Class : FYBSc (Semester II) 2020-21 Subject : Mathematics Practical II (19ScMatU203) (Based on Integral Calculus (19ScMatU202))

Practical No. 7 : Integration

Evaluate the following integrals.

1.
$$\int \frac{2x-3}{(x^2-1)(2x+3)} dx$$

2.
$$\int \frac{3x+4}{(x+2)^2(x-6)} dx$$

3.
$$\int \frac{x^2}{x^4-x^2-12} dx$$

4.
$$\int \frac{\sin 2x}{(1-\cos 2x)(2-\cos 2x)} dx$$

5.
$$\int \frac{1}{(1+e^x)(1+e^{-x})} dx$$

6.
$$\int \frac{\log x}{x(1+\log x)(2+\log x)} dx$$

7.
$$\int \frac{x^2-1}{x^4-x^2+1} dx$$

Class : FYBSc (Semester II) 2020-21 Subject : Mathematics Practical II (19ScMatU203) (Based on Integral Calculus (19ScMatU202))

Practical No. 8 : Reduction formulae

I) Evaluate the following integrals.

1.
$$\int \frac{7x+3}{\sqrt{3+2x-x^2}} dx$$

2.
$$\int (3x+2)\sqrt{x^2+3x+1} dx$$

3.
$$\int \frac{x^3+4x^2-6x+3}{\sqrt{5+6x-x^2}} dx$$

II) Evaluate the following definite integrals.

1.
$$\int_{0}^{\pi/2} \sin^{4} x \cos^{8} x dx$$

2.
$$\int_{0}^{\pi/6} \cos^{2}(6x) \sin^{4}(3x) dx$$

3.
$$\int_{0}^{4} x^{1/2} (4-x)^{3/2} dx$$

III) If $I_n = \int \frac{1}{(x^2+1)^n} dx$ then prove that $2(n-1)I_n = x(x^2+1)^{1-n} + (2n-3)I_{n-1}$

Class : FYBSc (Semester II) 2020-21 Subject : Mathematics Practical II (19ScMatU203) (Based on Integral Calculus (19ScMatU202))

Practical No. 9: Preliminaries of differential equations

1. Determine the order and degree of each of the following differential equation.

(a)
$$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{1/2} = \left(\frac{d^2y}{dx^2}\right)^{1/3}$$

(b) $\frac{d^2y}{dx^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$
(c) $\frac{d^3y}{dx^3} + \sin\left(\frac{dy}{dx}\right) = 1$

- 2. Which of the following are homogeneous functions? Determine the degree in case they are homogeneous.
 - (a) $f(x,y) = 2x^4 + 3x^2y^2 5xy^3$ (b) $f(x,y) = (x^3 + x^2y)^3$ (c) $f(x,y) = \frac{x^2 + y^2}{xy - x^2}$ (d) $f(x,y,z) = 3x^4 + 2x^2yz - 4xy^2z$ (e) $u = \sqrt{\frac{x^{1/3} + y^{1/3}}{x^{1/2} + y^{1/2}}}$
- 3. Find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ if (a) $u = \log(x^2 + y^2)$ (b) $u = \tan^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$

4. If
$$u = x^y + y^x$$
 then show that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$

Class : FYBSc (Semester II) 2020-21 Subject : Mathematics Practical II (19ScMatU203) (Based on Integral Calculus (19ScMatU202))

Practical No. 10 : Solution of differential equations of first order and first degree - I

- 1. Find the differential equation of the family of all straight lines making equal intercepts on the coordinate axes.
- 2. Find the differential equation of the family of curves $y = e^x(a\cos x + b\sin x)$, where a and b are arbitrary constants.
- 3. Find the differential equation of the family of circles $(x h)^2 + (y k)^2 = 1$, where h and k are arbitrary constants.
- 4. Solve the following differential equations.
 - (a) $(xy^2 + x)dx + (yx^2 + y)dy = 0$
 - (b) $x\sqrt{1+y^2}dx + y\sqrt{1+x^2}dy = 0$
 - (c) $x^2ydx (x^3 + y^3)dy = 0$
 - (d) $(y\sin\frac{y}{x} x)dx x\sin\frac{y}{x}dy = 0$
 - (e) (2x + y + 1)dx + (4x + 2y 1)dy = 0
 - (f) (3y 7x 3)dx + (7y 3x 7)dy = 0

Class : FYBSc (Semester II) 2020-21 Subject : Mathematics Practical II (19ScMatU203) (Based on Integral Calculus (19ScMatU202))

Practical No. 11 : Solution of differential equations of first order and first degree - II

- 1. Solve the linear differential equation $\frac{dy}{dx} + y \sec x = \tan x$.
- 2. Solve Bernoulli's differential equation $(x^3y^2 + xy)dx dy = 0$.
- 3. Check whether the following differential equations are exact and hence solve them.
 - (a) $(y + \frac{y}{x} + \sin y)dx + (x + \log x + x \cos y)dy = 0$ (b) $(x^4 + y^4)dx - xy^3dy = 0$
 - (c) $y(xy + 2x^2y^2)dx + x(xy x^2y^2)dy = 0$
 - (d) $(x^3 + xy^4)dx + 2y^3dy = 0$
 - (e) $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$
- 4. Find the orthogonal trajectories of the family of parabolas $y = ax^2$.
- 5. Show that the family $y^2 = 4a(x+a)$ is self orthogonal.

Class : FYBSc (Semester II) 2020-21 Subject : Mathematics Practical II (19ScMatU203) (Based on Integral Calculus (19ScMatU202))

Practical No. 12 : Differential equations of first order and higher degree

- 1. Solve the following differential equations for p, where $p = \frac{dy}{dx}$.
 - (a) $xyp^2 (x^2 + y^2)p + xy = 0$
 - (b) p(p-y) = x(x+y)
- 2. Solve the following differential equations for y.
 - (a) $y = 2px + p^4x^2$ (b) $e^{p-y} = p^2 - 1$
- 3. Solve the following differential equations for x.
 - (a) $p^3 = y^4(y + xp)$ (b) $p = \tan\left(x - \frac{p}{1+p^2}\right)$
- 4. Solve Lagrange's differential equation $y = (1 + p)x + p^2$.
- 5. Check whether the differential equation $(1 + p^2)(y px) = 3p$ is in Clairaut's form. If yes, solve it.