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Chapter 2. Integration Theory

Canonical form of simple function:
Let φ be a simple function given by

φ(x) =

n∑
i=1

ciχEi(x),

then φ is said to be canonical form if all family of ci, i = 1, 2...n are distinct and
{Ei}ni=1 are distinct measurable sets.
Note: Any simple function can be expressed in its canonical form by changing
the sets {Ei}ni=1 and constants ci.
Question: Convert the following simple functions in its canonical form:

1. φ(x) = χ[0,1] + 3χ(1,2] + χ(2,3] − χ(3,4]

2. φ(x) = 2χ[0,3] + 3χ(1,4]

Answer: In problem 1. intervals are disjoint but coe�cient are not disjoint so
we take union of those intervals whose coe�cients are same and check that it
will give us canonical form of 1. as,

φ(x) = χ[0,1]∪(2,3] + 3χ(1,2] − χ(3,4]

In problem 2. coe�cients are disjoint but intervals are not, so �nd coe�cient
of common interval by taking sum of coe�cients of intersecting intervals, Here
common interval is (1, 3] and its coe�cient will become 2 + 3 = 5, we get
connonical form of problem 2. as,

φ(x) = 2χ[0,1] + 5χ(1,3] + 3χ(3,4]

STAGE I : SIMPLE FUNCTIONS

Lebesgue Integral of Simple function:

Let φ(x) =

n∑
i=1

ciχEi(x) be a simple function in canonical form then legesgue

integral of φ is given by

∫
φ =

n∑
i=1

cim(Ei)

Note: If E ⊂ Rd be measurable subset with �nite measure then φ(x)χE(x) is
also simple function then ∫

φ(x) =
∫
φ(x)χE(x)dx.

Proposition 2.1: The integral of simple function satis�es following properties:
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(I) Independence of representation: If φ =

N∑
k=1

akχEk is any representa-

tion of φ then

∫
φ =

N∑
k=1

akm(Ek).

(II) Linearity: If φ and χ are simple and a, b ∈ R then∫
(aφ+ bψ) = a

∫
φ+ b

∫
ψ.

(III) Additivity: If E and F are disjoint subsets of Rd with �nite measure
then ∫

E∪F
f =

∫
E

f +
∫
F

f .

(IV) Monotonicity: If φ ≤ ψ are simple functions then
∫
φ ≤

∫
ψ.

(V) Triangle Inequality: If φ is a simple function then |φ| is also simple
function and

|
∫
φ| ≤

∫
|φ|.

Proof:

(I) Let φ =

N∑
k=1

akχEk

Case (i) Ek are disjoint and ak are not disjoint and non-zero. For each
distinct non-zero value a among {ak} we de�ne,

E′a = ∪Ek

Where union is taken over indices k such that ak = a now, E′a are disjoint
so

m(E′a) =
∑
km(Ek)

Then we get,

∫
φ =

∑
am(E′a) =

N∑
k=1

akm(Ek)

Case (ii) Ek are not disjoint and ak are disjoint and non-zero. Then we
can re�ne the decomposition ∪Ek by �nding disjoint sets E∗1 , E

∗
2 , · · · , E∗n

with proprerty

N⋃
k=1

Ek =

n⋃
j=1

E∗j
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For each j, a∗j =
∑
ak where sum is over all k such that Ek contains E∗j

so φ =

n∑
j=1

a∗jχE∗
j
Hence,

∫
φ =

∑
a∗jmE

∗
j =

N∑
k=1

akm(Ek)

Hence,
∫
φ =

N∑
k=1

akm(Ek).

(II) Let φ =

N∑
k=1

akχEk and ψ =

M∑
k=1

bkχFk

consider P = max{M,N} then

∫
(aφ+ bψ) =

P∑
k=1

[a.akm(Ek) + b.bkm(Fk)]

= a

N∑
k=1

akm(Ek) + b

M∑
k=1

bkm(Fk)

= a
∫
φ+ b

∫
ψ

(III) Let E and F are disjoint subsets of Rd with �nite measure and observe
that

χE∪F = χE + χF

Let f be a simple function then,∫
E∪F

f =

∫
R

f.χE∪F =

∫
R

f(χE + χF )

=

∫
R

f.χE +

∫
R

f.χF

Hence,
∫

E∪F
f =

∫
E

f +
∫
F

f .

(IV) Firstly we will prove that if φ ≥ 0 be a simple function then
∫
φ ≥ 0.

Let φ ≥ 0 and φ(x) =

N∑
i=1

ciχEi(x) then ci ≥ 0 and

∫
φ =

N∑
i=1

cim(Ei) ≥ 0

=⇒
∫
φ ≥ 0

Now, φ ≤ ψ are a simple functions then ψ−φ ≥ 0 is also simple function,
hence

∫
ψ− φ =

∫
ψ−

∫
φ ≥ 0 so we get that

∫
ψ ≥

∫
φ. then

∫
φ ≤

∫
ψ.
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(V) Let φ is simple function and φ(x) =

N∑
i=1

ciχEi(x) then |φ(x)| =
N∑
i=1

|ci|χEi(x)

and |φ| is simple function with

|
∫
φ| = |

N∑
i=1

cim(Ei)|

≤
N∑
i=1

|ci|m(Ei)

=
∫
|φ|

Hence |
∫
φ| ≤

∫
|φ|.

STAGE II: Bounded Functions Supported on a Set of Finite
Measure:

Support of a function: Let f be a measurable function on Rn then set of all
points where f does not vanish is called support of function

supp(f) = {x|f(x) 6= 0}

f is supported on a set E, if f(x) = 0 whenever x /∈ E.
Question: Find support of following functions.
sin(x) and f(x, y) = x2 + y2 − 9

Lemma 2.2: Let f be a bounded function supported on a set E of �nite mea-
sure. If {φn}∞n=1 is any sequence of simple functions bounded by M supported
on E,and with φn(x)→ f(x) for almost every x, then

1. The limit lim
n→∞

∫
φn exists.

2. If f = 0 almost everywhere then the limit lim
n→∞

∫
φn = 0

For part 1. Let In =
∫
E

φn, it is enough to prove that {In}∞n=1 is cauchy sequence

in R.
Let ε > 0 and consider

|In − Im| = |
∫
E

φn −
∫
E

φm| = |
∫
E

(φn − φm)| ≤
∫
E

|φn − φm|

By Egorov's theorem there exist closed set Aε ⊂ E such that m(E − Aε) ≤ ε
and φn → f uniformly converges on Aε, means

|φn − φm| < ε,∀m,n ≥M

where M is large natural number. Now splite E into two sets Aε and E −Aε,

|In − Im| ≤
∫
Aε

|φn − φm|+
∫

E−Aε
|φn − φm|

≤
∫
Aε

ε+ 2
∫

E−Aε
M

≤ εm(Aε) + 2Mε
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RHS tends to zero as ε→ 0, hence |In − Im| → 0, as m,n→∞ and ε→ 0.
Hence {In}∞n=1 is cauchy sequence in R and every cauchy sequence in R is
convergent thats implies {In}∞n=1 is convergent sequence in R.
Hence, the limit lim

n→∞
In = lim

n→∞

∫
φn exists.

For part 2. Let f = 0 almost everywhere with In =
∫
E

φn and ε > 0 then

|In| = |
∫
E

φn| ≤
∫
E

|φn|

By Egorov's theorem there exist closed set Aε ⊆ E such that m(E − Aε) ≤ ε
and φn → 0 uniformly converges on Aε, means

|φn − 0| < ε,∀n ≥M

where M is large natural number. Now splite E into two sets Aε and E − Aε
then,

|In| =
∫
Aε

|φn|+
∫

E−Aε

|φn|

≤ εm(Aε) +

∫
E−Aε

M

= εm(Aε) +Mm(E −Aε)
≤ εm(Aε) +Mε

note RHS tends to zero as ε tends to zero, hence In → 0.
Integration of bounded function supported on set of �nite measure:
It is de�ned as ∫

f(x)dx = lim
n→∞

∫
φn(x)dx.

where {φn} is sequence of simple functions satisfying

(a) |φn| ≤M ,

(b) Each function φn is supported on support of f

(c) φn→ f for almost every x.

Proposition 2.3: Let f and g be bounded function supported on set of �nite
measure then they satis�es following properties:

(I) Linearity: If a, b ∈ R then∫
(af + bg) = a

∫
f + b

∫
g.

(II) Additivity: If E and F are disjoint subsets of Rd with �nite measure
then ∫

E∪F
f =

∫
E

f +
∫
F

f .

(III) Monotonicity: If f ≤ g then
∫
f ≤

∫
g.
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(IV) Triangle Inequality: |f | be bounded function supported on set of �nite
measure and

|
∫
f | ≤

∫
|f |.

All these properties follows by approximation by simple functions and the prop-
erties of integral of simple functions given in Proposition 2.1.

Theorem 2.4: Bounded Convergence Theorem: Suppose that {fn} is a
sequence of measurable functions that are all bounded by M are supported on
set E of �nite measure, and fn(x) → f(x) almost every x as n → ∞ . Then f
is measurable, bounded, supported on E for almost every x, and∫

|fn − f | → 0 as n→∞

Consequently, ∫
fn → f as n→∞.

Proof: {fn} is a sequence of measurable functions and fn → f hence f is
measurable function then,
By Egorov's theorem there exist closed set Aε ⊆ E such that m(E − Aε) ≤ ε
and fn → f uniformly on Aε, means

|fn − f | < ε,∀n ≥M,

where M is large natural number. Now splite E into two sets Aε and E − Aε
then,

|
∫
E

(fn − f)| ≤
∫
E

|fn − f |

=

∫
Aε

|fn − f |+
∫

E−Aε

|fn − f |

≤ εm(Aε) + 2Mε

note RHS tends to zero as ε tends to zero, hence
∫
E

|fn − f | → 0 as ε tends to

zero.
Consequently,

∫
fn → f as n→∞.

Lemma 2.5: Let f ≥ 0 be bounded function supported on set of �nite measure
E and

∫
f = 0 then f = 0 almost everywhere.

Connection in Riemann Integration and Lebesgue Integration:
Theorem 2.6: Suppose f is Riemann integrable on closed interval [a, b] then
f is measurable and

R∫
[a,b]

f(x)dx =

L∫
[a,b]

f(x)dx

[This theorem says that, Every Riemann integrable function is Lebesgue inte-
grable.]
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STAGE III: NON-NEGATIVE FUNCTIONS

Let,f be a measurable, non-negative function but not necessarily bounded then
Lebesgue integral of f is de�ned by∫

f(x)dx = sup
g

∫
g(x)dx,

where supremum is taken over all measurable function g such that 0 ≤ g ≤ f ,
and g is bounded and supported on a set of �nite measure.

Proposition 2.7: The integral of non-negative measurable functions satisfy
following properties:

(I) Linearity: If f, g ≥ 0 and a, b are positive real numbers then∫
(af + bg) = a

∫
f + b

∫
g.

(II) Additivity: If E and F are disjoint subsets of Rd and f ≥ 0 then∫
E∪F

f =
∫
E

f +
∫
F

f .

(III) Monotonicity: If 0 ≤ f ≤ g, then
∫
f ≤

∫
g.

(IV) If g is integrable and 0 ≤ f ≤ g then f is integrable.

(V) If f is integrable ,than f(x) <∞,for almost every x.

(VI) If
∫
f = 0, then f(x) = 0 for almost every x.

• Is convergence Theorem holds for non-negative functions?
Here we have to check if fn ≥ 0 and fn(x)→ f(x) for almost every x then∫

fn(x)dx→
∫
f(x)dx.

Consider function f (x) =

{
n 0 < x < 1/n,

0 otherwise
then fn(x) → 0 for all x, yet∫

fn(x)dx = 1 for all n. In this example the limit of the integrals is greater than
the integral of the limit function which is

∫
f = 0.

Lemma 2.8 [FATOU`S LEMMA]: Suppose {fn} is a sequence of measurable
functions with fn ≥ 0. If lim

n→∞
fn(x) = f(x) for almost every x then∫
f =≤ lim inf

n→∞

∫
fn.

proof: Let 0 ≤ g ≤ f , where g function which in bounded on supported on set
E of �nite measure, If we set gn(x) = min(g(x), fn(x)), then gn(x) ≤ fn and
gn(x) ≤ g.
If gn(x) ≤ g and g is bounded and �nitely supported then gn is bounded and
�nitely supported and fn → f hence gn → g. Hence by bounded convergence
theorem,

lim
n→∞

∫
gn =

∫
lim
n→∞

gn =
∫
g.

Since gn ≤ fn then
∫
gn ≤

∫
fn and hence
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lim inf
n→∞

∫
gn = lim

n→∞

∫
gn ≤ lim inf

n→∞

∫
fn

then we get,
∫
g ≤ lim inf

n→∞

∫
fn, now take supremum then we obtain,∫

f ≤ lim inf
n→∞

∫
fn.

Corollary 2.9: Suppose f is a non-negative measurable function and {fn} is
sequence of non-negative measurable functions with fn(x) ≤ f(x) and fn(x)→
f(x) for almost every x, then

lim
n→∞

∫
fn =

∫
f .

Here fn(x) ≤ f(x), almost everywhere then for all n
∫
fn ≤

∫
f hence

lim sup
n→∞

∫
fn ≤

∫
f

by Fatou's lemma, ∫
f =≤ lim inf

n→∞

∫
fn.

Hence,
∫
f = lim

n→∞

∫
fn.

Question: Give an example to show that strict inequality may occure in Fatou's
lemma.

Hint: Sequence of function fn(x) =

{
n 0 < x < 1/n,

0 otherwise
.

Notation:

(I) fn ↗ f means {fn}∞n=1 is sequence of measurable functions that satis�es
fn(x) ≤ fn+1(x) for almost every x, and for all n ∈ R with lim

n→∞
fn(x) =

f(x) for almost every x.

(II) fn ↘ f means {fn}∞n=1 is sequence of measurable functions that satis�es
fn(x) ≥ fn+1(x) for almost every x and for all n ∈ R with lim

n→∞
fn(x) =

f(x) for almost every x.

Theorem 2.10 [Monotone Convergence Theorem]: Suppose {fn} is a
sequence of non-negative measurable functions with fn ↗ f , then

lim
n→∞

∫
fn =

∫
f =

∫
lim
n→∞

fn.

Given fn ≥ 0, is sequence of non-negative measurable function and {fn} is
monotonically increasing sequence converging to f with

0 ≤ f1 ≤ f2 ≤ · · · ≤ f

hence fn ≤ f then by considering limsup of their integrals on both sides we get,

lim sup
n→∞

∫
fn ≤ lim sup

n→∞

∫
f ≤

∫
f.

Now by Fatou's lemma we know that,
∫
f ≤ lim inf

n→∞

∫
fn. From these two

inequalities we can observe that;
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∫
f = lim inf

n→∞

∫
fn = lim sup

n→∞

∫
fn = lim

n→∞

∫
fn.

Hence, lim
n→∞

∫
fn =

∫
f =

∫
lim
n→∞

fn.

Corollary 2.11: Consider a series

∞∑
k=1

ak(x), where ak(x) ≥ 0 is measurable

for every k ≥ 1, then ∫ ∞∑
k=1

ak(x)dx =

∞∑
k=1

∫
ak(x)dx.

If

∞∑
k=1

∫
ak(x)dx is �nite, then series

∞∑
k=1

ak(x)dx converges for almost every x.

STAGE IV: GENERAL CASE

Let f be real valued any measurable function on Rd, f is lebesgue integrable if
the non-negative measurable function |f | is integrable.
De�nition: f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0)
Note that both functions f+ and f− are non-negative functions and observe
that we can express functions f and |f | as

f = f+ − f− and |f | = f+ + f−.

• If f and g are measurable functions then
∫
f + g =

∫
f +

∫
g.

Proposition 2.12: The integral of Lebesgue integrable functions is linear,
additive, monotonic, and satis�es the triangle inequality.
Proposition 2.13: Suppose f is integrable function on Rd, then for every ε > 0

(i) There exist a set of �nite measured a ball B such that∫
Bc
|f | < ε.

(ii) There is a δ > 0 such that∫
E

|f | < ε. whenever m(E) < δ.

Proof: Without loss of generality, assume that f ≥ 0.
For part(i) Let BN is ball centered at origin of radius N , and note that if
fN (x) = f(x)χBN (x), then fN ≥ 0 is measurable, fN (x) ≤ fN+1(x), and
lim
n→∞

fN (x) = f(x).

By monotone convergence theorem, we must have

lim
N→∞

∫
fN =

∫
f.

In particular, for some large N ,

0 ≤
∫
f −

∫
fχBN ε,

and since 1− χBN = χBcN , this implies
∫
BcN

f < ε.

For part (ii), Without loss of generality, assume that f ≥ 0 and ε > 0.
de�ne, EN = {x|f(x) ≤ N} and EN ⊆ EN+1 and de�ne
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fN (x) = f(x)χEN (x)

then fN (x) ≤ fN+1(x). For given ε > 0, there is an integer N such that,∫
(f − fN ) <

ε

2
.

We now choose δ > 0 so that Nδ < ε/2, then∫
E

f =

∫
E

(f − fN ) +

∫
E

fN

≤
∫
E

(f − fN ) +

∫
E

fN

≤
∫
E

(f − fN ) +Nm(E)

≤ ε

2
+
ε

2
= ε.

This proves the given proposition.

Proposition 2.14: [Dominated Convergence Theorem] Suppose {fn}
is sequence of measurable functions such that fn(x)→ f(x) almost everywhere
on x, as n→∞. If |fn(x)| ≤ g(x), where g is integrable, then∫

|fn − f | → 0 as n→∞

and consequently ∫
fn →

∫
f as n→∞.

Proof: For each N > 0 let EN = {x : |x| ≤ N, g(x) ≤ N}. Given ε > 0, by
previous lemma, there exist N so that

∫
Bc
g < ε, then the function fnχEN are

bounded and supported on set of �nite measure, so that by bounded convergence
theorem , ∫

EN

|fn − f | < ε for all large n,

Hence, we get ∫
EN

|fn − f | =
∫
EN

|f − fN |+
∫
EcN

|f − fN |

≤
∫
EN

|f − fN |+ 2

∫
EcN

g

≤ ε+ 2ε
≤ 3ε for all large n.

Hence,
∫
|fn − f | → 0 as n→∞

Consequently,
∫
fn →

∫
f as n→∞.

The space L1 of integrable functions: De�nition: Let f be an L-integrable
function on Rd and norm is de�ned as

||f ||L1 =

∫
Rd
|f(x)|dx.
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The space of all Lebesgue integrable functions with the above �nite norm is
called as L1(Rd).
• Equivaient: Two functions are equivalent if they agree almost everywhere.
• L1(Rd) is the space of equivalence classes of integrable functions. Because
f = g almost everywhere then ||f || = ||g||
• Integrable functions form a vector space.
Question: Find norm ||f ||L1 of following function:

Let f : R→ R de�ned as f(x) =
1

1 + x2
.

Proposition 2.15: Suppose f and g are two functions in L1(Rd) then they
satis�es following properties:

(i) ||af ||L1(Rd) = |a|.||f ||L1(Rd)

(ii) ||f + g||L1(Rd) ≤ ||f ||L1(Rd) + ||g||L1(Rd)

(iii) ||f ||L1(Rd) = 0 if and only if f = 0 almost everywhere.

(iv) d(f, g) = ||f − g||L1(Rd) de�nes a metric on L1(Rd)

Complete Metric Space: A metric space (X, d) is said to be a complete if
every cauchy sequence in x converges in X.

Theorem 2.16 (RIESZ FISCHER THEOREM) : The vector space L1 is
complete in its metric.
Proof: Let {fn} be a cauchy sequence in L1. Hence by de�nition of cauchy
sequence, for given ε > 0 there exist N such that

||fn − fm|| < ε for large m,n

Consider subsequence {fnk} of {fn} with

||fnk+1
− fnk || ≤ 2−k

De�ne

f(x) = fn1(x) +

∞∑
k=1

[fnk+1(x) − fnk(x)] and

g(x) = |fn1
(x)|+

∞∑
k=1

|fnk+1(x) − fnk(x)|

then note that |f(x)| ≤ g(x). and
∫
g < ∞. hence by dominated convergence

theorem, we get ∫
|f | ≤

∫
g <∞

Hence
∫
f <∞ and f is integrable function. Now consider,

|f − fnk | = |fn1
(x) + (

∞∑
k=1

[fnk+1(x) − fnk(x)])− fnk |

≤ |fn1
(x)|+

∞∑
k=1

|fnk+1(x) − fnk(x)|

∴ |f − fnk | ≤ g
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then by deminated convergence theorem, as k → 0, |f − fnk | → 0, Therefore
||fnk − f || → 0,

Hence fnk → f in L1. Simillarly we can show that fn → f in L1. So here
we proved every cauchy sequence is convergent in in L1, hence it is complete
metric space.
• Families of simple functioons, step functions, continuous functions of compact
support are dense in L1.

♠♠♠
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