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Chapter 2. Integration Theory

Canonical form of simple function:
Let ¢ be a simple function given by

6(a) = Y e (o),

then ¢ is said to be canonical form if all family of ¢;,7 = 1, 2...n are distinct and
{E;}}, are distinct measurable sets.

Note: Any simple function can be expressed in its canonical form by changing
the sets {E;}, and constants c;.

Question: Convert the following simple functions in its canonical form:

L. o(x) = x[0.1] +3X1,2) + X(2,3] — X(3.4]

2. ¢(x) = 2x[0,3) + 3X(1,4

Answer: In problem 1. intervals are disjoint but coefficient are not disjoint so
we take union of those intervals whose coefficients are same and check that it
will give us canonical form of 1. as,

() = Xjo,1ju(2,3] + 3X(1,2] = X(3.4]

In problem 2. coefficients are disjoint but intervals are not, so find coefficient
of common interval by taking sum of coeflicients of intersecting intervals, Here
common interval is (1,3] and its coefficient will become 2 + 3 = 5, we get
connonical form of problem 2. as,

() = 2X[0,1] + 5x(1,3] + 3X (3,4
STAGE I : SIMPLE FUNCTIONS

Lebesgue Integral of Simple function:
n
Let ¢(x) = ZCiXEi (x) be a simple function in canonical form then legesgue

i=1
integral of ¢ is given by
Jo=3 cm(E)
i=1

Note: If E C R? be measurable subset with finite measure then ¢(z)yg(z) is
also simple function then

[ o) = [ o(x)xp(x)de.

Proposition 2.1: The integral of simple function satisfies following properties:
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@

N

Independence of representation: If ¢ = Z arXE, 1s any representa-
k=1
tion of ¢ then

N
k=1

Linearity: If ¢ and yx are simple and a,b € R then

J(ap+byp)=a[P+b [

(IIT) Additivity: If E and F are disjoint subsets of R? with finite measure
then
[ r=Jf+]r
EUF E F
(IV) Monotonicity: If ¢ < ¢ are simple functions then [ ¢ < [4.
(V) Triangle Inequality: If ¢ is a simple function then |¢| is also simple
function and
| [ ol < [o].
Proof:

@

N
Let ¢ =Y arxs,
k=1
Case (i) Ej are disjoint and aj are not disjoint and non-zero. For each

distinct non-zero value a among {ay} we define,

E; = UE}

Where union is taken over indices k such that a;, = a now, E/, are disjoint
S0

m(Eq) =32 m(Ek)

Then we get,

N
[ ¢ =3 am(E,) = axm(Ey)
k=1

Case (ii) Fj are not disjoint and ay are disjoint and non-zero. Then we
can refine the decomposition UE}, by finding disjoint sets Ef, E3, - , EX
with proprerty

C=

By =|JE;
1 j=1

k
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For each j, aj = > aj where sum is over all k such that Fj, contains E*

n
S0 ¢ = E G;XE; Hence,
i=1

N
[ o= Za;me; = Zakm(Ek)
k=1

N
Hence, [ ¢ = Z arm(Ey).
k=1

N M

(I1) Let ¢ = > arxs, and ¢ = Y brxr,
k=1 k=1
consider P = max{M, N} then

»
[(a¢+by) = [a.axm(Ey) + b.bem(Fy)]

kzll\f M
=a Z akm(E;.c) + bz bkm(Fk)
k=1 k=1
= afd) + bf1/)

(ITI) Let E and F are disjoint subsets of R? with finite measure and observe
that

XEUF = XE + XF

Let f be a simple function then,

Hence, [ f=[f+ ][/
B P

EUF

(IV) Firstly we will prove that if ¢ > 0 be a simple function then [ ¢ > 0.

N
Let ¢ > 0 and ¢(z) = ZCiXEi () then ¢; > 0 and
i=1

f(b = ZC”TL(EZ‘) Z 0

= [6>0
Now, ¢ < 1) are a simple functions then ¢ — ¢ > 0 is also simple function,

hence [ —¢ = [ — [¢ > 0so we get that [ > [¢. then [¢ < [
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N N
(V) Let ¢ is simple function and ¢(x) = Z cixEg; (x) then |p(x)| = Z leilxe; (x)
i=1 i=1

and |¢| is simple function with
N
| [l =1 cim(E)|
i=1

N
<> lelm(E;)
i=1
= /9]
Hence | [ ¢ < [ 9.

STAGE II: Bounded Functions Supported on a Set of Finite
Measure:

Support of a function: Let f be a measurable function on R™ then set of all
points where f does not vanish is called support of function

supp(f) = {z[f(z) # 0}

f is supported on a set E, if f(z) = 0 whenever x ¢ E.
Question: Find support of following functions.
sin(z) and f(z,y) =22 +y*> -9

Lemma 2.2: Let f be a bounded function supported on a set E of finite mea-
sure. If {¢,,}2° ; is any sequence of simple functions bounded by M supported
on E,and with ¢, (x) — f(z) for almost every z, then

1. The limit lim [ ¢, exists.
n— o0
2. If f =0 almost everywhere then the limit lim f ¢n =0
n—oo

For part 1. Let I,, = [ ¢y, it is enough to prove that {I,,}22; is cauchy sequence
E
in R.

Let € > 0 and consider
E E E E
By Egorov’s theorem there exist closed set Ac C E such that m(E — A.) < e
and ¢,, — f uniformly converges on A., means
|¢n - ¢m| <e,Vm,n>M
where M is large natural number. Now splite E into two sets A, and E — A,
|In_Im| S f ‘¢n_¢7n|+ f |¢n_¢m|
A E—-A.
<[e+2 [ M
A

e E—-A.
<em(A.) + 2Me
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RHS tends to zero as € — 0, hence |I,, — I,,| = 0, as m,n — oo and € — 0.
Hence {I,}52, is cauchy sequence in R and every cauchy sequence in R is
convergent thats implies {I,,}52 , is convergent sequence in R.
Hence, the limit lim [, = lim [ ¢, exists.

n—roo n— oo

For part 2. Let f =0 almost everywhere with I,, = [ ¢, and € > 0 then
E

(In| =1 [ énl < [|¢nl
E E

By Egorov’s theorem there exist closed set A, C E such that m(F — A.) < e
and ¢, — 0 uniformly converges on A., means

|pn — 0] < €,Vn>M

where M is large natural number. Now splite F into two sets A, and E — A,

then,
L] :/wm + / 6]
Ac

E-A.

<em(Ae) + / M
B-A

— em(A.) + Mm(E — A.)
<em(A.) + Me

note RHS tends to zero as € tends to zero, hence I,, — 0.
Integration of bounded function supported on set of finite measure:
It is defined as

[ Fa)de = tim_ [ ¢, (a)dr.
where {¢,} is sequence of simple functions satisfying
(a) |¢n| < M,

(b) Each function ¢, is supported on support of f
(¢) ¢n— f for almost every z.

Proposition 2.3: Let f and g be bounded function supported on set of finite
measure then they satisfies following properties:

(I) Linearity: If a,b € R then

[laf +bg)=a[f+Db[g.

(II) Additivity: If £ and F are disjoint subsets of R? with finite measure
then

S fzgf#’f-

EUF

(III) Monotonicity: If f < g then [ f < [g.

Prof. G. A. Shinde. 5 Department of mathematics



Real Analysis Modern College of ACS(Autonomous),Pune-5

(IV) Triangle Inequality: |f| be bounded function supported on set of finite
measure and

L[ f1< 1.

All these properties follows by approximation by simple functions and the prop-
erties of integral of simple functions given in Proposition 2.1.

Theorem 2.4: Bounded Convergence Theorem: Suppose that {f,} is a
sequence of measurable functions that are all bounded by M are supported on
set E of finite measure, and f,(z) — f(z) almost every x as n — oo . Then f
is measurable, bounded, supported on E for almost every z, and

Jlfn=fl—=0asn— oo
Consequently,
[ fn— fasn— oo

Proof: {f,} is a sequence of measurable functions and f, — f hence f is
measurable function then,

By Egorov’s theorem there exist closed set Ac C F such that m(F — A.) < e
and f,, — f uniformly on A., means

|fn— fl <e,Vn>M,

where M is large natural number. Now splite F into two sets A, and E — A,

then,
| [ta=ni< [10a-1
E E

A[|fnf|+E/ o 1]

ey
<em(Ae) + 2Me

note RHS tends to zero as e tends to zero, hence f |fn— f] = 0 as € tends to
Zero. P

Consequently, [ f, — f as n — .

Lemma 2.5: Let f > 0 be bounded function supported on set of finite measure

FE and [ f =0 then f =0 almost everywhere.

Connection in Riemann Integration and Lebesgue Integration:
Theorem 2.6: Suppose f is Riemann integrable on closed interval [a,b] then
f is measurable and

R c
/ f(z)dx = / f(z)dx
la,b] [a,b]

[This theorem says that, Every Riemann integrable function is Lebesgue inte-
grable.|
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STAGE III: NON-NEGATIVE FUNCTIONS

Let, f be a measurable, non-negative function but not necessarily bounded then
Lebesgue integral of f is defined by

J flz)dx = sgpfg(a:)dx,

where supremum is taken over all measurable function g such that 0 < g < f,
and ¢ is bounded and supported on a set of finite measure.

Proposition 2.7: The integral of non-negative measurable functions satisfy
following properties:

(I) Linearity: If f,g > 0 and a,b are positive real numbers then

[(af +bg)=a[f+0b]g.

(I1) Additivity: If £ and F are disjoint subsets of R? and f > 0 then

S f=£f+£f-

EUF
(III) Monotonicity: If 0 < f < g, then [ f < [g.

)
(IV) If g is integrable and 0 < f < g then f is integrable.
(V) If f is integrable ,than f(z) < oo,for almost every x.
(VI) If [ f =0, then f(z) = 0 for almost every z.

e Is convergence Theorem holds for non-negative functions?
Here we have to check if f,, > 0 and f,,(x) — f(z) for almost every x then

[ fa(z)de — [ f(z)da.

n 0<z<1/n,

Consider function f (z) = .
0 otherwise

then f,(x) — 0 for all z, yet

[ fn(z)dx = 1 for all n. In this example the limit of the integrals is greater than
the integral of the limit function which is [ f = 0.

Lemma 2.8 [FATOU‘S LEMMA]: Suppose {f,} is a sequence of measurable
functions with f,, > 0. If lim f,(z) = f(z) for almost every z then
n—oo

proof: Let 0 < g < f, where g function which in bounded on supported on set
E of finite measure, If we set g,(x) = min(g(z), fn(z)), then g,(z) < f, and
gn(z) < g.
If g.(x) < g and g is bounded and finitely supported then g,, is bounded and
finitely supported and f, — f hence g, — ¢. Hence by bounded convergence
theorem,

lim [g, = [ lim g, = [g.

n— oo

Since g, < f, then [ g, < [ f, and hence
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liminf [ g, = nl;rr;ofgn < hnrglgfffn

n—oo

then we get, [ ¢ <liminf [ f,, now take supremum then we obtain,
n—oo

J f <liminf [ £,

Corollary 2.9: Suppose f is a non-negative measurable function and {f,} is
sequence of non-negative measurable functions with f,(z) < f(z) and f,(z) —
f () for almost every z, then

lim [f,=[F.

n—oo

Here f,(z) < f(z), almost everywhere then for all n [ f,, < [ f hence
limsup [ f, < [ f
n—o0
by Fatou’s lemma,
=<1t 5.

Hence, [ f= lim [ f,.

n—oo
Question: Give an example to show that strict inequality may occure in Fatou’s

lemma.

1
Hint: Sequence of function f,(z) = {n 0<o< /n,‘

0 otherwise
Notation:

(I) fn ' f means {f,}>2, is sequence of measurable functions that satisfies
frn(x) < fryi1(x) for almost every z, and for all n € R with li_>m fulz) =
n—oo

f(x) for almost every z.

(I1) fn ¢ f means {f,}22, is sequence of measurable functions that satisfies
fn(x) > fng1(z) for almost every = and for all n € R with lim f,(z) =
n—oo

f(x) for almost every x.

Theorem 2.10 [Monotone Convergence Theorem]: Suppose {f,} is a
sequence of non-negative measurable functions with f, 7 f, then

A = 7=l e

Given f,, > 0, is sequence of non-negative measurable function and {f,} is
monotonically increasing sequence converging to f with

0<fi<fo<---<f
hence f,, < f then by considering limsup of their integrals on both sides we get,

limsup [ f, <limsup [ f < [ f.
n— oo

n— oo

Now by Fatou’s lemma we know that, [ f < liminf [ f,. From these two
n—oo
inequalities we can observe that;
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J £ =Timinf [ f, = ligsolipffn = lim [ fn.
Hence, lim Jfu=J 7 =] i I

o0
Corollary 2.11: Consider a series Zak(x), where ai(z) > 0 is measurable
k=1

/iak(x)dl’ ]i/C%(%)dI.

for every k£ > 1, then

o0 o0
If Z / ay(x)dz is finite, then series Z ay(z)dz converges for almost every z.
k=1 k=1

STAGE IV: GENERAL CASE

Let f be real valued any measurable function on RY, f is lebesgue integrable if
the non-negative measurable function |f| is integrable.

Definition: f*(z) = max(f(z),0) and f~(z) = max(—f(z),0)

Note that both functions f™ and f~ are non-negative functions and observe
that we can express functions f and |f] as

f=rr—fand|f|=f"+f".
o If f and g are measurable functions then [ f+g= [f+ [g.
Proposition 2.12: The integral of Lebesgue integrable functions is linear,

additive, monotonic, and satisfies the triangle inequality.
Proposition 2.13: Suppose f is integrable function on R, then for every e > 0

(i) There exist a set of finite measured a ball B such that

i<

(ii) There is a ¢ > 0 such that
/ |f] <e. whenever m(FE) < 4.
E

Proof: Without loss of generality, assume that f > 0.

For part(:) Let By is ball centered at origin of radius N, and note that if
fn(x) = f(x)xBy(x), then fx > 0 is measurable, fn(z) < fyi1(x), and
i fv(a) = f().

By monotone convergence theorem, we must have

ggfm:/ﬁ

In particular, for some large IV,

Oéff_ffXBN€7
and since 1 — xp, = xBg,, this implies ch f<e
N

For part (i), Without loss of generality, assume that f > 0 and € > 0.
define, Exy = {z|f(z) < N} and Ey C En41 and define
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fn(z) = f(@)xey (2)
then fy(x) < fy41(x). For given € > 0, there is an integer N such that,

J(f = fn) <

We now choose § > 0 so that N6 < €/2, then

L= =+ [

< [+ [EfN

I\D\m

This proves the given proposition.

Proposition 2.14: [Dominated Convergence Theorem] Suppose {f,}
is sequence of measurable functions such that f,(z) — f(z) almost everywhere
on x, as n — oco. If | f(z)| < g(x), where g is integrable, then

Jlfn=fl—=0asn— o0
and consequently

[ fo— [fasn— .

Proof: For each N > 0let Ex = {z : |2| < N,g(z) < N}. Given ¢ > 0, by
previous lemma, there exist N so that ch g < ¢, then the function f,xg, are
bounded and supported on set of finite measure, so that by bounded convergence
theorem ,

/ |fr — f] < € for all large n,
En

[Eanf/EfoN|+/%|ffN
s/EN|f—fN+2/ECg

< e+ 2 "
< 3e for all large n.

Hence, we get

Hence, [ |fn — fl > 0asn — oo
Consequently, [ f, — [ f as n — oc.

The space L' of integrable functions: Definition: Let f be an L-integrable
function on R? and norm is defined as

1fller = / @)

Prof. G. A. Shinde. 10 Department of mathematics



Real Analysis Modern College of ACS(Autonomous),Pune-5

The space of all Lebesgue integrable functions with the above finite norm is
called as £!(R?).

e Equivaient: Two functions are equivalent if they agree almost everywhere.

e L1(R?) is the space of equivalence classes of integrable functions. Because
f = g almost everywhere then || f|| = |||

e Integrable functions form a vector space.

Question: Find norm ||f]|z1 of following function:

Let f: R — R defined as f(x) = 12
Proposition 2.15: Suppose f and g are two functions in £!(R?) then they
satisfies following properties:

(i) ||af\|L1(Rd) = |a|'||f”£1(]R'i)
(i

i)
(iii) [|f]lz1mey = 0 if and only if f = 0 almost everywhere.
v)

(i

Complete Metric Space: A metric space (X, d) is said to be a complete if
every cauchy sequence in x converges in X.

I1f 4+ gllzrmay < 1fllzr@ay + 119l 2 (may

d(f,9) = IIf — gllz1(ray defines a metric on L£!(R?)

Theorem 2.16 (RIESZ FISCHER THEOREM) : The vector space £! is
complete in its metric.

Proof: Let {f,} be a cauchy sequence in £!. Hence by definition of cauchy
sequence, for given € > 0 there exist N such that

[|fn — fml]] < € for large m, n
Consider subsequence {f,,} of {f.} with
||fﬂk+1 - fnk” S 27}6
Define

f( fm + Z fnk+1(z) - fnk(m)] and
k:l
g(x) = ‘fnl (I)| + Z |fnk+1(w) - fnk(ac)|
k=1

then note that |f(z)| < g(z). and [ g < co. hence by dominated convergence
theorem, we get

JIfI<[g<oo
Hence [ f < oo and f is integrable function. Now consider,
‘f - fmc| = |fn1 (1’) + (Z[fnwd(x) - fnk(:c)]) - fmc‘
k=1
< |fﬂ1<x)‘+2|fnk+1(ﬂﬁ)_fnk(l’)|
k=1
B |f - fmc| < g
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then by deminated convergence theorem, as k — 0, |f — fn,| — 0, Therefore
||f7’lk - fH - 0’

Hence f,, — f in £!. Simillarly we can show that f, — f in £!. So here
we proved every cauchy sequence is convergent in in £', hence it is complete
metric space.

e Families of simple functioons, step functions, continuous functions of compact
support are dense in £!.

LTS
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