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Chapter 5. Strum-Liouville Problems and
Applications.

REGULAR STRUM-LIOUVILLE PROBLEMS:

In previous problems we discussed Strum-Liouville Problems of following types
de�ned on interval 0 ≤ x ≤ c

X ′′(x) + λX(x) = 0, X ′(0) = 0, X ′(c) = 0, (1)

X ′′(x) + λX(x) = 0, X(0) = 0, X(c) = 0, (2)

Now consider linear homogeneous Strum-Liouville Problem

[r(x)X ′(x)]′ + [q(x) + λp(x)]X(x) = 0, (a < x < b) (3)

with a pair of homogeneous boundary conditions

a1X(a) + a2X
′(a) = 0, b1X(b) + b2X

′(b) = 0 (4)

where, a1 and a2 are not both zero; and also b1 and b2 are not both zero. Here
the real valued functions p, q and r in equation (3) are independent of λ.
Strum-Liouville Problem is said to be Regular whenever real valued functions
p, q, r and r′ are continuous on interval a ≤ x ≤ b and p(x) > 0 and also r(x) > 0
when a ≤ x ≤ b.

EXAMPLES:

1. Strum-Liouville Problems in equation (1) and (2) are regular Strum-Liouville
Problems.

2. X ′′(x) + λX(x) = 0, (0 < x < c)
X ′(0) = 0, hX(c) +X ′(c) = 0

is regular Strum-Liouville Problem.

3. [x2X ′(x)]′ + λX(x) = 0 (1 < x < b)
X(1) = 0, X(b) = 0

is regular Strum-Liouville Problem.

4. [xX ′(x)]′ + (λ/x)X(x) = 0 (1 < x < b)
X(1) = 0, X(b) = 0

is regular Strum-Liouville Problem.

5. [|x|X ′(x)]′ + (λ/x)X(x) = 0 (1 < x < b)
X(1) = 0, X(b) = 0

is not regular Strum-Liouville Problem.

A value of λ for which problem (3)− (4) has a non-trivial solution is called an
eigenvalue; and the non-trivial solution is called an eigenfunction.
Spectrum: The set of eigenvalues of problem (3)− (4) is called the spectrum
of the problem.

SINGULAR STRUM-LIOUVILLE PROBLEMS:

Strum-Liouville Problem in (3)− (4) is called singular Strum-Liouville Problem
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1. if at least one of the regularity condition fails. or

2. if function q has in�nite discontinuities at an end point of an interval
a ≤ x ≤ b. or

3. if p(x) or r(x) vanishes at an end points.

EXAMPLES:

1. [xX ′(x)]′ + (−n
2

x
+ λx)X(x) = 0 (0 < x < c)

where n = 0, 1, · · · with X(c) = 0 is a singular Strum-Liouville Problem
because the functions p(x) = x and r(x) = x vanishes at x = 0.

2. [(1− x2)X ′(x)]′ + λX(x) = 0 (−1 < x < 1)
is a singular Strum-Liouville Problem because the function r(x) = 1− x2
vanishes at both ends of the interval (-1,1.)

ORTHOGONALITY OF EIGENFUNCTIONS:

A set {ψn(x)} is orthogonal on an interval a < x < b with respect to a weight
function p(x) which is peicewise continuous and positive on that interval if

b∫
a

p(x)ψm(x)ψn(x)dx = 0, when m 6= n

Here above integral represents the inner product < ψm(x), ψn(x) > with respect
to weight function P (x).

Theorem 1: If λm and λn are distinct eigenvalues of the Sturm Liouville prob-
lem then corresponding eigenfunctions Xm(x) and Xn(x) are orthogonal with
respect to weight function p(x) on the interval a < x < b. the orthogonality
also holds in each of the following cases:

1. when r(a) = 0 and the �rst of boundary condition (4) is dropped from the
problem;

2. when r(b) = 0 and the second of boundary condition (4) is dropped from
the problem;

3. r(a) = r(b) and conditions (4) are replaced by the conditions

X(a) = X(b), X ′(a) = X ′(b)

Example 1: Verify the theorem 1 above for the following regular Strum-
Liouville Problem

X ′′(x) + λX(x) = 0, X(0) = 0, X(c) = 0.

By solving X ′′(x) + λX(x) = 0, we get X(x) = c1 cos
√
λx + c2 sin

√
λx. For

λ > 0 we get non-trivial eigenvectors Xn(x) = sin(nπx/c)(n = 1, 2, · · · ), and
they correspond to the distinct eigenvalues λn(x) = (nπ/c)2.
The functions Xn(x) = sin(nπx/c) are orthogonal on interval 0 < x < c with
weight function p(x) = 1 because;
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c∫
0

sin
(mπx

c

)
sin
(nπx

c

)
dx = 0

Corollary 1: If λ is an eigenvalue of Strum-Liouville Problem (3)-(4), then it
must be real number; and the same is true in cases 1. 2. 3. treated in Theorem
1.
Uniquness of Eigenfunction:

Corollary 2: If λ is an eigenvalue of a Strum-Liouville Problem (3)-(4), and if
conditions q(x) ≤ 0(a ≤ x ≤ b) and a1a2 ≤ 0, b1b2 ≥ 0 are satis�ed, then λ ≥ 0.

METHOD OF SOLUTION:

Example 1: Let us solve the regular Strum-Liouville Problem
X ′′(x) + λX(x) = 0, (0 < x < c) (5)

X ′(0) = 0, hX(c) +X ′(c) = 0, (6)
where h is positive constant.

From Corollary 2. there are no negative eigenvalues. If the general solution
of equation (5) is X(x) = Ax+B, where A and B are constants; and it follows
from boundary conditions (6) that A = 0 and B = 0. This gives problem has
only the possibity that λ > 0.
If λ > 0, we consider λ = α2, (α > 0); hence general solution of equation (5) is
X(x) = c1 cosαx+ c2 sinαx. From �rst boundary condition in (6), we get

C1(h cosαc− α sinαc) = 0

Now, from second boundary condition in (6), we get

tan(αc) =
h

α

(7)

Hence by solving (7) we get λn = α2
n, where tan(αnc) =

h

αc
. (αn > 0).

so corresponding eigenfunctions are

Xn(x) = cosαnx.(n = 1, 2, · · · )

So, according to Theorem 1. Xn(x) are orthogonal on the interval 0 < x < c
with weight function p(x) = 1.
Hence,

||Xn||2 =
1

2

(
c+

sin 2αnc

2αn

)
.

Then by using sin(2αnc) = 2 sin(αnc) cos(αnc) and αn =
h

tan(αnc)
we get;

||Xn||2 =
hc+ sin2 αnc

2h
.

Hence normalized eigenfunctions are,

φn(x) =

√
2h

hc+ sin2 αnc
cos(αnx) (n = 1, 2, · · · ).
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Example 2: Solve the regular Strum-Liouville Problem

X ′′(x) + λX(x) = 0, X(0) = 0, X ′(1) = 0.

Example 3: Let us solve the regular Strum-Liouville Problem

[xX ′(x)]′ +
λ

x
X(x) = 0, (1 < x < b) (8)

X ′(1) = 0, hX(b) +X ′(b) = 0, (9)
where h is positive constant.

Equation (8) can be written as

x2
d2X

dx2
+ x

dX

dx
+ λX(x) = 0

(10)
By using Chain rule of di�erentiation and considering substitution x = es; we
get

dX

dx
= e−s

dX

ds
and

d2X

ds2
= e2s

d2X

dx2
+ es

dX

dx

Substitute these value in equation (10),

d2X

ds2
+ λX = 0, (0 < s < log(b))

(11)
By using �rst boundary condition at s = 0 we obtain

dX

ds
= 0

[12(a)]
also at s = log b we get

hX +
1

b

dX

ds
= 0

[12(b)]
Hence equation (11) with [12(a)] and [12(b)] is reduced Strum-Liouville Prob-
lem. Hence by From Corollary 2. there are no negative eigenvalues. If the
general solution of equation (11) is

X(s) = As+B,

where A and B are constants; and it follows from boundary conditions [12(a)]
that A = 0 and B = 0. This gives problem has only the possibity that λ > 0.
If λ > 0, we consider λ = α2, (α > 0); hence general solution of equation (11) is

X(s) = c1 cosαs+ c2 sinαs.

From boundary condition in [12(a)], we get c2 = 0 and then solving for [12(b)]
we get

hb = α tan(αs).
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Hence,λn = α2
n, hb = αn tan(αn log b) and corresponding eigenfunctions are

Xn(s) = cos(αn log x). So,

||Xn|| =
√
hb log b+ sin2(αn log b)

2hb

Hence normalized eigenfunctions of problem (8) and (9) is

φn(x) =

√
2hb

hb log b+ sin2(αn log b)
cos(αn log x). (n = 1, 2, · · · )

SURFACE HEAT TRANSFER:

Let u(x, t)denotes temperature in a slab 0 ≤ x ≤ 1, initially slab has tempera-
ture f(x) at face x = 0.
The boundary value problem is

Figure 1:

ut(x, t) = kuxx(x, t) (0 < x < 1, t > 0) (13)

ux(0, t) = 0, ux(1, t) = −hu(1, t), u(x, 0) = f(x). (14)

where h is positive constant.
Consider u(x, t) = X(x)T (t) is any non-trivial soluion of given problem, take its
derivatives with respect to t,x and substitute in equation (13), we get system of
two boundary value problems;

X ′′(x) + λX(x) = 0, X ′(0) = 0, hX(1) +X ′(1) = 0. (15)

T ′(t) + λkT (t) = 0 (16)

For boundary value problem in equation (15) has non-trivial solution Xn(x) =
cosαnx for negative λn only where tanαn = h/αn, (αn > 0).
Norm of given eigenfunction is

||Xn||2 =
h+ sin2 αn

2h
.
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Hence the normalized eigenfunctions are

φn(x) =

√
2h

h+ sin2 αn
cosαnx (n = 1, 2, 3, · · · )

By solving equation (16) we get,

Tn(t) = e−kα
2
nt

Hence formal solution of given temperature problem is

u(x, t) =

∞∑
n=1

cne
−α2

nktφn(x).

So, u(x, 0) = f(x) =

∞∑
n=1

cnφn(x), and cn can be evaluated by Fourier cosine

coe�cient formula for f(x),

cn =
1∫
0

f(x)φn(x)dx =

√
2h

h+ sin2 αn

1∫
0

f(x) cosαnxdx.

Therefore,

u(x, t) =

∞∑
n=1

2h

h+ sin2 αn
(e−α

2
nkt) cosαnx

1∫
0

f(x) cos(αnx)dx.

BOUNDARY VALUE PROBLEMS:

Example 1: let u(x,y) denote the bounded steady-state temperature in a semi-
in�nite slab bounded by the planes x = 0 and x = φ, and y = 0 with the face
x = 0 is insulated and face x = φ kept at zero temperature, and the �ux is
inwards toward the face in the plane y = 0 is prescribed function f(x).

Figure 2:
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Hence boundary value problem is

uxx(x, y) + uyy(x, y) = 0 (0 < x < π, y > 0), (17)
ux(0, y) = 0, u(π, y) = 0 (y > 0), (18)
−Kuy(x, 0) = f(x) (0 < x < π), (19)

where K is a positive constant.
Let, u(x, y) = X(x)Y (y) be non-trivial solution of given booundary value prob-
lem take its derivatives with respect to y,x and substitute in equation (17), we
get system of two boundary value problems;

X ′′(x) + λX(x) = 0, X ′(0) = 0, X(π) = 0. (20)
Y ′′(y)− λY (y) = 0. (21)

By solving boundary value problem in equation (20), we get its nontrivial solu-
tion for λ < 0 as
λn = α2

n, Xn(x) = cos(αnx), (n = 1, 2, · · · )
where

αn =
2n− 1

2
and ||Xn|| =

√
π

2

Hence normalized eigenfunctions of given problem is

φn(x) =

√
2

π
cos(αnx)

The corresponding boounded solution of equation (21) are constant multiple of
the functions

Yn(x) = exp(−αny)

Consequently,

u(x, y) =

∞∑
n=1

cn exp(−αny)φn(x).

Now applying non-homogeneous condition (19) to this expression,

f(x) =

∞∑
n=1

(Kcnαn)φn(x).

Where, (Kcnαn) =< f, φn > .
Example 2: Solve the boundary value problem

uxx(x, y) + uyy(x, y) = 0 (0 < x < a, 0 < y < b),
ux(0, y) = 0, ux(a, y) = −hu(a, y) (0 < y < b),
u(x, 0) = 0, u(x, b) = f(x) (0 < x < a),

where h is a positive constant.

Example 3: Consider Dirichlet problem for function u(ρ, φ), in polar coor-
dinates which satis�es Laplace's equation
ρ2uρρ(ρ, φ) + ρuρ(ρ, φ) + uφφ(ρ, φ) = 0, (1 < ρ < b, 0 < φ < π) (22)
and boundary conditions are
u(ρ, 0) = 0, u(ρ, π) = u0 (1 < ρ < b) (23),
u(1, φ) = 0, u(b, φ) = 0 (0 < φ < π) (24),
where u0 is a constant.
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Figure 3:

Let u = R(ρ)Φ(φ) be non-trivial solution of given problem, take its suit-
able derivatives and substitute in equations (22)− (24) so that we get reduced
boundary value problems

[ρR′(ρ)]′ +
λ

ρ
R(ρ) = 0, R(1) = 0, R(b) = 0 (25)

Φ′′(φ)− λΦ(φ) = 0, Φ(0) = 0. (26)
To solve Strum-Liouville problem in equation (25) substitute ρ = es, then by
applying chain rule we get reduced boundary value problem for problem in
equation (25) as,

d2R

ds2
+ λR = 0, 0 < s < log b (27)

R(a) = 0 and R(log b) = 0 (28)
this system in (27)-(28) will give non-trivial solution for λ > 0 which is

λn = α2
n where αn =

nπ

log b

with corresponding eigen-functions

Rn(ρ) = sin(αn log ρ)

So normalized eigenfunctions are

φn(ρ) =

√
2

log b
sin(αn log ρ)

Now solving (26) we get φn(φ) = sinh(αnφ)
Hence,

u(ρ, φ) =

∞∑
n=1

cn sinh(αnφ)φn(ρ).

(29)
For non-homogeneous condition put φ = π in equation (29) so that we obtain
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u(ρ, π) = u0 =

∞∑
n=1

[cn sinh(αnπ)]

√
2

log b
sin(αn log ρ) (1 < ρ < b)

then cn sinh(αnπ) is fourier sine coe�cient of sinh(αnπ) Hence,

cn sinh(αnπ) = u0

√
2

log b

∫ b

1

1

ρ
sin(αn log ρ)dρ.

after thesesubstitution in (29) we get

u(ρ, φ) =
4u0
π

∞∑
n=1

1− (−1)n

n

sinh(αnφ)

sinh(αnπ)
sinh(αn log ρ).

♠♠♠
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