+ﬁzci .
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The estimate obtained by minimizing tne quantity logit xz is called
minimnum logit x2 estimate,

NQW,
32 (logit) - .
= = 2 g:' nif'iQi (Qi"‘ (o ﬁxi)
. 3x°(1logit)
- ~ =0 D );niPQ(z-a-axi)=o. (4.14)
Similarly
ax%(1Logit) -
3 B = =2 f n;PQ; (gy=a= fx)x;
¢ (Logit)

=0 = § niPiQi(ﬂ-i- o - ﬁxi)xi =0, (4.15)

a8
The normal equations (4.14) and (4.15) can solved by an iterative
procedure or by a procedure of obtaining least square solution of

the straight line
ﬂ.iﬂa-l-ﬂxi

using n_PiQ, as the weight of observation ziy Then the estimates
iii

for ¢ and p given by Berkson (1953) are

I R L0 e Ml B o O (4.16)

E niPin
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. (4.17)

t‘ -
Inp;Q; 1*1 ipin
P= - » (anQ}f)
anQ - — o —ama
' iil zn
ipiai

The minimum logit

xz estimates are not sufficient for (ua,B) as an

observed Di of 0 can be replaced by observed £; of 1 in equations

(4,14) and (4.15) without changing the solution.

z ~ Q0 In F.Q,Xi

ine ¥ o —t.dnd 2oL -_ L iiid
puttlng X = -);-nP a and = En P Q.
jrii iF o5

and (4.17)

. R 0D gD
P = fn .. j_(x -x) *

Illustrative Example 4,2 3

-

Consider the example 4,1.

b= (£§f0= ~1.3862044
P

r
L, =L (-3') =t 0.8472964 .
o ' Q3

in (4.16)

(4.18)

(4.19)
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e A B AT Rad. S T T - - . i - -

~ o = 2 ]
1 0.2 1.6 -1.6 1.6 —2.2.8 2.2]-8
0O 0,5 2.5 0 0 0 0
1l 0.7 - 2el 2.1 s | 1.779 1.779
I n,pP,Q,x.
X = ottt o 0.08064516
2
J;.nic iQ.

L _ = 0,0708064

J= S e as
{nir‘in
2 _
Znp iQixi = 3.7 )
and 7)2
= In.r,.Q (X, -
( : ni?ioixi)z > > Ingry i( n X)
S S NP ed e R g 0.0103226,] = 3!6596774
Tear @
~ - ; W n X
£0;730; 4% = 3+997 | F 0730050 (=)
-
i i3 .i.ii = ~0,0354 = 4,03240322
) nip:i.Qi s
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. Ingf.Q (n,i 2) (x,-%)
o B = 04—.---—- --—- - 4‘-""—"“"' - 1.10181“'66 .

L n, Qi(x -x)
and

B X = «0,15966504338,

2
]

1-
4.3, Minimum _ x2 e

—— . & g

stinators:

Let n; = number of animals exposed at dose x5

i= 1’2’0003 kb

r;= nunber of animals responded at dose X;= nipi

rF= probability of response at dose X5

a5= 1= Pyi i = 1,200k

Pi“ observed proportion of animals responded at dose‘xi
Q i= 1 -p _']:
ey= expected nusber of animals responded at dose
xi = nii i
ni -e, = expected auuaber of animals not responded at x;
8;= nuaber of animals not atfiected at dose xi=niQi.

Thuen Fearson x2 is given by

2
2 _ g r. “? k (s;-ns+e;)
X i=1 ey 1=l ni-e
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2 2
n.p.=-n.9o k
L0020 | ¢ s
k n(B,-p ) k 0 (p;- P,)2
=2 E ro—- -.i"" -i—— + z l' -j-
i=1 Py i=1 q;

2
2o & nlpeey)

- ’
R t=: R M

which nas x2 distribution with (k-1) x1 = k-l d.f,

ilow,
2 2
ax - B}L Bpj_
sa api o
PN Lo L ) (-200) by
(pa;)° Ba
n; (F;=p;) . Py
= I - 2p; 3+ (1-2p;) (p;-py)} - e
L (pyay)
n (P.-p,) 3P,
= I —--—--“"-"‘j‘ ! p + Bi 291 Pi} fé‘&e""
i (p, qi)
n, (fF;~p,) ap;
= ¢ A2 {p (a-p;) +p, (1P} -t
. X k py(pi=p;) p;
AR "‘"'"'"“ > { piq + Pin} m———

ow i=l (piq ) aa

(4.20)



101

j sPs
But '5"'“‘" =pi qi; i=l,2,..., Ko
aence,
2% o s & PilPi-ps)
30 =9 F j_i]_ "“13?-1;-_-“ tPiay + piQi} = 0. (4.21)
Similarly
-
d3a  3p; 3B
and
3%
h
ag - P13 X3
> ,
K nik'Pi-pl)xl ;
.'o = 0 S z F. . Q- = 0 - .
28 MR AR 22

riinimum x2 estimators for a« and B are obtained by solving (4.21)
and (4.22) simultaneously. An iterative procedure for solving

these equations is as follows :

One can take initial values of f)l and 1‘32 as P, and P,

respectively, '151 and _'62 will specify tane values of ¢ and § . For

tnese values of § and B , ‘;33 can be determined using the relation

exp {a +B}
P3= Y {&exp {4+ 8} °

Substituting values of 1'51,52 and ;’)‘3, the left nand sides of (4.21)

and (4.22) can be found. The iterative procedure is terminated at
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tnose values of ﬁl, ﬁz and 53 for wnica left nand sides of (4.21)
and (4.22) become approximately equal to zero. Corresponding values

of & and f are tne required minimum X° estimates of g and Be

Illustrative .xample 4,33

.
_— e .

Consider tne illustrative example 4.l. We shall find minimum

x2 ectimates of ¢ and B using iterative procedure.

Initial value of ﬁl = Pp = 0.2

and Initial value of 32 = P, = 0,5,

2
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Values of g and § for B Left hand  Left hand
py and p, (1), correspo- side of side of
(1)' nd.in 'tO (4-21)- (4.22).
(2 (2).
By =0.2 &=0 P5 0.8 ~0,2375 =0.2375
ﬁz =0.5 f=1,.38637836.
51 = 0,22 @Gad, 08116044 53=o.7508913 -0 .0672962 ~0.070035
51 = 0.22 a==0,16016275 f)3=0.7202114 0.00229 ~C 0026204
p2 =0.46 fa 1,1056795
B, =0.:21 &= By = 0.001423  0.0020451
-~0,16016875 C.7187513
Pp = 0.46 B =
1,0925935
131 = % =
0.,22063 ~0.160012
D 5 = g = §3 = 0,0006309 0.0004251
0.04601 1.,102011 0.7195034 £0 %0

- .

[ N e e T ]

Pt e h SEh ML & T o AW W

Tem sy wEu Bt & PV

Thus minimun X estimates for («,B) are

(=0.160012, 1.102011).

e ALY W e AT AW A S N e———
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L R T L
Mol 5 TR SR S A WOW P A M S STP PV O SR b TR AT g

Name of the estimate a B
laxinum likelinood gstimate ~0.1€04956 1.1050613
.iinfaum logit x> estinate -0.15966505 1,1018466
dinimum x° estimate -0,160012  1.102011

Rkl § A b b AT e AT Y MG T E S ST B e Ma Emr F & AP M AR e T L kel W gl

sowever there are saiples wnich do ot yizld finite
estinates for a or f or voth @ and P . For example suppose
tanat [ ey Fos P3 ] are observed proporticns of killed aniaals

at doses [ X Xps %3 A

si:oaon*PB:I!'[o'f‘Z:l]

—Jd

In this cacze [ Pl’ 0, 0
[Plilvl]!i:lali :‘3 ]!E]-’ ?2!0]
are the samples waicn lead to infinite estimates.
Working Rule :
Tne problem in estimating the parameters mentioned above can
be resolved by one rule sugzested by Berkson (1953) wnica is as
follows ¢

As observation zero is rerlaced by "%H and for an observation

one take value 1 = "%H . Illustration of tais rule is given in

Berkson (1955).



CHAPTER 5

IV ARTATE LOGISIIC DISTRIBUTION

T Weaun W . S W LR IERE ¥ e e

5.0, Introduction

There is no natural extension of univariate logistic distribution
to aultivariate logistic distribtution unlike the normel distribution.
In this chapter we give some bivariate logisvic distributions and
study their properties,

Gumbel’s bivariate logistic distribution and its properties are
discussed in section 5.1.

Section 5.2, deals with the bivariace logistic distribution
vinicn is generalization of Guabel’s bivariate distribution and the
expressions for its cunulant generating function, mode, correlation

coefiicient, conditional expectations etec,

Section 5,3 consists of anotner form of bivariate logistic

distribution and its properties.

5e1. Guubel'’s Bivariate Logistic Distribution 3
Guibel?s bivariate distribution is a bivariate distribution

with distribution function as

- $ - { X £ & (5.1)

-m{ y<=®
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Tne proverties of this distribution have been studied by Gunbel (1961),

The probability density function of this distribution is

f(x’Y) = == '2 ?,;:':11_3 . : (502)
(L+e™%+ &™)

The marginal distributions are

£.(x) = =fom-n and £.(y) =
1 (L+e x)2 2

ey
(1+e7Y)2

v Elxy) £5,(x) £,(y) .

ilence the variables X and ¥V are not independent,
This discribution is asymmetric about (0,0) as f(~x, =x) > T(x,x),
x>0-

For x > 0, we have

2 e2X
f(."Xr "'X) = "“-*--YJ-B-.
' W1+2e)
-2X
f(XaX) = - 2 ‘e‘—‘x“j' R
{(1e2e )

It is encugn to show that :
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g'(x) = 2[ (e + - (X + e™]
= 2[n{2:x) - n(x)] wnere

=X

n(x) = e + o™,

n'(x) >0 2 g'(x) >0,

So B(ex, =x) > £(x,%) &

It is interesting to note that the Guabel?s bivariate logistie
distribution is not symaetric about (0,0) but marginal distributions

are symietric aboul zero.
3

The m.g.fs of Cumbel?’s bivariate logistic distribution is
given by
=(1-t)x  =(1-t))y
SR =t

0 &
G(tl’t ) m 2 f f L - WA tmt F Ws B dx dy
2 e w0 3
- T (1+ e &+ 7Y)
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co -(l—t )Y oo -(1“'1;1)
=2 [ e 2 dy [ & .-._.,...3.
- - (L+e F4e™Y)

. =y
putting ire = .. = Z in the second integral

l1+e 4™y
w =(1-t,)
G(t,,t,) = 2[ e (-tp)y dy
-(2 ) 1 -
(e 20 %00 578
O
P2+t )r(1-t)) o =(1=t ~(2+%,)
= 2~ A Rk 1 [ e ( 2)y(l+e"y) dy

r{3) e 0
= r(1-t }r (l-t ) r(1-t )

As the marginal e:ppectations of X and Y are zero and standard

deviations » the correlation coefficient is .
1 2
«“an G( )
Bk = ”}.-a-'{
1° T to=t, =0
172 7

= V(1) = 1% .

.’ Correlation coefficient between X and Y =py =% (5.3).

Hence the use of tnis distribution is very limited.
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Re/ression of Y on X

- -

The conditional moment generating function of Y given X=x is

t
2
G(t2|x=x) = [F{x)] 1"(2+t2) r(1-1:2)

o Ln [G(t2|x=x)} =t, mF(x) + ml’(1+t2)-

+ n r(1+t2) + In r(1-t2).

cm G(t, | X=x)
-—---m-&--r--—n = ﬂ’ h! -U-o]:h - . -.04- r
3t i F{x)+ T Y (1+t2)
2 2
d .
- a-tlz am I‘(l-tz) *

The cenditional expectations can be cbtained by putting tz =

(5-4) »
BlY|X=x] =1 +&n F(x) .

similarly E[X|Y=y] =1 + 2n F(y).

lim E(Y|X=x] = ==, E[Y|X=0] = 0.30685
X+ ®op

lim E[Y|X=x] = 1 and
L oo

lim E[ X |[Y=y] = == , E[X|Y=0] =0.,30685
Y~ a0

1im E[X|Y =y] = 1.
y-—+eo

(5.4)

O in



Thus conditional expectation of one variable is an increasing
functicn of the other and it becomes asymptotically parallel to
the axis at distance unity, Differentiating (5.4) weret. t, and

putcing t, = 0, we get conditional variance of ¥ given X=x as

%l ¥|X=x)

. S ' X '
(1+t2)2 « ¥ (at) + ¥ (- tz)]t

2
= 2Y' (1) -1

2

-"""""‘—l .I

3

Sinilarly,

2
OZEXIY = y] = "1;"" -1

Hence tihe conditional variances of X and Y are equal,

5.2. Generalization Of Gunbel’s Bivariate Logistic Distribution sz

Tne distrivution function of a bivariate logistic distribution

having two marginal distributions alsc logistic can be written in

the rorm
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F(x,y) = [14 e™® 4 V]V cn ¢ x ¢
- £y (e
v> 0, (5.5)

This bivariate logistic distribution is notning but generalization
of Gumbel’s bivariate logistic distribution, The distribution
given by (5.5) may arise from two independent variates having
extreme value distribution with

Pl X< x, Y y] = exp {= 2(e™* &+ &)}

where A has a gamaa distridution with shape parameter w-

The expression (5.,5) may be cbtained as
P[X < x, YK y]
oo - A -\
=f exp{= eFa+e Y)}__I_‘..,..e_._. aAr
o

) fon exp{=- l\(.e:jc +e 7 +1)}1_v:i a3
o r(v)

1 .
I =
(1ee=%4 Y)Y '’

The p.d.f. corresponding to (5.5) is
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£(x,y) = —emeem e

= e (5.6)

Properties of the distribution @
Satterthwaite and Hutchinson (1978) have studied the properties

of above type of bivariate logistic distribution.

Tae bivariate logistic distribution with p.d.f. given by (5.6)
is not symmetric about (0,0). For this result it is enough to show

that f£(=x,-x) # £(x,x) for at least one value of x.

¢ ) V(vel) X
f(=x;=X) a = — .
’ (1+2ex)v+2

-2X
£(x,x) = . v.(.!_:"_l)-.;e,. .é.., .
(L+2e™) F

In particular let us take x = +1 ,

and

£(=1,-1) = {0.0043) v(v+1),

£( 1, 1) = ( 0.015) v( v#1),
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o f£(-1, -1) # £(1,1) for any value of v > O,
Jdarginal distributions of X and Y.

The probability density function of the marginal distribution of X is

v(v4l) e~ XY

v+2 dy

fl(X) = fm
= (144 &™)

putting ¢ = horeae s We have

-

lve X 4 Y

- o et

1+e~X
£.(x) = [ v(vad) e™® t 4t
o]

el . (5.7)

Similarly the p.d.f. of marginal distribution of Y is

-y
rz(Y) = Y& "v'*_"i""""_ ‘. (5.8)

(1+e™)

We note that X and Y are not independent,

ijode of the distribution :

In order to find the mode of the distribution,consider
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an £(%,y) =20V +2n (vel) - x = y=(v42) en(l+e ™+ e77)

iin £(x,v)

i, W 8 T A P N O
=

ax
(ve2) 7%
= ;—e-:x:-'e-_?- =1 , (5.9}
aen £(x,y)
and 3y -
> (ve2) ~1 . (5.10)

1+ e~ %4 Y

Solving (5.9) and (5.10) for x and y we see that the mode of the

distribution lies on the line x =y & (5.11)
ilow =2
(0 v(vel) e
£(xy5) = smmmmmemeoe
(l+2e X)V +2

= n{x). (say)
h' () = O gives
1 42X (va2) e

i.e,
X = fnv . (5.12)

(5.11) and (5.12) indicate that the mcde of the bivariate logistic
distribution is (tn v, &n v)
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Cuwaulant Generating Function :

The m.g.f. of the bivariate logistic distribution is given by

© oo tlx t2y
G(tl,tz) =f [ £(x,y) e e

dx dy

-(l—tl)x -(1-t2)y

(-] - e e
= V{vel - dx dy
() “f"" -{" (L+e~Fs eY)VH2
-(l-tl)x
o0 -(1-1:2)y oo e
= i o s==dx, (5.13)
= v(v+1)_'f‘=° e dy J (LeeFga-Tyve2
putting -1-+e-y . = Z in the second integral of (5.13) we have
1+e Xpe™Y
G(tl'tZ) = v(vel) _{o e dy
- 1 1 ve -
[(1+e™Y) (Htf ). J zv tl(1-z) k! dz ]
o
o =(1-t,))y |
avivel) f e 2" gy ¥
- ~{(v+t, +1)

W) L T a) Ta-6)

[_.. ——

(v4l) T(v41)

- (vat, +1)
E-(‘V:I'.t;:l::'.z‘ ;..(.1 :.tl-.) . f = e- ( 1-t2) y( 1 +e-y) tl dy
== v .
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r(1__t_1} T(ve 1-,1+t;) r (1:-1: )
r{v)

(5.1 |

Taking logrithms of bdeti sides of (5.14) we get

an G(tl’tz)" an I‘(l-‘tl):lr Ln I‘.(v+t1+t2) +2n I‘(l—tz)- snT{vVv).

Differentiating the above expression with respect to t; and putting
tl =%t =0
2

E(X) = 5"6_[ tn G(tl'tz)]tl . oo
o= 2 =

‘ﬂf‘ﬁ) +r(“*ﬁﬁﬂfm |
M (1ety) (v t)+ty) £, =ty =0
-r'@Q) ')
+
(1) r(v)

= —"v’(l) + ‘I’(V)
= Y'l"p(v)

where y = Buler’s constant and (v ) is digamma function.

Similarly-E(Y) = y+ ¥(v) .
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=V(1-t) + 0" (v £ et,) 1,

l= t2 =0
=9 (1) + ¢ (v)
2
= .-E"'+ E( 2’ V)'

-]
where £(2, v) = mEo(m; v)'2 } the Riemann Zeta fuaction,

3imilarly Var(Y) = EE- + E£(2, v).

2
s7an G(ty,t,)
Cov(X,Y) = = T .;Lt.f_.?_

1 °72 ty=t,

|
o

=¢'(V)
= 5(2' V)‘.

Hdence the correlation cocefficient comes out to be

E(2 , v)

- r
ﬂ(zv\!) + '?'Ig""

degression of Y on X ¢

The conditional probability dercity fuaction of U given X=x is

v +1
(vel) e (1+5) *
nyIX#] o ‘#"’ v Yy S e (5-15)
(L+e™ + ™)
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The conditional moment generating function of Y given X=x is
0o ty
G(t,]X=x) = S £(y|X=x) e & dy
- QO

vel T
o (vel) eV (14e™X) e 4
- SV S =SS e dy
(Lee™ + e77)

: 14X
putting =7 ,= 2y wWe get
lee~ Xy 7
. 1 v-;-t2 -t2
GEt2|X=xj = f (v4l) 2 (1-2) dz
o

t M(Vlet,) T(1-t,)

(v¢l) (1+e™) B Y e e

]

A c(t21x=x)
tolv F(valat,) T(l=t,)

‘s
Thus the regression of ¥ on X is

E[Y[X=x] = = 2n F(x) +  v+l) +C

= =2n (L+e™X) +y( vel) + C. (5.16)

Similarly

E[X|¥=y] = = fn (Q+e™7) + w(vsl) + C " {5.17)
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Now

Var [le = x]

,2
=——s n G (t, |X=x) ]
o5 2 t, =0

2
= " % E( 2’ V"’l) ™ (5.18)

Also,

Var (X|Y=y) = --";- + £(2, v+l) - {(5.19)

dence the conditional variances of X and Y are equal,

5.3+ Another family of bivariate logistic distribution 3

The distribution function of another bivariate logistic
distribution given by Gumbel (1961) is

[1+a e XY (@Q+e™) (2+e™) ]
F(X,y) = mwemems wommnmecnans mme et § =1 @ € 1o (5.20)

(1+e™%) (1+e™Y)

The expression (5.,20) represents a parametric family of distributions,
The density function corresponding to (5.20) can be written as

£(xyy) = rmenfeenm s [1aa( 7 G0y (5.21)

(1+eX)2( 1ee™) E 14X " 1ee™
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oXHY (1~eX) (1-¢")

f(-x,—y) S TS . s i -

(L+e¥)2 (1+eY)2 [1+0 2-1+ex3 (1+eY)

Since
emX=Y XY
(1+e"x)2(1+e" ])2 (1-|-ex)2 (‘{;}3'2
and
N e 0
(1ee™X)(1=e’)  (14e5) (14e))
f(=xy=y) = £(x,y) . (5.22)
X~y X -y
f (_. , - £ o —— . & e r _1_-_-__@____ ......J'.:g.——_
%) (1+4e) (J.-e-r-z-'y)-2 L1sad 1-e® ) 1+e™Y ]
oY =X (1=e™*) (1~¢")
= BeAed B B m T s s 8 s e ama 1 P )
(1+e"x)2(1+ey)2 [ 1+ (1+™X) (14¢Y) ]

= i‘(x,-—y) . (5.23)

From (5.22) and (5.23), we observe that the bivariate logistic
distribution with density function given by (5.21) is symmetric
about (0,0).

The marginal distribution of X is given by
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£,(x) = _{T £(x,y) ay

oo e~ XY a(l-e"X)e™* w o Y (1-e™Y)

- P, -
- e - - A —— B

M g E————

d
- (lee x)2(1+e'y)2 yr (1+e™*) (L-e x)2 oo (1+e-y)3

putting ¢ = --~]-'-_-_-y- in the second integral
l+e

-X a(l-eX)e™*
f (x) —1 -———e—“-.- F Al P e aakaae SrURSW - S b t - -
* )2 ’ (14 (142 o [ f £ f (1-t)at]

Thus the mazginal distribution of X is logistic with mean zero and
variance —13‘- Similarly marginal distribution of Y is alsc logistic
with mean zero and variance ET '« Conditional distribution of X

given Y=y is

-3 -
- = "'""e'""--'-" 1 o (1_‘9—‘_
f(x|Y=y) (14 _x) [1+a (l-l-e -) 37 .

rlence the conditional expectation of X given ¥ =y is

. TRl e [ o e -eA-e") dy
E[ X]Y=y] = _*L (1 +e-x) ke (1+e-x)3-(-1+e-Y)
o X & X (1-e"X)

= a ( l ‘ N W o i W gl S

1+e"'y e (14e7X)°
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putting t = -t

1+~ X

& (lee™Y) 1

LEXIL=YJ g e ——— [ 2ftﬂ.ntd -flﬂ.ntd‘t:
(1+e™) o
]
-zof t ta (1-t) dt + J n (A-t)dt]
o

x{1-e7Y)
- 1+e™Y
= al 2F(y) 1] . (5.24)

NOW’

E(XY) = By [E(XY|Y=y)]

= ay(28(y)=1) £(y) ay

W E(Y) =20 S yRly) £(y) 4y - a f'yr (y) ay

- OO

f ey dy - O -,
s 2a - "‘.’_“"" -
- (Lee Y)

putting t = ==iee.
Lee Y

1 "
E(XY) = 2a of [ nt-on (A=t)] t dt

1 1
t ent dt = [ t gn (1-t) dt]
2a [ ,g L of [}
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24 {[tz(—-»’-l-n-Tc 1 )] -f at dt + f t antdt }

= X e (5-25)

Using (5.25) the correlation coefficient between X and Y is

wnicn is a function of « .
As =1< a1, |°xY| <.0.3038847

Tnus tais type of bivariate distribution is more useful is practice

as compared to the bivariate distribution given by (5.1).

Mode of the distribution

A

Let

=X e » %

Smnrar e & — WA S By

= = q =
lee ' X ? 14e”Y

==
C<p<l,0<q<lsimilarly 0 < p < 1, 0< g*< 1.
The the density function (5.21) can be written down as
¢ (pyp*) = (pa) (p* a*) { 1 +«(a=p) (q*~p*) }

= p(1-p) p*(1-p*) {1+(1-2p)x{1-2p* )} (5.26)
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put p = %'+ §; and p'a % +6, 3

< s 1
"2 8§ <¢F adfg,l<5n

Then (5.26) is given by

B(8,06,) = (= 8D) (F = 62 )1 + bs )
62 &2

= {5 ~h - 7f v € 65} {1y} (5.27)
ag(s, &) 2
--'ésl 2 = --7’_6"]-" +* 261 Gg ){l + 45f62}+
§2
NI S
eg(8.,68,)
..,.,%.-.2_ = 0 2
8t df %2 62 62}
bogigy - 4t -
=) memssgreemees s~ o 14 48XS, . (5.28)
(-~-2§l 62 )
Similarly,
5(848,)
T, =
2 2
e ——'62-*-52 Gg}
= ....J\...TG -2|. -‘---'--]’-""'" = 1+461<52. (5&29)

From (5.28) and (5.29) we have,
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N ‘ 6 &2
Yo Lfg -5 -yt 8 ) asliy -k -g2ei2E)
-—’“-‘6 n“'-‘_'\-"".l‘-“___- s =iy
F g EY
62 2
= & {- 2"2‘1 Sh=s, {55 =28 &}
=) 62=62. :

1

Taking 3]2. = 62 in (5.27) we get

he) = (3 = 62 )2{1 + 4€
he(8,) = (3 = 63) {4 (1+ 483) + 88, (1 - 62}

n' (s 0

1) =

> 48, (1 482) = 26, (1463) 62 4 +.
If <, 40 taen 21+ 482) =1 - 46,

i.e. 61=""i:'§"0

But this value of 6% is not admissible., Hence 61 =0, 52 = 0.

. 1 L o
Thus tae function f£(x,y) is maximum at p = -5 and p'= 3% which

means that mode is (0,0).
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We observe that the correlétion coelficient is a function of «
wnile the mode is independent of o o Ali, liknail and Haq (1978)
also have obtained the same type of bivariate 1ogistic; distribution
given by (5.20) with F(x,y) as tne probability of the joint failure
of both the components of a system before (x,y). They have studied

some properties of the distribution,

Since F(x,y) £ Fl(x) Fz(y) for <1 £ « £ 07 ~(x,y), F(x,y)
is negatively quadrant dependent for negative values of « =
F(x,y) > Fl(x) FZ(}') for 0 < a £ 1 N (x,y)e Hence F(x,y) is
positively quadrant dependent for positive values of «e If the

value of a = 0, we get stochastic independence of X and Y,

Let Fl(x) = U and nl(y) =V

uv
SF(xy) 28(,Y) = TR ESY @SVIT

How
.F_( u, v) v

- urie . s w .

A0 T 2eq Q-u)(-v)

- : o (1-v ) 0if >0
. 3 FlugV) y smecuemica— e > il a .
*tosu (%1173 )= Tle ¢ (Lu) (1-v )12 .

Thus F(u, v) is leit tail increasing [decreasing] for positive

[ negative ] values of a «
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