Progressive Education Society's Modern College of Art's, Science and Commerce(Autonomous), Shivajinagar, Pune-5

Department of Mathematics

First Year of M.Sc.(Semester I)(Academic Year 2020-21)

Subject: REAL ANALYSIS

Subject Code: 19ScMatP101

Subject Teacher: Prof. Ms. G. A. Shinde

Chapter 1. MEASURE THEORY

Preliminaries

A point $x \in \mathbb{R}^d$ consists of a d-tuple of real numbers

$$x = (x_1, x_2, \cdots, x_d)$$
, where each $x_i \in \mathbb{R}$, for $i = 1, 2, \cdots, d$.

NOTE:

1. For $x \in \mathbb{R}^d$, $y \in \mathbb{R}^d$ and $\alpha \in \mathbb{R}$ Let, $x = (x_1, x_2, \cdots, x_d)$ and $y = (y_1, y_2, \cdots, y_d)$, addition, subtraction and scalar multiplication are defined as

 $\begin{array}{lll} x+y &=& (x_1+y_1, x_2+y_2, \cdots, x_d+y_d), \\ x-y &=& (x_1-y_1, x_2-y_2, \cdots, x_d-y_d), \\ \alpha x &=& (\alpha x_1, \alpha x_2, \cdots, \alpha x_d). \end{array}$

So, addition, subtraction and scalar multiplication are defined componentwise.

2. The norm of x is denoted by |x| and is defined by

$$|x| = \sqrt{x_1^2 + x_2^2 + \dots + x_d^2}$$

3. The distance between two points x and y in \mathbb{R}^d is denoted by |x-y| and defined as

$$|x-y| = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2 + \dots + (x_d-y_d)^2}.$$

DEFINITIONS

Let E is subset of \mathbb{R}^d

1. Compliment of a set:

The complement of set E in \mathbb{R}^d is denoted by E^c and defined by

$$E^c = \left\{ x \in \mathbb{R}^d | x \notin E \right\}.$$

If E and F are two subsets of \mathbb{R}^d , we denote the compliment of F in E by E - F and defined by

$$E - F = \left\{ x \in \mathbb{R}^d | x \in E \text{ and } x \notin F \right\}.$$

Distance between two set E and F defined by

$$d(E,F) = \inf |x - y|,$$

where, infimum is taken over all $x \in E, y \in F$.

2. Open ball in \mathbb{R}^d :

Open ball in \mathbb{R}^d centered at x and of radius r is defined by

$$B(x,r) = \{ y \in \mathbb{R}^d | |y - x| < r \}.$$

3. Open set in \mathbb{R}^d :

A subset $E \subset \mathbb{R}^d$ is open set if for every $x \in E$ there exist r > 0 such that $B(x,r) \subset E$.

E is a closed subset of \mathbb{R}^d if E^c is open subset of \mathbb{R}^d .

4. Bounded set in \mathbb{R}^d :

A set E is bounded if it is contained in some ball of finite radius.

- 5. Compact set in \mathbb{R}^d : A set E is compact if and only if E is closed and bounded in \mathbb{R}^d .
- 6. Limit point in \mathbb{R}^d : A point $x \in \mathbb{R}^d$ is a limit point of the set E if for every r > 0, the ball B(x, r) contains points of E other than x.
- 7. Isolated point in \mathbb{R}^d :

A point $x \in E$ is an isolated point of set E if there exists an r > 0, where $B(x,r) \cap E = \{x\}.$

8. Interior point in \mathbb{R}^d :

A point $x \in E$ is an interior point of set E if there exist r > 0 such that $B(x,r) \subset E$.

Set of all points in E is denoted by E^{o} .

A point x is exterior point of a set E if there exist r>0 , where $B(x,r)\cap E=\phi.$

- Closure of set E: It is denoted by E and defined as, union of set E and its limit points.
- 10. Boundary of set E:

It is denoted by δE and defined as set of points which are in closure of E but not in interior of E.

$$\delta E = \overline{E} - E^o$$

11. Perfect Set:

A closed set E is perfect if E does not have any isolated points. **NOTE:**

- (a) Closure of set is closed set.
- (b) Set E is closed if and only if it contains all its limit points.

EXAMPLES:

For set E = Q ∩ R, Here set E is set of rationals.
 Find limit points, interior points, closure of E, boundary of E, is E closed?
 Answer : Set of limit points of E is R, it has no interior points, closure of E is R, boundary of E is R, E is not closed because it does not contains all its limit points.

2

- 2. Let $E = \mathbb{Z}$. Find limit points, interior points, closure of E, boundary of E, Is E closed?
- 3. Let $S = \{(x, y) | y > x^2\}$ Is S bounded? Find boundary points of S and closure of S. **Answer**: Set S is not bounded, Boundary of $S = \delta S = \{(x, y) | y = x^2\}$ Closure of $S = \overline{S} = \{(x, y) | y \ge x^2\}$
- 4. Let $S = \{(x, y) | y > 1/x\}$ Is S bounded?, Find boundary points of S and closure of S.
- 5. Let $S = \{(x, \sin x) | x \in [0, \pi]\}$ Is S open? Is S bounded? Is S compact?
- 6. Show that set of integers is closed.
 Answer: To show set Z is closed it is enough to show its complement Z^c is open.
 Z^c = ··· ∪ (-2, -1) ∪ (-1, 0) ∪ (0, 1) ∪ ···
 As countable union of open sets is open.
 Hence Z^c is open. Implies Z is closed set.

THE CANTOR SET:

Cantor set is a set of real numbers in [0, 1] whose ternary expansion contains either 0 or 2.

CONSTRUCTION OF THE CANTOR SET :

STEP 0: Consider closed unit interval $C_0 = [0, 1]$.

STEP 1: Let C_1 denote the set obtained from deleting the middle one third open interval from [0, 1].

Hence, $C_1 = [0, 1/3] \cup [2/3, 1]$.

STEP 2: Repeat this process for each subinterval in C_1 .

We get $C_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1]$.

STEP 3: Repeat this process for each subinterval in C_2 and so on. So This

Figure 1: Construction of Cantor set

process gives us a sequence $C_k, k = 0, 1, 2, \cdots$ of compact sets with

$$C_0 \supset C_1 \supset C_2 \supset \cdots \supset C_k \supset C_{k+1} \supset \cdots$$

The cantor set C is defined as intersection of all $C'_k s$:

$$C = \bigcap_{k=0}^{\infty} C_k$$

The Cantor set C is non empty, because all end points of intervals in C_k belongs to C.

As C is closed and bounded , Hence compact.

 C_k is disjoint union of 2^k intervals of length 3^{-k} , hence total length of cantor set is $(2/3)^k$ and $(2/3)^k \longrightarrow 0$ as $k \longrightarrow 0$.

Roughly, Cantor set has length 0.

Rectangles: A closed rectangle R in \mathbb{R}^d is given by the product of d one dimensional closed and bounded intervals

$$R = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_d, b_d],$$

where $a_j \leq b_j$ are real numbers, $j = 1, 2, \dots, d$ **Cube:** It is rectangle in which all sides are same. i.e. $b_1 - a_1 = b_2 - a_2 = b_3 - a_3 = \dots = b_d - a_d = l$

Volume of Rectangle R: It is denoted by |R|, and defined to be

$$|R| = (b_1 - a_1) (b_2 - a_2) \cdots (b_d - a_d).$$

- 1. Volume of rectangle in $\mathbb R$ is nothing but length of interval. If R=[a,b] then |R|=b-a
- 2. Volume of rectangle in \mathbb{R}^2 is equal to area of that rectangle. If $R = [a, b] \times [x, y]$ then |R| = (b a) (y x).
- 3. Volume of rectangle in \mathbb{R}^3 is equal to volume of that parallelogram in \mathbb{R}^3 .
- 4. If $Q \subset \mathbb{R}^d$ is cube of common side length l then $|Q| = l^d$.

Almost Disjoint : A union of rectangles is said to be almost disjoint if interior of rectangles are disjoint.

Interior of rectangle $R = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_d, b_d]$ is $(b_1 - a_1) \times (b_2 - a_2) \times \cdots \times (b_d - a_d)$

Lemma 1.1: If a rectangle is almost disjoint union of finitely many other $\begin{bmatrix} N \\ N \end{bmatrix}$

rectangles, say $R = \bigcup_{k=1} R_k$ then

$$|R| = \sum_{k=1}^{N} |R_k|.$$

Proof: Consider the grid formed by extending infinitely the sides of all rectangles $R_1, R_2, ..., R_N$.

So that we get finitely many rectangles $\tilde{R}_1, \tilde{R}_2, \dots, \tilde{R}_M$ and partition J_1, J_2, \dots, J_N of integers between 1 and M such that below unions are almost disjoint.

$$R = \bigcup_{j=1}^{M} \tilde{R}_j$$
 and $R_k = \bigcup_{j \in J_k} \tilde{R}_j$, for $k = 1, 2, 3, \cdots, N$.

Figure 2: The grid formed by rectangles R_k

Hence,
$$|R| = \sum_{j=1}^{M} |\tilde{R}_j| = \sum_{j=1}^{N} \sum_{j \in J_k} |\tilde{R}_j| = \sum_{k=1}^{N} |R_k|.$$

Lemma 1.2: If R_1, R_2, \cdots, R_N are rectangles, and $R \subset \bigcup_{k=1}^N R_k$ then

$$|R| \le \sum_{k=1}^{N} |R_k|.$$

Proof: We know that union of rectangles need not be a rectangle (As below

	Rℕ
R1	

Figure 3:

diagram). Now, Extend the sides of all rectangles $R_1, R_2, ..., R_N$ so that we get grid and finitely many rectangles $\tilde{R}_1, \tilde{R}_2, \cdots, \tilde{R}_M$ and partition J_1, J_2, \cdots, J_M of integers 1 and M such that

$$R_i = \bigcup_{j \in J_k} \tilde{R}_j$$
, $J_k \subset \{1, 2, ..., M\}$ and $i \in \{1, 2, ..., N\}$

Let $R \subset \bigcup_{k=1}^{N} R_k$ then $\widetilde{\widetilde{R_j}} = R \cap R_j$ where $\widetilde{\widetilde{R_j}}$ is some rectangle among $\tilde{R}_1, \tilde{R}_2, ..., \tilde{R}_M$. Hence $R = \bigcup_{j=1}^{N} \widetilde{\widetilde{R_j}}$ This implies R is almost disjoint union of finitely many other rectangles. Hence, By Lemma 1.1, $|R| = \sum_{j=1}^{N} |\widetilde{\widetilde{R_j}}| \le \sum_{j=1}^{N} |R_j|.$

Hence $|R| \leq \sum_{j=1}^{N} |R_j|.$

THEOREM 1.3: Every open subset \mathcal{O} of \mathbb{R} can be written as countable union of disjoint open intervals.

Proof: Let \mathcal{O} is open subset of \mathbb{R} , for each $x \in \mathcal{O}$. Since, \mathcal{O} is open, x is contained in some small interval.

Suppose that, I_x denote the largest open interval containing x and contained in \mathcal{O} . If

$$a_x = \inf \{a < x | (a, x) \subset \mathcal{O}\}$$
 and $b_x = \sup \{x < b | (x, b) \subset \mathcal{O}\}$

Therefore, $a_x < x < b_x$, $I_x = (a_x, b_x)$ this is our required largest interval containing x and contained in \mathcal{O}

Hence

$$\mathcal{O} = \bigcup_{x_j \in \mathcal{O}} I_{x_j}$$

claim 1: $I_x = I_y$ or $I_x \cap I_y = \phi$, for $x, y \in \mathcal{O}$.

Suppose that $I_x \cap I_y \neq \phi$ and $x \in I_x \cap I_y$ then $x \in I_x \cup I_y$ and $I_x \cup I_y \subset \mathcal{O}$, since I_x is maximal, we must have $I_x = (I_x \cup I_y)$. Similarly $I_y = (I_x \cup I_y)$, Hence $I_y = I_x$ or $I_x \cap I_y = \phi$

claim 2: $\{I_x\}_{x\in\mathcal{O}}$ is countable. We know that $\mathcal{O} = \bigcup_{x\in\mathcal{O}} I_x = \bigcup_{r_x\in I_x\in\mathcal{O}} I_x$, where r_x are rational numbers in I_x .

But rational numbers are countable, hence union contains countable intervals.

THEOREM 1.4: Every open subset \mathcal{O} of \mathbb{R}^d , $d \geq 1$ can be written as countable union of almost disjoint closed cubes.

Proof: Let \mathcal{O} is open subset of $\mathbb{R}^d, d \geq 1$

claim: There is countable collection \mathcal{A} of closed cubes whose interiors are disjoint and $\mathcal{O} = \bigcup Q$.

 $Q \in \mathcal{A}$ Procedure for collecting closed cubes of to form \mathcal{A} is as follows:

- 1. Consider grid in \mathbb{R}^d formed by taking all closed cubes of side length 1 whose vertices have integer co-ordinates.
- 2. Accept cubes as part of \mathcal{A} if cube Q is entirely contained in \mathcal{O} .
- 3. Tentatively accept cube Q if it intersect both \mathcal{O} and \mathcal{O}^c .
- 4. Reject cube Q if it is entirely contained in \mathcal{O}^c .
- 5. Bisect tentatively accepted cubes into 2^d cubes of side length 1/2.
- 6. Then accept those smaller cubes or reject them or tentatively accept them as earlier.
- 7. Repeat this procedure infinitely many times, we get collection \mathcal{A} of accepted cubes Q.

Figure 4: Decomposition of \mathcal{O} into almost disjoint cubes

As every cube contains a point with rational co-ordinates implies that collection \mathcal{A} is countable and consists of almost disjoint cubes.

Claim: $\mathcal{O} = \bigcup_{Q \in \mathcal{A}} Q$

We are considering cube Q contained in \mathcal{O} then $\mathcal{O} \supset \bigcup_{Q \in \mathcal{A}} Q$ [1] Now, Let $x \in \mathcal{O}$, there exists a cube of side length 2^{-N} containing x and that

Now, Let $x \in \mathcal{O}$, there exists a cube of side length 2^{-N} containing x and that is entirely contained in \mathcal{O} . hence $\mathcal{O} \subset \bigcup_{Q \in \mathcal{A}} Q$ [2]

Hence from [1] and [2], $\mathcal{O} = \bigcup_{Q \in \mathcal{A}} Q$

Exterior Measure:

Definition: Let $E \subset \mathbb{R}^d$, the exterior measure of E is denoted by m_*E and defined as $m_*E = \inf \sum_{j=1}^{\infty} |Q_j|$, where infimum is taken over all countable covering $E \subset \bigcup_{j=1}^{\infty} Q_j$ by closed cubes in \mathbb{R}^d .

Note: $0 \le m_* E \le \infty$

EXAMPLE 1: The exterior measure of a point in \mathbb{R} is zero.

Let, $E = \{x\}, x \in \mathbb{R}$ and r > 0, $\{x\} \subset [x - r, x + r] = Q$ then, $m_*E = \inf \{2r | E \subseteq Q\}$ where, infimum taken over non-negative 2r, Hence $m_*E = 0$ as r tends to 0.

EXAMPLE 2: The exterior measure of empty set is zero.

EXAMPLE 3: The exterior measure of a point in \mathbb{R}^d is zero.

EXAMPLE 4: The exterior measure of closed cube is equal to its volume in \mathbb{R}^d . Let $Q = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_d, b_d]$ be a closed cube in \mathbb{R}^d , then $(b_1 - a_1) = (b_2 - a_2) = \cdots = (b_d - a_d) = k$, for some constant k. Hence volume of cube $= |Q| = k^d$. Q covers itself, we must have $m_*Q \leq |Q|$. Therefore, it suffices to prove the reverse inequality.

Consider an arbitrary covering $Q \subset \bigcup_{j=1}^{\infty} Q_j$ by cubes, and note that it suffices

to prove that

$$|Q| \le \sum_{j=1}^{\infty} |Q_j|$$

For a fixed $\epsilon > 0$ we choose for each j an open cube S_j which contains Q_j , and such that

$$|S_j| \le (1+\epsilon) |Q_j|.$$

From the open covering $\bigcup_{j=1}^{\infty} S_j$ of the compact set Q, we may select a finite N

sub-covering like $Q \subset \bigcup_{j=1}^{j} S_j$. Taking the closure of the cubes S_j , we may apply

Lemma 1.2 to conclude $|Q| \leq \sum_{j=1}^{\infty} |S_j|$

Hence,

$$|Q| \le (1+\epsilon) \sum_{j=1}^{N} |Q_j| \le (1+\epsilon) \sum_{j=1}^{\infty} |Q_j|$$

Since ϵ is arbitrary, we get $m_*Q \ge |Q|$.

EXAMPLE 5: The exterior measure of \mathbb{R} is infinite.

EXAMPLE 6: If Q is an open cube then $m_*(Q) = |Q|$.

As Q is covered by its closure Q and |Q| = |Q|, implies $m_*(Q) \leq |Q|$. To prove reverse inequality, If $Q_0 \subseteq Q$ and Q_0 is closed cube then $m_*(Q_0) \leq m_*(Q)$. Since any covering of Q by a countable number of closed cubes is also a covering of Q_0 , hence $|Q_0| \leq m_*(Q)$.

EXAMPLE 7: The exterior measure of rectangle R is equal to its volume.

EXAMPLE 8: The exterior measure of \mathbb{R} is infinite.

EXAMPLE 9: Cantor set has exterior measure zero.

Remark: For every $\epsilon > 0$, there exists a covering $E \subset \bigcup_{j=1}^{\infty} Q_j$ with

$$\sum_{j=1}^{\infty} m_*(Q_j) \le m_*(E) + \epsilon.$$

Properties of the exterior measure: Property 1: (Monotonicity) If $E_1 \subseteq E_2$ then $m_*(E_1) \leq m_*(E_2)$. Let $\{Q_j\}$ be a covering of E_2 by closed cubes,

$$E_1 \subseteq E_2 \subseteq \bigcup_{j=1}^{\infty} Q_j.$$

Hence $\{Q_j\}$ is also covering of E_1 , implies $m_*(E_1) \leq \sum_{j=1}^{\infty} |Q_j|$. Now taking infimum on RHS of above inequality over all such $\{Q_j\}$ covering E_2 we get,

$$m_*(E_1) \le \inf\left\{\sum_{j=1}^{\infty} |Q_j| | E_2 \subseteq \bigcup_{j=1}^{\infty} Q_j\right\} \le m_*(E_2)$$

Hence $m_*(E_1) \le m_*(E_2)$

Property 2: (Countable sub-additivity) If
$$E = \bigcup_{j=1}^{\infty} E_j$$
, then $m_*(E) \leq$

 $\sum_{j=1}^{\infty} m_*(E_j).$

First, we may assume that each $m_*(E) < \infty$, for otherwise the inequality clearly holds. For any $\epsilon > 0$, the definition of the exterior measure yields for each j a

covering $E_j \subset \bigcup_{j=1}^{m} Q_{k,j}$ by closed cubes with

$$\sum_{j=1}^{\infty} |Q_j| \le m_*(E_j) + \frac{\epsilon}{2^j}.$$

. Then, $E \subset \bigcup_{j,k=1}^{\infty} Q_{k,j}$ is a covering of E by closed cubes, and therefore

$$m_*(E) \le \sum_{j,k} |Q_{k,j}| = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |Q_{k,j}|$$

Since this holds true for every $\epsilon > 0$, the second observation is proved. **Property 3:** If $E \subset \mathbb{R}^d$, then $m_*(E) = \inf m_*(\mathcal{O})$, where the infimum is taken over all open sets \mathcal{O} containing E.

By monotonicity on $E \subset \mathcal{O}$, it is clear that the inequality $m_*(E) \leq \inf m_*(\mathcal{O})$ holds. For the reverse inequality, let $\epsilon > 0$ and choose cubes Q_j such that $E \subset \bigcup_{j=1}^{\infty} Q_j$, with

$$\sum_{j=1}^{\infty} |Q_j| \le m_*(E) + \frac{\epsilon}{2}.$$

Let Q_j^0 denote an open cube containing Q_j , and such that $|Q_j^0| \le |Q_j| + \epsilon/2^{j+1}$. Then $\mathcal{O} = \bigcup_{j=1}^{\infty} Q_j^0$ is open, and by property 2

$$m_*(\mathcal{O}) \leq \sum_{j=1}^{\infty} m_*(Q_j^0)$$
$$= \sum_{j=1}^{\infty} |Q_j^0|$$
$$\leq \sum_{j=1}^{\infty} (|Q_j| + \epsilon/2^{j+1})$$
$$\leq \sum_{j=1}^{\infty} |Q_j| + \epsilon/2$$
$$\leq m_*(E) + \epsilon$$

. Hence $\inf m_*(\mathcal{O}) \leq m_*(E)$.

Property 4: If $E = E_1 \cup E_2$, and $d(E_1, E_2) > 0$, then $m_*(E) = m_*(E_1) + m_*(E_2)$.

By property 2, we know that, $m_*(E) \leq m_*(E_1) + m_*(E_2)$, so it suffices to prove the reverse inequality. We first select δ such that $d(E_1, E_2) > \delta > 0$ and choose a covering $E \subset \bigcup_{j=1}^{\infty} Q_j$ by closed cubes, with $\sum_{i=1}^{\infty} |Q_j| \leq m_*(E) + \epsilon.$

Now subdividing the cubes Q_j , assume that each Q_j has a diameter less than δ . In this case, each Q_j can intersect at most one of the two sets E_1 or E_2 . If we denote by J_1 and J_2 the sets of those indices j for which Q_j intersects E_1 and E_2 respectively, then $J_1 \cap J_2$ is empty, and we have $E_1 \subset \bigcup_{j \in J_1} Q_j$ as well as

 $E_2 \subset \bigcup_{j \in J_2} Q_j$. Therefore,

$$m_*(E_1) + m_*(E_2) \le \sum_{j \in J_1} |Q_j| + \sum_{j \in J_2} |Q_j|$$

$$\le \sum_{j=1}^{\infty} |Q_j|$$

$$\le m_*(E) + \epsilon.$$

Since ϵ is arbitrary, we get $m_*(E_1) + m_*(E_2) \le m_*(E)$

. **Property 5:** If a set *E* is the countable union of almost disjoint cubes $E = \bigcup_{j=1}^{\infty} Q_j$, then

$$m_*(E) = \sum_{j=1}^{\infty} |Q_j|.$$

. By property 2, $m_*(E) \leq \sum_{j=1}^{\infty} m_*(Q_j)$, here Q_j are closed cubes, so $m_*(Q_j) = |Q_j|$ hence,

$$m_*(E) \le \sum_{j=1}^{\infty} |Q_j|$$

For reverse inequality consider $\epsilon>0$ and $\widetilde{Q_j}$ be a cube strictly contained in Q_j such that

$$|Q_j| \le |\widetilde{Q_j}| + \frac{\epsilon}{2^j}$$

where ϵ is arbitrary but fixed. Then, for every N, the cubes $\widetilde{Q}_1, \widetilde{Q}_2, \cdots, \widetilde{Q}_N$ are disjoint, hence at a finite distance from one another, and repeated applications

of Property 4 imply

$$m_*(\bigcup_{j=1}^N \widetilde{Q_j}) = \sum_{\substack{j=1\\N}}^N m_*(\widetilde{Q_j})$$
$$= \sum_{\substack{j=1\\N}}^N |\widetilde{Q_j}|$$
$$\ge \sum_{\substack{j=1\\N}}^N \left\{ |Q_j| - \frac{\epsilon}{2^j} \right\}$$

As limit N tends to infinity we get, $m_*(\bigcup_{j=1}^{\infty} \widetilde{Q_j}) \ge \sum_{j=1}^{\infty} |Q_j| - \epsilon$ and monotonicity

on $\bigcup_{j=1}^{\infty} \widetilde{Q_j} \subset E$ gives, $m_*(E) + \epsilon \geq \sum_{j=1}^{\infty} |Q_j|$ So as $\epsilon \to 0$ we get,

$$m_*(E) \ge \sum_{j=1}^{\infty} |Q_j|.$$

Measurable Sets and the Lebesgue Measure:

Definition: A subset E of \mathbb{R}^d is **Lebesgue measurable** or **measurable**, if for any $\epsilon > 0$ there exists an open set \mathcal{O} with $E \subset \mathcal{O}$ and $m_*(\mathcal{O} - E) \leq \epsilon$. If E is measurable, then $m(E) = m_*(E)$.

Property 1: Every open set in \mathbb{R}^d is measurable. Hint: Consider $\mathcal{O} = E$.

Property 2: If $m_*(E) = 0$ then E is measurable. In particular, if F is a subset of a set of exterior measure 0, then F is measurable.

We know for any $\epsilon > 0$ there exists an open set \mathcal{O} with $E \subset \mathcal{O}$ and $m_*(\mathcal{O} - E) \leq \epsilon$.

Property 3: A countable union of measurable sets is measurable.

Let E_1, E_2, \cdots are measurable sets and $E = \bigcup_{j=1}^{\infty} E_j$. Given $\epsilon > 0$ there exist open set \mathcal{O}_j with $E_j \subset \mathcal{O}_j$ and $m_*(\mathcal{O}_j - E_j) \leq \epsilon/2^j$. Then the union $\mathcal{O} = \bigcup_{j=1}^{\infty} \mathcal{O}_j$ is open, as $\bigcup_{i=1}^{\infty} E_j \subset \bigcup_{j=1}^{\infty} \mathcal{O}_j$ hence $E \subset \mathcal{O}$ and $(\mathcal{O} - E) \subset \bigcup_{j=1}^{\infty} (\mathcal{O}_j - E_j)$,

so monotonicity and sub-additivity of the exterior measure imply,

$$m_*(\mathcal{O}-E) \subset \sum_{j=1}^{\infty} m_*(\mathcal{O}_j - E_j) \leq \epsilon.$$

Hence, E is measurable set.

Department of mathematics

Property 4: Closed sets are measurable.

Every closed set F can be written as the union of compact sets, say $F = \bigcup_{k=1}^{\infty} (F \cap B_k)$, where B_k denotes the closed ball of radius k centered at the

origin; so, it is enough to prove every compact set is measurable.

So, suppose F is compact set, let $\epsilon > 0$ then there exist open set \mathcal{O} with $F \subset \mathcal{O}$ and $m_*(\mathcal{O}) \leq m_*(F) + \epsilon$. Since F is closed, $\mathcal{O} - F$ is open, and by Theorem 1.4 we may write this difference as a countable union of almost disjoint closed cubes.

Hence, $\mathcal{O} - F = \bigcup_{j=1}^{\infty} Q_j$. Now for a fixed $N \in \mathbb{N}$, the finite union $K = \bigcup_{i=1}^{N} Q_j$ is compact; therefore d(K, F) > 0. Since $(K \cup F) \subset \mathcal{O}$ Observations 1, 4, and 5 of

the exterior measure imply

$$m_*(\mathcal{O}) \ge m_*(F) + m_*(K) = m_*(F) + \sum_{j=1}^N m_*(Q_j)$$

Hence $\sum_{j=1}^{N} m_*(Q_j) \le m_*(\mathcal{O}) - m_*(F) \le \epsilon$ implies F is measurable set. Lemma 1.5: If F is closed, K is compact, and these sets are disjoint, then

d(F,K) > 0.

Proof: As F is closed, for each point $x \in K$, there exists $\delta_x > 0$ so that $d(x,F) > 3\delta_x$. Since $\bigcup B_{2\delta_x}(x)$ covers K, and K is compact, so we may find a finite subcover of K,

$$K \subseteq \bigcup_{j=1}^{N} B_{2\delta_j}(x_j)$$

Let $\delta = \min(\delta_1, \delta_2, \cdots, \delta_N)$, then our claim is $d(K, F) \ge \delta > 0$. If $x \in K$ then $x \in B_{2\delta_i}(x_i)$, for some i and $y \in F$, then for all i we have $|x_i - x| \leq 2\delta_j$, and by construction $|y - x_i| \geq 3\delta_i$. Therefore

$$|y - x| \ge |y - x_i| - |x_j - x| \ge 3\delta_i - 2\delta_j$$
$$|y - x| \ge \delta$$

Hence d(F, K) > 0.

EXAMPLE 1: Give an example of two subsets E and F of \mathbb{R} such that $E \cap F = \phi$ and d(E, F) = 0.

EXAMPLE 2: Give an example of two sets E and F such that $E \cap F = \phi$ and both are bounded but still d(E, F) = 0.

Hint:
$$E = \{0\}$$
 and $F = \{1/n | n \in \mathbb{N}\}$

EXAMPLE 3: Give an example of two sets E and F such that $E \cap F = \phi$ and both are closed but still d(E, F) = 0.

Property 5: The complement of a measurable set is measurable.

If E is measurable, then for every positive integer n we may choose an open set \mathcal{O}_n with $E \subseteq \mathcal{O}_n$ and

$$m_*(\mathcal{O}_n - E) \le 1/n.$$

The complement \mathcal{O}_n^c is closed set, hence by property (4), \mathcal{O}_n^c measurable, which implies that the union $S = \bigcup_{j=1}^{\infty} \mathcal{O}_n^c$ is also measurable by Property (3). Now $E \subseteq \mathcal{O}_n$ implies $S \subseteq E^c$ and S is measurable.

$$(E^c - S) \subset (\mathcal{O}_n - E),$$

such that

$$m_*(E^c - S) \le \frac{1}{n}$$
, for all n .

Therefore, $m_*(E^c - S) = 0$, Hence by Property (2) $E^c - S$ is measurable. We know union of two measurable sets is measurable,

$$(E^c - S) \cup S = E^c$$

Hence, E^c is measurable.

Property 6: A countable intersection of measurable sets is measurable. Let for each j, E_j be measurable set then by property (5), E_j^c is also measurable set. Hence by property (3) there union $\bigcup E_j^c$ is also measurable. Again by property (5),

$$(\bigcup E_i^c)^c = \cap E_j$$

is measurable.

Theorem 1.6: If E_1, E_2, \cdots are disjoint measurable sets and $E = \bigcup_{j=1}^{\infty} E_j$ then

$$m(E) = \sum_{j=1}^{\infty} m(E_j)$$

Notations:

- 1. $E_k \nearrow E : E_1, E_2, \cdots$ is countable collection of subsets of \mathbb{R}^d that increases to E, and $E_k \subseteq E_{k+1}, \forall k$ and $E = \bigcup_{k=1}^{\infty} E_k$.
- 2. $E_k \searrow E : E_1, E_2, \cdots$ is countable collection of subsets of \mathbb{R}^d that decreases to E, and $E_k \supseteq E_{k+1}, \forall k$ and $E = \bigcap_{k=1}^{\infty} E_k$.

Theorem 1.7: Suppose E_1, E_2, \cdots are measurable subsets of \mathbb{R}^d

1. If $E_k \nearrow E$, then $m(E) = \lim_{N \to \infty} m(E_N)$.

0

2. If $E_k \searrow E$ and $m(E_k) < \infty$ for some K, then $m(E) = \lim_{N \to \infty} m(E_N)$.

Proof 1: Let $G_1 = E_1, G_2 = E_2 - E_1 = E_2 \cap E_2^c$, and in general

$$G_k = E_k - E_{k-1} = E_k \cap E_{k-1}^c, \text{ for } k \ge 2.$$

By their construction, the sets G_k are measurable, disjoint, and

$$E = \bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} G_k$$

Hence by theorem (1.6),

$$m(E) = \sum_{j=1}^{\infty} m(G_j) = \lim_{N \to \infty} \sum_{j=1}^{N} m(G_j) = \lim_{N \to \infty} m(\bigcup_{j=1}^{N} G_k)$$
$$\therefore m(E) = \lim_{N \to \infty} m(E_N).$$

2. Let $E_k \searrow E$ and $m(E_1) < \infty$ and

$$G_k = E_k - E_{k+1}, \quad \forall k$$

 G_k and E are disjoint measurable sets. and

$$E_1 = E \cup \bigcup_{k=1}^{\infty} G_k$$

By theorem (1.6)

$$m(E_1) = m(E) + \sum_{k=1}^{\infty} m(G_k) = m(E) + \sum_{k=1}^{\infty} m(E_k - E_{k+1})$$

= $m(E) + \lim_{N \to \infty} \sum_{k=1}^{N} (mE_k - mE_{k+1})$
= $mE + mE_1 - \lim_{N \to \infty} mE_{N+1}$

Hence,

$$m(E) = \lim_{N \to \infty} m(E_N).$$

Give counterexample for theorem 1.7.2 **Symmetric Difference:** Let E and F be two sets, then symmetric difference between E and F is denoted by $E \triangle F$ and defined as

$$E \triangle F = (E - F) \cup (F - E)$$

Theorem 1.8: Suppose *E* is a measurable subset of \mathbb{R}^d . Then, for every $\epsilon > 0$:

- 1. There exists an open set \mathcal{O} with $E \subset \mathcal{O}$ and $m(\mathcal{O} E) \leq \epsilon$.
- 2. There exists a closed set F with $F \subset E$ and $m(E F) \leq \epsilon$.
- 3. If m(E) is finite, there exists a compact set K with

$$K \subset E$$
 and $m(E - K) \leq \epsilon$.

4. If m(E) is finite, there exists a finite union $F = \bigcup_{j=1}^{N} Q_j$ of closed cubes such that $m(E \triangle F) \leq \epsilon$.

Proof 1.: *E* is measurable subset of \mathbb{R}^d , hence by defination of measurable set there exist open set \mathcal{O} with $E \subset \mathcal{O}$ and $m(\mathcal{O} - E) \leq \epsilon$.

2. E is measurable subset of \mathbb{R}^d , then E^c is also measurable. Apply part 1. on E^c , there exist open set \mathcal{O} with $E^c \subset \mathcal{O}$ and $m(\mathcal{O} - E^c) \leq \epsilon$. If we let $F = \mathcal{O}^c$ then F is a closed set such that $F \subset E$ and $E - F = \mathcal{O} - E^c$, Hence $m(E - F) \leq \epsilon$.

3. Let E is measurable subset of \mathbb{R}^d and $m(E) < \infty$, according to part 2. we get closed set F containing E such that $m(E - F) \leq \epsilon$.

For each n, we let $B_n(0)$ denote the ball centered at the origin of radius n, we approximate F by compact sets define as $K_n = F \cap B_n$. Then $E - K_n$ is a sequence of measurable sets that decreases to E - F,

$$\lim_{n \to \infty} m(E - K_n) = m(E - F) \le \epsilon.$$

and since $m(E) < \infty$. So $K = K_n$ is our required compact set.

4. Let E is measurable subset of \mathbb{R}^d , choose a family of closed cubes $\{Q_j\}_{j=1}^{\infty}$

such that $E \subseteq \bigcup_{j=1}^{\infty} Q_j$ and For $\epsilon > 0$,

$$\sum_{j=1}^{\infty} |Q_j| \le m(E) + \epsilon/2.$$

Since $m(E) < \infty$, the series converges and there exists N > 0 such that

$$\sum_{j=1}^{\infty} |Q_j| < \epsilon/2.$$

If
$$F = \bigcup_{j=1}^{N} Q_j$$
, then

$$m(E \triangle F) = m(E - F) + m(F - E) = m(\bigcup_{j=N+1}^{\infty} Q_j) + m(\bigcup_{j=1}^{N} Q_j - E)$$

Hence,

$$m(E \triangle F) = \sum_{j=N+1}^{\infty} |Qj| + \sum_{j=1}^{\infty} |Qj| - m(E) \le \frac{\epsilon}{2} + \frac{\epsilon}{2}$$
$$\therefore m(E \triangle F) \le \epsilon.$$

Invarience Properties of Lebesgue Measure:

1. **Translationn Invarience:** If *E* is measurable set and $h \in \mathbb{R}^d$, then the set $E_h = E + h = x + h | x \in E$ is also measurable, and $m(E) = m(E_h)$. Let *E* be a measurable set, then for $\epsilon > 0$ by Theorem 1.8.1, there exist open set \mathcal{O} with $E \subset \mathcal{O}$ and $m(\mathcal{O} - E) \leq \epsilon$, then for set E + h consider open set $\mathcal{O} + h$ such that

$$m(\mathcal{O} + h - (E + h)) = m(\mathcal{O} - E) < \epsilon.$$

which gives E + h set is measurable. Now we will prove that m(E+h) = m(E), as E + h set is measurable $m(E+h) = m_*(E)$

$$m(E+h) = \inf\{\sum_{j=1}^{\infty} |Q_j + h| | E + h \subseteq \bigcup_{j=1}^{\infty} Q_j + h\}$$
$$= \inf\{\sum_{j=1}^{\infty} |Q_j| | E \subseteq \bigcup_{j=1}^{\infty} Q_j\}$$

Hence, $m(E_h) = m_*(E) = m(E)$.

2. Dilation Invariance: If E is measurable set in \mathbb{R}^d and $\delta > 0$ then

$$m(\delta E) = \delta^d m(E).$$

Let *E* is measurable set in \mathbb{R}^d then for $\epsilon > 0$ by Theorem 1.8.1 , there exist open set \mathcal{O} with $E \subset \mathcal{O}$ and $m(\mathcal{O} - E) \leq \epsilon$, then for set δE consider open set $\delta \mathcal{O}$ such that

$$m(\delta \mathcal{O} - \delta E) < \epsilon$$
. and $\delta E \subseteq \delta \mathcal{O}$

which gives δE set is measurable.

$$m(\delta E) = m_*(\delta E)$$

= $\inf\{\sum_{j=1}^{\infty} |\delta \mathcal{O}_j| | \delta E \subseteq \bigcup_{j=1}^{\infty} \delta \mathcal{O}_j\}$
= $\inf\{\sum_{j=1}^{\infty} \delta^d |\mathcal{O}_j| | \delta E \subseteq \bigcup_{j=1}^{\infty} \delta \mathcal{O}_j\}$
= $\delta^d \inf\{\sum_{j=1}^{\infty} |\mathcal{O}_j| | E \subseteq \bigcup_{j=1}^{\infty} \mathcal{O}_j\}$
= $\delta^d m_*(\delta E)$
 $m(\delta E) = \delta^d m(\delta E)$

3. Reflection Invariance: If E is measurable set in \mathbb{R}^d then -E is also measurable set and m(-E) = m(E).

σ -Algebra and Borel Sets:

A σ algebra of a set is collection of subset of \mathbb{R}^d that is closed under countable unions, countable intersection and complements.

Question 1.:Check collection of open sets in \mathbb{R} is σ algebra?

Question 2.:Check collection of all measurable sets in \mathbb{R}^d is σ algebra?

Borel σ -Algebra: Smallest σ -algebra on \mathbb{R}^d which contains all open set in \mathbb{R}^d , or Intersection of all σ -algebra that contain the open sets.

Elements of this σ -algebra are called as Borel sets.

 G_{δ} Sets: A set G in \mathbb{R}^d is said to be G_{δ} set if G can be expressed as intersection of countable number of open sets.

 F_{σ} Sets: A set $F \subseteq \mathbb{R}^d$ is said to be F_{σ} , if F_{σ} can be expressed as countable union of closed sets.

Every F_{σ} and G_{δ} sets are Borel sets.

MEASURABLE FUNCTIONS:

Characteristic function on set E : Let $E \subseteq X$ then characteristic function on E is defined as

$$\chi_E(x) = \begin{cases} 1 & x \in E \\ 0 & x \notin E. \end{cases}$$

Step Function: A step function f(x) is finite linear characteristic function on rectangle in \mathbb{R}^d ,

$$f(x) = \sum_{j=1}^{N} c_i \chi_{R_i}(x).$$

Simple Function: Let E_1, E_2, \dots, E_n be measurable set in \mathbb{R}^d and c_1, c_2, \dots, c_n be real constants then simple function ϕ is defined as

$$\phi(x) = \sum_{i=1}^{n} c_i \chi_{E_i}(x).$$

Note: Each step function is simple function.

Measurable function: A function $f : E \to \mathbb{R}$ where $E \subseteq \mathbb{R}^d$ is said to be measurable function if

$$f_a = \{x \in E | f(x) < a\} = f^{-1}[-\infty, a]$$

is measurable set for every $a \in \mathbb{R}$.

Example 1. $f(x) = x^2, x \in \mathbb{R}$ is a measurable function.

Example 2. Characteristic function on interval [0, 1] is a measurable function.

Example 3. Every continuous function from \mathbb{R} to \mathbb{R} is a measurable function.

Example 4. Constant functions are measurable functions.

Lemma 1.9: Following statements are equivalents:

- (i) f is a measurable function.
- (ii) $\forall a; \{x | f(x) \le a\}$ is measurable set.
- (iii) $\forall a; \{x | f(x) > a\}$ is measurable set.
- (iv) $\forall a; \{x | f(x) \ge a\}$ is measurable set.

$$(i) \implies (ii)$$

Let $E \subseteq \mathbb{R}^d$ and $f: E \to \mathbb{R}$ be a measurable function. implies set $\forall a; \{x | f(x) < a\}$ is a measurable set. Hence for each $n \in \mathbb{N}$ set

$$E_n = \{x \in E | f(x) < a + \frac{1}{n}\}$$

is a measurable set, and so there intersection is also measurable set, and intersection is

$$\bigcap_{n=1}^{\infty} E_n = \{ x \in E | f(x) \le a \}, \text{ for all } a$$

 $(ii) \implies (iii)$

 $\{x \in E | f(x) \leq a\}$, for all a is measurable set, so there complement is also measurable,

$$\{x \in E | f(x) \le a\}^c = \{x \in E | f(x) > a\}.$$

 $(iii) \implies (iv)$

Suppose $\{x \in E | f(x) > a\}$ is a measurable set, so for each n the set

$$E_n = \{ x \in E | f(x) > a - \frac{1}{n} \}$$

is measurable set, so their intersection is also measurable and their intersection is

$$\forall a; \qquad \bigcap_{n=1}^{\infty} \{ x \in E | f(x) > a - \frac{1}{n} \} = \{ x | f(x) \ge a \}$$

 $(iv)\implies (i)$

Let $\{x|f(x) \ge a\}$ is a measurable set, then its complement is also measurable set and its complement is

$$\{x | f(x) \geq a\}^c = \{x | f(x) < a\}$$

Hence, f is measurable function.

Remark: Let f be a measurable function then inverse image of interval (a, b) is also measurable.

Let f be a measurable function, then

$$f^{-1}(a,b) = \{x | f(x) \in (a,b)\} \\ = \{x | a < f(x)\} \cap \{x | f(x) < b\}$$

Hence, $f^{-1}(a, b)$ is intersection of measurable sets, so $f^{-1}(a, b)$ is measurable. **property 1:** The finite-valued function f is measurable if and only if $f^{-1}(\mathcal{O})$ is measurable for every open set \mathcal{O} , and if and only if $f^{-1}(F)$ is measurable for every closed set F.

property 2: Any continuous function is measurable,

Let $S \subseteq \mathbb{R}^d$ and $f: S \to \mathbb{R}$ be continuous function and \mathcal{O} be open set in \mathbb{R}^d . If f is continuous function then inverse image of \mathcal{O} is open in \mathbb{R}^d . but every open set is measurable in \mathbb{R}^d . Hence, $f^{-1}(\mathcal{O})$ is measurable set hence by property 1, f is measurable function. But, every measurable function need not be continuous. Counterexample is charachteristic function on interval [0, 1].

property 3: If f is continuous on \mathbb{R}^d then f is measurable. If f is measurable and finite-valued, and Φ is continuous, then $\Phi \circ f$ is measurable.

Let $f: S \to T$ and $\phi: T \to R$ then $\phi \circ f: S \to R$ Let \mathcal{O} be open set in R then $\phi^{-1}(\mathcal{O})$ is open set in T and measurable set. Then by prooperty (1) we get

$$f^{-1}(\phi^{-1}(\mathcal{O})) = (\phi \circ f)^{-1}(\mathcal{O}), \quad \forall \mathcal{O} \subset R$$

is measurable set in S. Hence $\phi \circ f$ is a measurable function. **property 4:** Suppose $\{f_n\}$ is a sequence of measurable functions then

- (a) $\sup_{n \in \mathbb{N}} f_n(x)$ and $\inf_{n \in \mathbb{N}} f_n(x)$ are measurable functions.
- (b) $\limsup_{n \to \infty} f_n(x)$ and $\liminf_{n \to \infty} f_n(x)$ are measurable functions.

Let $h(x) = \sup_{n \in \mathbb{N}} f_n(x)$ so we have to prove in part (a) that h is measurable function, where f_n is sequence of measurable function, observe that

$$\{x \in \mathbb{R}^d | h(x) > a\} = \bigcup_{n=1}^{\infty} \{x \in \mathbb{R}^d | f_n(x) > a\}.$$

Let $E_n = \{x \in \mathbb{R}^d | f_n(x) > a\}$, then $\bigcup_{n=1}^{\infty} E_n = \{x \in \mathbb{R}^d | h(x) > a\}$

Each set E_n is measurable set, then their union is also measurable set, Hence

$$\{x \in \mathbb{R}^d | h(x) > a\}$$

is measurable set. Implies that h is a measurable function. Let $g(x) = \inf_{n \in \mathbb{N}} f_n(x)$, and set below is measurable

$$E_n = \{ x \in \mathbb{R}^d | f_n(x) < a \}$$

Then their intersection is also measurable,

$$\bigcap_{n=1}^{\infty} E_n = \{ x \in \mathbb{R}^d | g(x) < a \}$$

Hence, function g is measurable. $\limsup_{n\to\infty} f_n(x) = \lim_{m\geq 1} \sup_{n\geq m} f_n(x)$ Let f_n be a sequence of measurable functions, then

$$t_i = \sup\{f_i(x), f_{i+1}(x), \cdots\}$$

are measurable sets, so $\inf(t_i)$ is also measurable function. Hence $\limsup f_n(x)$

is a measurable function.

Similarly, $\liminf f_n(x)$ is a measurable function.

Property 5: $\stackrel{"}{\text{Limit}}$ of measurable functions is measurable function. Since

$$f(x) = \limsup_{n \to \infty} f_n(x) = \liminf_{n \to \infty} f_n(x),$$

then by property 3. we get f is a measurable function.

Question: Show that $f_n(x) = \arctan(nx), x \in \mathbb{R}$ converges to measurable function.

Property 6: If f and g are measurable, then

- (i) The integer powers $f^k, k \ge 1$ are measurable.
- (ii) f + g and fg are measurable if both f and g are finite-valued.

For part (i), Let f be a measurable function, If k is odd then

$$\{x|f^k(x) > a\} = \{x|f(x) > a^{1/k}\}$$

As f is measurable function, set $\{x|f(x) > a^{1/k}\}$ is measurable. Implies set $\{x|f^k(x) > a\}, \forall a$ is also measurable, hence $f^k, k \ge 1$ is a measurable function. For part (ii), Let f and g are finite-valued measurable functions. to prove f + g is a measurable function consider,

$$\begin{aligned} \{x|(f+g)(x) > a\} &= \{x|f(x) + g(x) > a\} \\ &= \{x|f(x) > a - g(x)\} \\ &= \bigcup_{r \in \mathbb{Q}} [\{x|f(x) > a - x\} \cap \{x|g(x) > r\}] \end{aligned}$$

Hence $\{x|(f+g)(x) > a\}$ is a countable union of measurable sets so measurable, from this we get f + g is a measurable function.

Now to prove fg is a measurable function, we know that

$$fg = \frac{(f+g)^2 - (f-g)^2}{4}$$

If f and g are measurable functions then -g, f + g and f - g are measurable function. Use part (i) for k = 2 we get $(f + g)^2$ and $(f - g)^2$ are measurable, hence fg is a measurable function.

Question: If f and g are measurable functions then show that

(a) |f| is a measurable function.

(b) $\max\{f, g\}$ and $\min\{f, g\}$ are measurable functions.

Note: f = g almost everywhere if and only if the set $\{x | f(x) \neq g(x)\}$ is set of measure zero.

property 7: Suppose f is measurable, and f(x) = g(x) for almost every x then g is measurable.

Approximation by simple functions or step functions:

Theorem 1.10: Suppose f is a non-negative measurable function on \mathbb{R}^d then there exist an increasing sequence of non-negative simple functions $\{\phi_k\}_{k=1}^{\infty}$ that converges pointwise to f, such that

$$\phi_k(x) \le \phi_{k+1}(x)$$
 and $\lim_{k \to \infty} \phi_k(x) = f(x,)$ for all x .

Theorem 1.11: Suppose f is a measurable function on \mathbb{R}^d then there exist a sequence of simple functions $\{\phi_k\}_{k=1}^{\infty}$ that satisfies

$$|\phi_k(x)| \leq |\phi_{k+1}(x)|$$
 and $\lim_{x \to \infty} \phi_k(x) = f(x, x)$ for all x .

Theorem 1.12: Suppose f is measurable function on \mathbb{R}^d then there exist a sequence of step functions $\{\chi_k\}_{k=1}^{\infty}$ that converges pointwise to f(x), for almost every x.

Littlewood's three principles: For measurable sets and measurable functions,

- (i) Every set in nearly a finite union of intervals.
- (ii) Every function is nearly continuous.
- (iii) Every convergent sequence is nearly uniformly convergent.

Theorem 1.12 (Egorov's Theorem) Suppose $\{f_k\}_{k=1}^{\infty}$ is a sequence of measurable functions defined on a measurable set E with $m(E) < \infty$, and assume that $f_k \to f$ almost everywhere on E. Given $\epsilon > 0$, we can find a closed set $A_{\epsilon} \subset E$ such that $m(E - A_{\epsilon}) \leq \epsilon$ and $f_k \to f$ uniformly on A_{ϵ} .

Theorem 1.12 (Lusin's Theorem) Suppose f is measurable and finite valued on E with E of finite measure, then for every $\epsilon > 0$ there exist a closed set F_{ϵ} with

$$F_{\epsilon} \subset E \text{ and } m(E - F_{\epsilon}) \leq \epsilon$$

and such that $f|_{F_{\epsilon}}$ is continuous.

Theorem 5.1: Suppose A and B are measurable sets in \mathbb{R}^d and their sum A + B is also measurable.