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Chapter 1

INTRODUCTION

1.1 Motivation

The analysis of discrete multivariate data, especially in the form of cross-
classifications, has occupied a prominent place in the statistical literature from
the days of Karl Pearson and R. A. Fisher. One of the questions that often
arises in cross-classified discrete data is that whether a collection of contin-
geucy tables be pooled resulting in a simpler table without affecting the conclu-
sions regarding relationship of interest. Amalgamation of contingency tables
achieves data compactification. But some characteristics of the data are lost
in the process and we may get into a paradoxical situation. One of the para-
doxes that got maximum attention in the literature is Simpson’s paradox. In
the context of a 2 x 2 x 2 cross-classification of three dichotomous variables X,
Y and Z, Simpson's paradox imnplies that it is possible to have a positive (neg-
ative) partial association between X and Y at each level of Z; but a negative
(positive) unconditional association between X and Y.

We illustrate the paradoxical situation due to amalgamation with the help
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of following examples. In each of these examples, odds ratio is considered as

measure of association.

Example 1.1.1 Consider the ezample constructed by Simpson (1951).

Table 1.1.1

Alive | Dead
Male Treated 8 5
Untreated | 4 3
Female | Treated 12 15
Untreated | 2 3

Odds ratio for male as well as female population is 1.2 implying positive
association between treatment and survival in both the populations. If we com-

bine these two tables, the resulting table is given in Table 1.1.2,

Table 1.1.2

Alive | Dead
Treated 20 20
Unireated 6 6

For the combined population odds ratio estimate is one indicating that there

is no association between treatment and survival.

Example 1.1.2 Suppose one wants to investigate a postulated causal relation-
ship between alcohol consumption and myocardial infarction (MI). Consider the

data given in Table 1.1.3.
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Table 1.1.3

Alcohol | MI | Control
Yes 71 52
No 29 48

For this table estimated odds ratio is 2.26 implying a positive association
between alcohol consumption and ML
Since smoking is known to be a cause of MI, subjects are classified into

smoking group and non-smoking group as gtve in Table 1.1.4

Table 1.1.4

Alcohol | MI'| Control
Smokers Yes | 63 36
No 7 4
Non-smokers | Yes 8 16
No 22 44

Among smokers, odds ratio estimate of MI associated unth alcohol consump-
tion is one, with an identical estimate among non-smokers. This indicates no

association between alcohol consumnption and MI.

Data sets in these examples are hypothetical. We come across such data
sets rarely in observational studies for the obvious reason that the condition
of odds ratio exactly equal to one is unlikely to be satisfied for observational
data.

An actual occurrence of the Simpson’s paradox was observed (Cohen and
Nagel, 1934) in a comparative study of tuberculosis deaths in New York city
and Richmond Virginia, during the year 1910. Although the overall tubercu-

losis rate was lower in New York, the opposite was observed when the data
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were scparated into two racial categories. We consider two more occurrences

of paradox in the following examples.

Example 1.1.3 The data set is taken from Agresti, 1984 (original source
Radelet, 1981). It concerns with the effect of racial characteristics on the
decision regarding whether to impose the death penalty after an individual is
convicted for a homicide. The variables considered are race of defendant having
two categories white and black and death penalty verdict having categories yes
and no. The 326 subjects cross-classified according to these variables were
defendants in homicide indictments in 20 Flourida countries during 1976-77.
Follounng table refers only to indictments for homicides in which defendant
and viclim were strangers, since death sentences are very rarely imposed when

the defendant and the victim had a prior friendship or relationship.

Table 1.1.5

Defendant’s | Death penalty
race Yes| No
White | 19| 141
Black 17 149

The odds ratio estimate for the Table 1.1.5 is 1.18 indicating that odds
of getting death penalty were 1.18 times higher for white defendants in the
sample than for the black defendants. It may be noted that the two-dimensional
Table 1.1.5 is oblained by amalgamating two 2 x 2 tables; corresponding to two

categories of victim's race as given below.
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Table 1.1.6

Victim’s | Defendant’s | Death penalty

race race Yes No

White White 19 132
Black 11 52

Black White 0 9
Black 6 97

Odds ratio estimate for the lwo categories of victim's race are 0.67 and 0.79
respectively. (It may be noted that all odds ratios considered in this ezample are
obtained by adding 0.5 to each cell.) Thus the association between defendant'’s

race and death penalty verdict is reversed when victim’s race is included.

Example 1.1.4 The data in Table 1.1.7 are taken from Bishop, Fienberg and
Holland, 1975. The date analyzed by Bishop (1969) have been used for class
ezxercises at the Harvard School of Public Health, but the original source is
unfortunately lost. The data relate to survival of infants according to amount
of prenatal care received by mothers. The amount of care is classified as more
or less. The mothers attended one of the two clinics denoted here by A and B.

Thus we have @ three-dimensional array given in Table 1.1.7.

Table 1.1.7

Clinic | Amount of | Infant survival

prenatal care | Died | Survived

A More 3 176
Less 4 293
B More 17 197

Less 2 23
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The table for mothers who attended clinic A has odds ratio equal to 1.2 and
that for mothers who attended clinic B is equal to 1. Both the values are close
to one. Thus the data could reasonably be considered to be a sample from a
population where odds ratio is equal to one. In other words we may conclude
that survival and amount of prenatal care are not related,

If we combine the two tables by pooling across the clinics we get Table
1.1.8. The odds ratio for this table is 2.8 indicating a positive association

between infant survival and prenatal care.

Table 1.1.8

Amount of | Infant'’s survival

prenatal care | Died | Survived
More 20 373
Less 6 316

In all these examples we have a paradoxical situation. Whenever a paradox
occurs what needed is a sensible interpretation. For illustration purpose we
consider Example 1.1.1 and Example 1.1.3 once again.

Example 1.1.1 (contd) As seen earlier if we look at Table 1.1.2 we may
conclude that there is no association between treatment and survival. If the
data in Table 1.1.2 are classified according to sex we get Table 1.1.1 and we may
conclude that treatment is beneficial. To arrive at a sensible interpretation we
look at the association between other two pairs of attributes namely treatment
and sex and survival and sex.

Table 1.1.9 classifies the data according to treatment and sez.
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Table 1.1.9

Muale | Femnale
Treated 13 27
Untreated 7 5

The odds ratio estimate for Table 1.1.9 is 0.34 and hence there is positive
association between female and being treated. In fact data say that proportion
of women being treated is almost three times higher than that of men.

Cross-classification of data according to sex and survival is given in Table

1.1.10.

Table 1.1.10

Alive | Dead
AMale 12 8
Female | 14 18

The odds ratio estimate for Table 1.1.10 is 1.93 implying positive associa-
tion between sex and survival. We observe that mortality rate for a woman is
twice than that of @ man regardless of treatment.

Thus the attribute sex is associated with both treatment and survival. Hence
in this case amalgamation over sex is not a sensible decision.

Example 1.1.8 (contd) As discussed earlier, from Table 1.1.5 we may
conclude that there is positive association between defendant’s race and death
penalty verdict. Ezactly opposite is observed if the duta are clussified according
to victim's race. To resolve this paradozical situation we check whether victim's
race is associated with the other two attributes namely defendant’s race and

death penalty verdict.
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Table 1.1.11 gives classification of date according to victim’s race and de-
fendant’s race while Table 1.1.12 gives classification according to victim's race

and death penalty verdict.

Table 1.1.11

Victim's | Defendant’s race
race White | Black
White 151 63
Black 9 108

Table 1.1.12

Victim's | Death penalty
race Yes No
White | 30 184
Black 6 106

The odds ratio estimate (after adding 0.5 to each cell) for Table 1.1.11
s 25.99 umplying a very strong positive association belween victim's race and
defendant’s race. The odds of having killed a white are estimated to be 26 times
higher for white defendants than for black defendants. The odds ratio estimate
(after adding 0.5 to each cell) relating to victim’s race and death penalty is
2.71 which indicates that death penalty was more likely to be imposed when
viclin was white than when victim was black.

After studying these associations we may conclude that it is sensible to
include victim’s race as a third attribute. In fact amalgamation over victim’s

race gives misleading results regarding association between defendant s race and

death penalty verdict.
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From these two explanations we observe that missing an important variable
may lead to a fallacious conclusion regarding the association of interest. Every
time we may not have a paradoxical situation. But omission of an important
variable affects association cocfficients. In this dissertation we plan to investi-
gate the conscquences of missing an important variable in light of Simpson’s
paradox. We have considered 3 variables, Y, X and Z. Our basic interest is in
studying the association between Y and X. We study it in presence of Z and
when Z is missed. Basically, we intend to study conditional bivariate distri-
bution of Y and X conditional on Z and unconditional bivariate distribution

of Y and X. Consider the following example.
Example 1.1.5 Consider the hypothetical data in Table 1.1.13.

Table 1.1.13

Y=0|Y=1
Z=0|x=0| 9
X=1| 6 4
Z=1|x=0| 9 27
X=1| 3 9

We observe that for both the values of Z the log-odds ratio is zero indicating
no association betweenY and X. If we ignore the variable Z, we have the data

as given in Table 1.1.14.

Table 1.1.14

Y=0|Y=1
X=0 18 33
X=1 g 13
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Here the log-odds ratio is negative implying negative association between Y

and X.

The conditional bivariate distribution of Y and X given Z = 0 is given in

Table 1.1.15.

Table 1.1.15

(v, ) (0,010, )1(1,0)|(1 1)
PY=yX=zZ=0)| 036} 024 | 0.2{ | 0.16

Similarly, for Z = 1 the bivariate distribution of Y and X is given in Table
1.1.16.

Table 1.1.16

(v, 7) (0.0) | (0.1)|(1,0) | (1, 1)
P(Y=yX=z|Z=1)| 01875 0.0625 | 0.5625 | 0.1875

We are interested in studying these conditional bivariate distributions. It
may be noted that by defining odds ratio we are reducing the original 3 para-
meters to 1 parameter. We observe that though the log-odds ratios are same,
the conditional distributions are different. Hence if we combine the data over

Z, we should not expect the log-odds ratio to show the same sign.

The question is which measure, conditional or unconditional describes the
association of interest. This decision depends upon the data under counsider-
ation. To illustrate this point, consider Example 1.1.3. In this example if we
study conditional bivariate distribution of defendant’s race and death penalty
verdict conditional on victim's race, we observe that

(i) If the victim is black and defendant is white, death penalty was not

given in a single case. On the other hand if victim is white and defendant is
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black, death penalty is given in 11 cases out of total of 63 cases. (ii) If both
defendant and victim are black then death penalty is given in approximately
6 percent of the cases. (iii) If both defendant and victim are white then death
penalty is ﬁven in approximately 12.6 percent of the cases.

Studying odds ratio only will not reveal these facts.

1.2 Chapterwise Summary

The ﬁterature on Simpson’s paradox is huge and growing. Good and Mittal
(1987) have traced the paradox back to Yule (1903). In chapter 2 we take a
review of Simpson'’s paradox and related phenomena. We give necessary and
§ufﬁcient conditions for the paradox as discussed in the literature.

As indicated in previous section, we look at the Simpson’s paradox as a
consequence of omission of an important variable. Let Y be the outcome or
response variable and X and Z be explanatory variables. Our primary interest
is in studying the association between Y and X. We study this association
in presence of Z and when Z is missed. Here X and Z may or may not be
independent.

In chapter 3 we have assumed Y to be a dichotomous response variable.
The basic underlying model is that of logistic regression. Let 3, represent
effect of X when Z is included in the study and 4, represent effect of X when
Z is omitted. If 8, and §; show opposite sigus we say that Simpson’s paradox
has occurred. Every time we may not observe a paradox, that is, change in the
sign of regression coefficients. In this chapter we study relationship between
/1 and 6, in two cases (i) when X and Z are independent and (ii) when X and
Z are not independent, When X and Z are independent we do not observe the

paradox. But if X and Z are associated we have possibility of a paradox. We
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give necessary and sufficient conditions for occurrence of Simpson’s paradox
in case of dichotomous X and Z.

Logistic regression is most frequently used to model the relationship be-
tween a dichotomous response variable and a set of covariates. But with a few
modifications it may be employed, when response variable is polytomous. We
consider a polytomous response variable in chapter 4. For notational conve-
nience we assume Y to be taking three values, namely, 0, 1 and 2. We extend
the definition of Simpson's paradox in this set up and discuss the cases when
we get Simpson’s paradox.

Many times we come across situations where outcome variable may not be
simply occurrence or non-occurrence of an event. Instead interest may focus
on length of time to the event. Normally we have censored observations. To
model the relationship between the length of time as response variable and a set
of covariates, Cox regression model is routinely used. In chapter 5 we consider
effect of omitting an important variable Z on the regression coefficient of X.
Here also we discuss the effect of omission when (i) X and Z are independent
and (ii) when X and Z are not independent. In all these chapters we have
discussed various examples to illustrate the theoretical results.

In last chapter we take an overview of various results in the dissertation. .
Also, we discuss future research avenues.

Part of the material of this dissertation has been published in the article
entitled “Effect of missing an influential covariate” (Sane and Kharshikar,
2001).



Chapter 2

REVIEW OF EARLIER
WORK

2.1 Introduction

As discussed in Chapter 1, one of the questions that often arises in cross classi-
fied discrete data is whether a collection of individual tables be pooled in order
to yield a simpler table. The greatest danger in amalgamating contingency ta-
bles is the possibility of a resulting paradox. In Chapter 1 we have discussed
various paradoxical situations. In this chapter we take a review of the litera-
ture related to paradoxes. Section 2.2 begins with notation and terminology.
We have taken a brief review of history of paradoxes, which dates back to
Yule (1903). Subsequently various paradoxes like Yule’s association paradox,
Yule's reversal paradox or Simpson’s paradox and amalgamation paradox are
defined. We have also discussed necessary and sufficient conditions for these
paradoxes that are found in the literature.

Regression methods form one important technique of data analysis con-

13
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cerned with studying a relationship between a response variable and one or
more explanatory variables. These explanatory variables are also known as
covariates. What happens if one of the important covariates is missed? Sec-
tion 2.3 deals with this question. The most commmonly used regression function
is linear regression. A review of earlier work on effect of missing a covariate
in linear regression set up is taken in subsection 2.3.1. Subsections 2.3.2 and

2.3.3 review the same in case of logistic and Cox regression models.

2.2 Simpson’s Paradox and Related Phenom-

ena

2.2.1 Notation and terminology

Let (X, Y, Z) be variables under consideration with joint distribution F. To
represent a 2 x 2 x k contingency table let X and Y each take values ( or
1 and let Z take values 1, 2, ..., k. The i** contingency table is represented
by T; = [ai,bi;ci,di); i = 1,2,...,k. Further ¢; + b; + ¢; + di = n; and
T% | n; = n. If these k tables are added the amalgamated table is represented
by T = (e, L b; X, L d] = [A B;C,D]. We consider odds ratio v; as

association measure for the i"* contingency table. It is defined as y; = ad,

be, *
The odds ratio for the amalgamated table is denoted by % which is given by
v=142

2.2.2 Earlier work on Simpson’s paradox

The literature on Simpson’s paradox is huge and growing. Good and Mittal

(1987) have traced the paradox back to Yule (1903). Yule (1903) pointed out
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that “a pair of attributes does not necessarily exhibit independence within
the universe (population) at large even if it exhibits independence in every
subuniverse (subpopulation).” In our notation one can have y; = 1 for all i but
¥ # 1. Mittal (1991) called this as Yule’s association paradox (YAP). Pearson
(1899) had emphasized an analogous point regarding correlation measures for
continuous data, and Yule (1903) acknowledges Pearson. The paradox occurs
using real data, in the slightly stronger form that 3 can be less than one (more
than one) although ; > 1 (¢¥: < 1) for all i. This stronger form of paradox was
discussed briefly by Simpson {1951) who stated, “the dangers of amalgamating
two by two contingency tables are well known” and he cited Kendall (1945).
Blyth (1972) called the paradox as “Simpson’s paradox” in accordance with
Stigler’s law (1980) that eponomy is always wrong. Mittal (1991) refers to
this paradox as Yule's reversal paradox (YRP). Good and Mittal (1987) have
defined a slightly more general paradox called Amalgamation Paradox (AMP)

as follows:

Definition 2.2.1 We say that amalgamation or aggregation paradoz occurs if
maxa; < a or a<minao;
[} )

where a; is measure of association for i*h contingency table while a represents

measure of association for the amalgamated table.

We need to worry about YAP very rarely in practice, as the condition
of independence is unlikely to be satisfied for observational data. Though
AMP is more frequent than YRP, it is YRP that poses critical problems of
interpretation and inference.

Blyth (1973) gave a simple definition of Simpson’s paradox in terms of

three events, Given three events A, B and C the paradox is the simultaneous
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occurrence of the following three inequalities:

P(AIBNC) > P(A[C).
P(AIBNC) > P(A|CY).
P(A|B) < P(A).

where C¢ is the negation of C. The paradox can be equivalently described

as the simultaneous occurrence of the following three inequalities:

P(AIBNC) > P(A|B°NC).
P(AIBNC) > P(A|B°NCY).
P(A|B) < P(A|B).

Samuels (1993) has extended the definition of Simpson’s paradox from
events to random variables and placed it in a more general setup of association
reversal {AR) and association distortion {AD). Suppose that relations ¢, |, and
1 of directional association between X and Y in 2 x 2 x k contingency tables

have been defined as follows:
X1tY:PX=1.,Y=1)>PX=1)PY =1),

XLY:P(X=1Y=1)<P(X=1PY =1),

and

X1Y:P(X =1,Y =1)=P(X = )P(Y = 1).

Analogous relations conditional on Z will be denoted by X 1 Y|Z and so on.

Definition 2.2.2 We say that F is a candidate for positive AR if (i) X
1Y|Z =2 Vzor (i) X L Y|Z = 2 Vz holds.
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Definition 2.2.3 We say that F is a candidate for negative AR if (i) X LY|Z =
z2Vzor(it)) X1Y|Z =z Vz holds.

Definition 2.2.4 We say that F ezhibits positive AR if one of the following
three conditions holds.

(i) X1Y|Z = 2z ¥z but X 1Y unconditionally.

(ii) X 1 Y|Z = 2 Yz but X 1 Y unconditionally.

(iii) X L Y|Z = z V2 but X LY unconditionally.

Similarly, we have:

Definition 2.2.5 We say that F ezhibits negative AR if one of the following
three conditions holds.

(i) X 1Y |Z =z Vz but X | Y unconditionally.

(1)) X 1 Y|Z = z Vz but X | Y unconditionally.

(1i)) X 1 Y|Z = z Vz but X LY unconditionally.

Samuels has extended the notion of AR for 2 x 2 x k coutingency tables to
the general case where X and Y are real valued random variables and Z is an
arbitrary random variable. It is assumed that X and Z have a Joint density
with respect to a suitable measure and that E]Y| < co. Samuels considered
four different association relations as follows:

A X 1Y [resp. XY, X1Y]ifforally PlY > y|X = 1] is strictly
increasing [resp. strictly decreasing, constant| in x.

Az X 1Y [resp. X Y, XLY]if E(Y|X = T} is strictly increasing [resp.
strictly decreasing, constant] in x.

As: X 1 Y([resp. X LY, X LY]if for all x and ¥y PIX < r,Y < y| > [resp.
<, =] PX < x] P[Y < y].

Ai: X 1Y [resp. X 1Y, X 1Y) if cou(X, Y) >0 [resp. <0, = 0).
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The four relations are connected by the implications A; = A; = Az = A,
(Samuels, 1993).

For a given relation A two reversal phenomena namely association reversal
[AR(A)] and association distortion [AD(A)] are considered. The concepts, F
is a candidate for positive (negative) AR(A) and F exhibits positive (negative)
AR(A) are as defined earlier, but with the relations 1, | and L understood to
be in the sense of A and with “for all z" to be understood to mean “for almost

all F(z)". AD(A) is defined as follows:

Definition 2.2.6 We say that F ezhibits AD(A) if any one of the following
four conditions holds.

(i) XLY (A)|Z for almost all F(z) but X 1 Y(A)

(ii)) X LY (A)|Z for almost all F(z) but X | Y(A)

(iii) X 1 Y(A)Z for almost all F(z) but X | Y(A)

(iv) X L Y(A)\Z for almost all F(z) but X T Y(A)

If X and Y are both dichotomous, then all forms of AR and AD are
equivalent.

The concept of AMP is readily extended to general F.

Definition 2.2.7 Let a be a measure of association between X and Y and let
a. and a. be the values of a conditional on Z = z and unconditionally. We

will say that F ezhibits AMP with respect to a if
a. <infa. or a.>supa..

What would be the best is to find a statistical explanation of any paradox
when it occurs, namely a necessary and sufficient condition for the paradox
that can be described in statistical terms. We discuss below the necessary and

sufficient conditions for AR as given by Samuels (1993).
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To begin with we discuss the concept of double linkage. We say that Z
is not doubly linked to (X, Y) if at least one of the following four conditions
holds:

(i) ZLX.

(ii) Z1Y.

(i) ZLY|X.

(iv) ZLX|Y.

Otherwise, we say that Z is doubly linked to (X, Y'). Thus double linkage
expresses the idea that Z is related to both X and Y.

If Z1X, then all forms of AR and AD are prevented. Consider the relation
Ay. Following theorem gives necessary and sufficient condition for occurrence

of AR(Ay).

Theorem 2.2.1 Suppose that F is a candidate for positive (negative) AR(A,).
Then F ezhibits positive (negative) AR(A,) if and only if ¢ > 0 [0 < 0] and
¢l = |,

where
¢ = covlq(2), (2),
v = Elu(z)),
g(z) = E(X|Z = 2),
a(z) = E(Y|Z = 2),

v(z) = cov(X,Y|Z = z).
The proof of the above theorem is immediate from the well-known identity

cov(X,Y) = Elcov(X,Y|Z)] + cov|E(X|Z), E(Y|Z)).
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As a special case of Theorem 2.2.1, Theorem 2.2.2 is given for 2 x 2 x k
contingency tables. Fori=1,2,..,k, let

r; = P(Z =i),

¢ = P(X =12 =i),

pi=PY=1X=02=1i),

pi =PY=1X=12=i),

b; = Pi, = Piy

v; = &igi(l - gi),

g=Yqri=P(X =1).

Similarly one can define g;, p;, 5, d:, § but with X and Y interchanged.

The following theorem gives necessary and sufficient conditions for AR that

are symmetric in X and Y.

Theorem 2.2.2 Suppose that F is a candidate for positive (negative) AR.
Then F ezhibits positive (negative) AR if and only if ¢* > 0 (¢* < 0) and
671 > 1v7]

where

¢ =) (¢ —9)@ — §Irar
v = ZV;T.'.

For k = 2, we have following corollary to Theorem 2.2.2.

Corollary 2.2.1 Suppose that k = 2 and F ezhibits positive AR. Then either
(i) XtZandYtZor(it) X1 Z andY } Z

Lindley and Novick (1981) proposed the corollary 2.2.1 and a full proof
was given by Mittal (1991).
Samuels has also discussed necessary and sufficient conditions that are not

symmetric in X and Y. These are given in Theorem 2.2.3. Let
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p= Epirh

P =Xpr

where p;, p; and r; are as defined earlier.
Theorem 2.2.3 Suppose that F is a candidate for positive (negative) AR.
Then F ezhibits positive (negative) AR if and only if ¢ > 0 (¢ < 0) and
6] > 1819(1 - g)

where

¢‘ = z (pi — pai — @)ri,
§=q" zfsiQiTi-

Theorem 2.2.3 has a natural statistical interpretation. One can visual-
ize a population of individuals, some of who receive a treatment (X=1) and
some of whoin do not (X=0). Further some individuals respond with success
(Y=1) and some do not (Y=0). Here Y is a response variable and X is an
explanatory variable. Z can be treated as a stratification variable. Then g;
is the probability that an individual in stratum i receives the treatment. p;
and p; are success rates among treated and untreated individuals in stratum
i. The parameter ¢ in Theorem 2.2.3 is simply covariance between p. and
q-. Thus, for example, the condition ¢ > 0 says that strata where treatment
is more common also tend to be those with relatively high success rates even
among untreated individuals. It is intuitively reasonable that this would spu-
riously favor the treatment and therefore tend to produce positive AR. Similar
remarks are applicable to ¢ < 0. From Theorem 2.2.3 it shows clearly the
competition between the parameter ¢ pulling towards AR and the parameter
¢ pulling away from it with the factor q{1-q) setting the scale of competition.

Mittal (1991) has also dealt with necessary and sufficient conditions for

different paradoxes. We discuss these briefly in the following,.
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Let 2 x 2 x k contingency tables represent the k subpopulations. Mittal
(1991) defined homogeneous strata or subpopulations by the requirement that

any of the following four inequalities holds.

maxpi < minp; (2.2.1)
max p; < minp; (22.2)
max D < m'_in ;;: (2.2.3)
m'.ax;i < minj; (2:24)

We assume that X represents rows and Y represents columns of the 2 x 2
table. Then strata are called row homogeneous if (2.2.1) or (2.2.2) holds.
Similarly the strata are called column homogeneous if (2.2.3) or (2.2.4) holds.
Mittal showed that homogeneity is necessary as well as sufficient to avoid YAP
in 2 x 2 x 2 contingency tables. But this claim was shown to be incorrect by
Samuels (1993). He has shown that the condition of homogeneity is sufficient
but not necessary. Further Mittal has shown that homogeneity is sufficient
to avoid YRP or Simpson’s paradox but not necessary to prevent YRP, Thus
paradox will not necessarily occur if nonhomogeneous populations are amal-
gamated. However, Mittal suggests that a second look at the data may reveal
the characteristics originally overlooked. Mittal showed that the condition of
homogencity is neither sufficicnt nor necessary to prevent AMP.

Good and Mittal (1987) have shown how AMP can be avoided by suitable
designs of sampling experiments. Three types of sampling procedures can be
defined. In sampling procedure I we sample at random from population. For
2 x 2 table this could also be called as tetranomial sampling. In sampling
procedure IIg (or Ilg) we fix the row (column) totals and then sample at

random till these marginal totals are attained. It is also known as product
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binomial sampling. In sampling procedure III, both row and column totals
are fixed.
In the following we have reported the definitions of row and column uniform

designs as given by Good and Mittal.

Definition 2.2.8 An experimental design is said to be row uniform or row

fair if, for some A;
(ai +bi) _
(i +di)

Definition 2.2.9 An experimental design is said to be column uniform or

=12,...,k

colurmn fair if, for some u;

(ai+ci)_
bi+dy) ©

A row uniform (column uniform) design is possible under sampling proce-

=1,2,... k.

dure IIg (II¢). Under sampling procedure III it is easy to use a design that
is both row and column uniform.

Good and Mittal have considered several association measures and checked
whether row or column uniform designs are sufficient to prevent AMP with
respect to these association measures. For odds ratio the result is given in the

following theorem.

Theorem 2.2.4 Suppose the ezperimental design is both row and column uni-
form. Then for odds ratio AMP is avoided, that is min; ¥; < ¥ < max; ¥

Samuels (1993) has collected known results concerning AMP for odds ratio.

These are given in the Theorem 2.2.5.

Theorem 2.2.5 (i) If ZLX|Y or ZLY|X, then odds ratio is both constant

and collapsible; that is

vi= 9
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In particular F can not ezhibit AMP with respect to odds ratio (Bishop, Fien-
berg and Holland, 1975).

(ii) If ZLX and Z1Y then F can not ezhibit AMP with respect to odds
ratio (Good and Mittal, 1987).

(ii1) If ZLX or Z1Y but ZA(X,Y) is false and if ; = Yo # 1, then
F must ezhibit AMP with respect to odds ratio (Samuels, 1981), and in fact
=1 <|vo~1

Theorem 2.2.5 reveals the quirky nature of the odds ratio. It may be

noted that each hypothesis in Theoremn 2.2.5 is sufficient to prevent AR, but

the hypothesis in (iii) guarantees that AMP will occur.

2.2.3 Generalized Simpson-type paradox

Scarsini and Spizzichino (1999) have extended Samuel’s idea by considering
several dependence concepts for random vectors and have given a generalized
version of Simpson’s paradox. Let £(X) denote law of random vector X =
(X1, X2,...,Xm) and let £{X|Z) denote conditional law of X given Z = 2z
Dimension of X is m and that of Z is n. Let Ap denote class of laws that
satisfy the dependence property D. Scarsini and Spizzichino have discussed

various dependence properties. We mention two of them in the following.

Definition 2.2.10 A random vector X is positive upper orthant dependent
(L(X) € Apvop) if
P(X] >, Xe>29,...,Xn > :L‘m) > HP(X. > 3?,') V(II,IQ,...,ID",) eR™

Definition 2.2.11 A random vector X is positive lower orthant dependent
(L(X) € Apron) if
P(Xl < T]_'.X'z < 12,. “a ’Xyn < I,n) Z H P(X| < 1',') V(I],T2, “ha ’IHI) E R’"
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For bivariate random vectors the two concepts above coincide. Thus these
two concepts can be seen as generalization of association relation .Aj; given by

Samuels {1993).

Definition 2.2.12 A random vector X is said to be associated (L(X) € Asssoc)
if cov(¢(X), ¥(X)) 2 0 for all pairs of increasing functions ¢ and .

1
Definition 2.3.12 can be seen as extension of Samuel’s association relation

Ay. With these dependence properties generalized Simpson's paradox is given
in definition 2.2.13.

Definition 2.2.13 The Simpson’s paradoz occurs when the conditional law of
random vector X ezhibits a dependence property for every possible value of the
conditioning vector Z, but it does not ezhibit the same property unconditionally.
Thus

LX|Z=2z)elAp but L(X)¢ Ap

Scarsini and Spizzichino (1999) have given sufficient conditions to avoid the
paradox with respect to various dependence properties. Further they related
the paradox to some well-known aging properties such as increasing failure
rate (IFR) and decreasing failure rate (DFR). They have shown that IFR or
DFR can be translated in terms of positive or negative dependence properties
so that their loss can be seen as Simnpson-type paradoxes.

In the following we report the sufficient conditions as given by Scarsini
and Spizzichino. We need definition 2.2.14 for the discussion of the sufficient

conditions.
Definition 2.2.14 We say that X is stochastically increasing in 'Y if

XY =y] <a [XIY =y] Yy <y.
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The symbol <, indicates usual stochastic ordering. X <,, Y if and only
if E{¢p(X)} € E[¢(Y)] for all increasing functions ¢.

Theorem 2.2,6 Let £L(X|Z = z) € Apuop for allz. If (a) X is stochastically

increasing in Z and (b) Z is associated, then £{X) € Apyop.

Theorem 2.2.7 Let L(X|Z = 2) € Aassoc for all z. If (a) X is stochasti-
cally increasing in Z and (b) Z is associated, then L(X) € A ss50c¢-

2.3 Omitting a Covariate

In regression analysis choice of covariates is very important. An important
covariate may be omitted due to either incorrect conceptual understanding
of the phenomenon under study or an inability to collect information on all
relevant factors related to the experiment under study. If an important variable
gets omitted, the regression coefficients of other covariates get affected. This
in turn many times results into misleading interpretation of data. Simpson’s
paradox can be seen as a consequence of omitting an important covariate. In
the following we review the literature that study effects of omitting a covariate

in linear regression, logistic regression and Cox regression model.

2.3.1 Omitting a covariate in linear regression model

Consider the linear regression setting specified by
E(lem Z) = Bo +»81X +}3'ZZ (231)
If the variable Z gets omitted we have the regression model given by

E(Y}X) =0, +6,X (2.3.2)
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The regression coeflicients 8, and 4; are given by

B = cov(X,Y|Z) P cov(X,Y)
TOVIXIz) YT vy

If 3, and 4, show opposite signs we have a paradoxical situation.

Example 2.3.1 Consider data set given in Table 2.3.1, In this ezample brain
weight is the variable of interest (Y ) and the explanatory variables are litter
size (X ) and body weight (Y ). If we fit linear regression model with X and Z
as explanatory variables the parameter estimates are given in Table 2.3.2.

Positive values of B, and /32 indicate that the association between brain
weight and litter size or body weight is positive.

The positive and significantly large regression coefficient estimate of 5
indicales that mice from large litters do have larger brain weights than mice of
comparable size from smaller litters.

If we consider regression of Y on X then estimate of regression coefficient
8, is given by &; = —0.0040 ( S.E (8,) = 0.0012). It implies that brain weight
seems to be reducing if litter size increases. Since 5, > 0 and &, < 0 we
have a paradozical situation. In other words F has ezhibited AR(A4) since
cov(X,Y|Z) > 0 but cov(X,Y) < 0.
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Table 2.3.1
Brain Weight (gm) | Litter Size | Body Weight (gm)
Y X Z
0.444 3 9.447
0.436 3 9.780
0.417 4 9.155
0.429 y 9.613
0.425 5 8.850
0.434 5 9.610
0.404 6 8.298
0.439 6 8.543
0.409 7 7.400
0.429 7 8.335
0.414 8 7.040
0.409 8 7.253
0.387 9 6.600
0.433 9 7.260
0.410 10 6.305
0.405 10 6.655
0.435 11 7.183
0.407 11 6.133
0.368 12 5.450
0.401 12 6.050

28
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Table 2.3.2

B S.E. (B)
Bo=01782| 0.0753
B, = 0.0067 | 0.0031
By =0.0243 | 0.0068

The well-known result regarding this paradoxical situation in linear regres-

sion is stated in Theorem 2.3.1 (Samuels, 1991).

Theorem 2.3.1 Consider linear regression setting given by (2.3.1) with 5, >
0 (<0). Then we have Simpson’s paradoz, that is §, < 0 (6, > 0) if and only
if $<0(6>0) and |§| 2 |81 V(X), where ¢ = Bycov(X, Z).

In the Example 2.3.1 cov(X, Z) = -3.6398.
AMP with respect to regression coefficient occurs if 3, # §,. Theorem

2.3.2 gives sufficient condition to prevent AMP (Samuels, 1991).

Theorem 2.3.2 Consider the linear regression model given by (2.3.1) and
¢ = 0. Then we can not have AMP with respect to regression coefficient. In
other words if ¢ = 0 then B = §,.

Thus if X and Z are independent we do not have any paradoxical situation.
But if X and Z are associated we may lead to a paradoxical situation. Every
time we may not observe such a dramatic effect as association reversal. In fact
on most of the occasions we observe only some change in regression coefficient.

Asymptotic results regarding this for the class of generalized linear models
have been discussed in the literature. Let 8, — 3; denote the asymptotic bias.
It is shown to be zero if the regression of response on covariates is linear (Gail,
Wieand, Piantadosi; 1984). Further in regular cases it is a necessary condition

for zero bias.
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2.3.2 Omitting a covariate in logistic regression model

Let Y be dichotomous response variable taking values as 0 or 1. Further let X
be a treatment indicator variable and Z is another important covariate. The

logistic regression model of Y on X and Z is specified by

_ _ _ exp{Bo+ Bz + Bz}
EY|X,Z)=PY =1|X,2)= [+ expllo + Biz + Bad) (2.3.3)
If the important variable Z is missed the reduced model is given by
_ _ _ exp{do + 0,7}
E(Y|X)=P(Y =1|X) = 15 ezp{do + 817] (2.3.4)

31 and &, represent treatment effect in model (2.3.3) and (2.3.4) respec-
tively. Opposite signs of §; and &, create problem of interpretation of treat-

ment effect.

Example 2.3.2 Consider data in Table 2.3.3.

Table 2.3.3
Y=0|Y=1| Total
Z=0|1X=0| &0 100 | 150
X=1| 20 60 80
Z=1|X=0| 30 10 40
X=1 80 40 120

In this example response variable (Y) is outcome of the ezperiment namely
success (Y = 1) and failure (Y = 0). The explanatory variable X is treatment
typ;z taking values as 1 (treatment I) and 0 (treatment II). Sezx (Z) is another
important covariate taking two values as 1 (men population) end 0 (women
population). If we fit logistic regression model to these data, the regression
cocfficient 3, equals 0.4054.

If the two tables are amalgamated over sezx we get Table 2.3.4.
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Table 2.3.4

Y=0(Y=1| Total
X=0| 80 110 190
X=1| 100 100 | 200

Total | 180 210 | 390

If we ignore the variable Z and fit logistic regression model to combined
data, we have the regression coefficient 8, equal to -0.3184. Change in sign of
regression coefficient indicates change in the direction of association between Y

and X when an important variate Z is missed and this is Simpson's paradoz.

Model (2.3.3) is similar to the linear regression model but differs in an
important respect. For linear regression the condition Z.L X not only prevents
AR but also prevents AMP with respect to regression coefficient. For logistic
regression the situation is different. For example, consider the case when X
is dichotomous taking values as 0 or 1. Then the condition ZLX prevents
AR but (unless 3; = 0 or 3; = 0) it guarantees that AMP will occur that is,
P # 6, (Samuels, 1991).

This counterintuitive result for dichotomous X in model (2.3.3) suggests
that randomized allocation to levels of X makes AMP inevitable.

How should one look at this situation? Gail, Wieand and Piantadosi (1984)
in discussing the randomized experiments regarded 3; as the true measure of
treatment effect implying 6, as false measure. This view seems to lead to an
infinite regress, because there is always another covariate, which is not taken
into consideration. A more balanced view would be that both 3, and é, are
equally valid, although different measures of treatment effect. This appears to
be the view taken by Holland and Rubin (1988).
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Gail, Wieand and Piantadosi (1984) have studied effects of omitting co-
variates in generalized linear models. As mentioned in previous subsection
randomization assures unbiased estimates in linear regression. But certain
important non-linear regression models like logistic regression model lead to
biased estimates of treatment effect. Let 31 -3 represent the bias in the treat-
ment cffect. Gail, wieand and Piantadosi (1984) have approximated this bias
for generalized linear model. In particular, for logistic regression the formula
for bias is given by

2erp{Fo}(1 — exp{5})
(1 + exp{3 + 31 })(1 + exp{3o})

X and Z are assumed to be independent while deriving this result.

Neuhaus and Jewell (1993} have presented gecmetric approach to assess the
bias due to omitted covariates in generalized linear models. In the following

we briefly discuss the same for the case of logistic regression model (2.3.3).
Let

A = PY=1X=z+1,2Z)-PY =1}X=1z,2)
= -

A can be treated as a function of 3, and the omitted covariate Z. Figure
2.3.1 shows plot of A versus j for fixed value of 3,.

Neuhaus and Jewell have shown that direction of bias depends on whether
A is concave, convex or linear. For logistic regression model A is concave.
Hence 0 < |4;] < |5;|. In chapter 3 we have discussed the same result with

different approach.
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Figure 2.3.1
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2.3.3 Omitting a covariate in Cox regression model

Proportional hazards regression models are applied routinely in analysis of
clinical trials, observational studies and laboratory experiments. The propor-
tional hazards model is specified by the hazard function. The most commonly
used hazard function A(y|z, z) for a subject with treatment X and covariate

Z given by Cox (1972) is
Alylz, 2) = do(y)ezp{ Bz + Bz}

where 3, and 3, are unknown parameters and Ag(y) is unknown function known
as baseline hazard function.

Relatively little is known about consequences of misspecifying the propor-
tional hazard model by omitting covariates. At the Columbus, Ohio conference
on survival analysis in 1981, J. D. Kalbfleisch and C. Struthers discussed the
problem of missing covariates in connection with Cox’s model. They pointed
out that consistent estimates of treatment effect, 3, were obtained if 3, = 0
but that estimates of 3, were biased towards zero if 3; # 0, because the
proportional hazards assumption is invalid if a needed covariate is omitted.

In discussing randomized experiments, Gail, Wieand and Piantdosi (1984)
have studied asymptotic bias due to omitted covariates in proportional hazards
model. They have shown that under the absence of censorship 3, is unbiased
regardless of survival distribution. This fact was observed by C. Chastsng for
exponential model.

In the presence of censorship exact bias can be calculated in principle
by solving equations given by Gail, Wieand and Piantadosi (1984). But the
equations are hard to apply. Gail et. al. (1984) have given approximations

to exact bias under different censoring schemes. Their simulation study has
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indicated that asymptotic bias calculations offer accurate guidance for samples
of modest size.

Lagakos and Schoenfeld (1984) have discussed the effects of omitted covari-
ates on the associated partial likelihood score test for comparing two random-
ized treatnents in the presence of covariates. In the score test for hypothesis

of no treatment difference (3, = 0), the statistic

. o zieﬂ'J 1':‘91'19{1622}
|

is treated as approximately normal. Here y; < y; < ... are distinct failure

times; R; is the set of indices of subjects under observation just prior to y;;
z; is the treatment group corresponding to failure at y; and £, is maximum
partial likelihood estimator of 3; when 3, = 0.

As mentioned earlier the proportionality assumption is not valid if a covari-
ate is omitted from Cox's regression model. In fact it induces non-proportionality
to treatment hazard ratio. Lagakos and Schoenfeld have shown that this re-
sults into loss of power of score test. But the size of the test is not affected
appreciably,

Lagakos and Schoenfeld have derived expression for asymptotic relative

efficiency (ARE) of S, which was later corrected by Morgan (1986).



Chapter 3

LOGISTIC REGRESSION:
DICHOTOMOUS RESPONSE

3.1 Introduction

As discussed in previous chapter, we consider three variables Y, X and Z
where Y is the response variable X is the covariate of primary interest and
Z is another important covariate. We investigate the relationship between
the regression cocfficients of X when covariate Z is included in the study
and when it is missed. In this chapter we counsider the situations when the
response variable Y is dichotomous. The basic underlying model is that of
logistic regression. A review of logistic regression model is taken in section
3.2. Section 3.3 and 3.4 discuss the main results of the chapter. We have given
illustrative examples throughout, with a view to explain the theory discussed,

as it is used in practice.

36
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3.2 An Overview of Logistic Regression Model

Regression methods have become an integral component of any data analysis
concerned with describing the relationship between a response variable and one
or more explanatory variables. It is often the case that the response or outcome
variable is discrete taking two or more possible values. Many distribution
functions have been proposed for use in analysis of a dichotomous outcome
variable. Cox and Snell (1989) discuss some of these. The logistic function is
one such function. It is one of the oldest models for analyzing demographic
and organismic growth data. Verhulst (1845), Pearl (1925, 1940), Pear] and
Reed (1920), Yule (1925) and more recently Oliver (1966, 1982) and Leach
(1981) discuss application to population growth. Other biological applications
of the logistic function include modeling of the growth of yeast cells (Pearl
and Reed, 1920; Schultz, 1930; Oliver, 1964) and the use of logistic function
in analysis of survival data (Plackett, 1959).

Reed and Berkson (1929) are usually credited with the logistic label and
Berkson (1951, 1953, 1994) has championed the use of logistic distribution
function for modeling dose-response curve in bioassay. From the limited use of
logistic distribution for quantal bioassay has emerged logistic regression analy-
sis, which is currently a very popular generalized linear model for analyzing
data having discrete outcome variable. There are two primary reasons for
choosing the logistic distribution. These are (i) from mathematical point of
view it is an extremely flexible and easily used function and (ii) it lends itself
to a biologically meaningful interpretation.

Let Y be response variable and X and Z are explanatory variables. The
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logistic regression model of Y on X and Z is given by

 exp{fo+ Bz + Brz)
m(z,2) = 1 + exp{Go + A1z + o2}

where n(z, 2) denotes the conditional probability P(Y = 1|X = z,Z = 2).

(3.2.1)

Here X and Z may be discrete or continuous.
If we ignore the important covariate Z then the logistic regression model

of Y on X is given by

exp{do + &;z}
1 + ezp{éo + &7}

7(r) =

(3.2.2)

where w(z) denotes the conditional probability P(Y = 1|X = z).

It may be noted that 3 in (3.2.1) represents the effect of X in full model
while 4; in (3.2.2) represents the effect of X in reduced model. Consider the
case of dichotomous X and Z. The probabilities as given by model (3.2.1) can

be written in two 2 x 2 contingency tables as given in Table 3.2.1.

Table 3.2.1
Y=0 Y=1
— — 1 Jo
Z=01X=0| o Trs el
X=1 I exp{ o+ }
= 1+exp{o+idi } 1+exp{do+3; }
_ _— 1 exrp{do+id}
Z=1(X=0 1+esp{do+d2} 1+exp{ ot}
X =1 1 erp{do+i+a}
— T+erp{do+di+32} | Y+erp{do+01+31)

We observe that 3, is the log-odds ratio for the contingency table corre-
sponding to Z = 0 as well as Z = 1. The Table 3.2.2 gives probabilities
corresponding to model (3.2.2). Here 4, is the log-odds ratio.
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Table 3.2.2

Y=0 Y=1
— 1 {60}
X=0 14+exp{do} lfeip{%o}

1 exp{So+81}
1+erp{do+6:1} | 1+exp{So+é:}

X=1

The paradoxical situation occurs if 3 and 4, show opposite signs. Consider
a situation where a treatment shows positive effect when applied to men and
woimnen separately. But if we combine the populations the treatment may show
negative effect. Thus omission of the variate sex may lead to a misleading
impression about association. Since 3; and 4, represent effect of X in different

models, it is possible that these do not show the same sign.

3.3 Dichotomous Response: Effect of X free
from Z

To begin with we consider the case where the response variable Y is dichoto-
mous taking values as 0 or 1 and X and Z are independent. In this case we
do not come across a paradoxical situation, that is, 3, and &, have the same
sign. But §, is always less than 3, in maguitude. \We prove it in sequel. It
may be noted that all the results given below are concerned with population.

Theorem 3.3.1 Let Y be the dichotomous response variable taking values as
Oor 1. X and Z are explanatory variables. Further X and Z are independent.
If 8, >0, then 8, 2 6, > 0.
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Proof;
case 1: X and Z are dichotomous variables.

It may be noted that n(z) can be expressed as

w(z) = n{z,0)(1 — p.) + w(z, 1)p; (3.3.1)
where
p: = P(Z =1|X = z).
Thus,
- _epip} ) _ exp{fo + B2}
O = e P T ezp(o + A
and
__emp(BotB) . emplht Bt B
m(1) = 1 +exrp{fo + Bl}(l p)+ l+exp{Bo+ B+ ﬁl}pl'
X and Z are independent so that py = p; = p, say. Let
_exp{Bo}
Wy = _—"""—1 n 81'19{,'30} (3.3.2)
and
__eaplo+ B}
u = 1+ C.’I.'p{[jo T /32} (333)
Hence, we have
7(0) = wo(l — p) + wrp
and
(1) = g(wo)(1 — p) + g(wr)p
where
o) = — LA (3.3.4)

1+ blexp{Bh} - 1)
The function g(.) for #, = 2.5 is depicted in Figure 3.3.1.
From (3.2.2)

_ _exp{do}
m(0) = 1 + exp{do}
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Figure 3.3.1
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and
ezp{fo + &}
l)= .
m(1) 1+ exp{do + 4}

Since 4, > 0, the function g(.) is concave. Hence

g(=(0)) = =(1)

where

_ ezp{bo+ B}
9(n(0)) = 1+ ezp{dp + 5}

Hence 3, > 4,. Further for 8, > 0, n(1) > #(0). Thus

Gh26>0.

case 2: Let X be dichotomous and Z be discrete taking values as 0,1,. . .,

Here we can write

X
m(z) =3 w(z,2)P(Z = 2|]X = 1)

Since X and Z are independent P(Z = z|X = 1) = P(Z = z).

Hence
k

7(0) = >_n(0,2)P(Z = 2)

z=0
and

k
m(1) =3 g(n(0,2))P(Z = 2)

==0

where g(.) is as defined in (3.3.4).

For 3, > 0 the function g{.) is concave so that

9(w(0)) 2 n(1)

implying that §; > ;. Further as in case 1, for 3; > 0 w(1) > =(0). Hence
6 > 0.
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Thus ﬂl 2z 6, > 0.
case 3: Let X be a nonnegative valued continuous random variable and

Z , a continuous variable, Here we can write 7(z) as

w(z) = /- n(z, z)p(z]z)dz (3.3.5)

where p(z|z) denotes conditional density of Z given X.

Since X and Z are independent, we can write p(z|zr) = p(z). Thus

x(0) = j (0, 2)p(2)dz
and
n(a) = [ g:(x(0, 2))p(2)dz

where
_ ezp{Biz}b
9:(0) = 1 + blexp{Biz} - 1)

For 3, > 0 the function g,(.) is concave. Hence

(3.3.6)

g:(n(0)) 2 w(r) Vz

which implies that

exp{dp + O17} S exp{d + &1}

v
1+ exp{fo + iz} ~ 1 +exp{do + &7} o

so that
B> 6.
Further m(z) > #(0) for all x implies that 6, > 0.
Thus
B> 6 >0.

It may be noted that in all the three cases if 3; = 0 then equality holds,
that is, 8, = 8, > 0. For 8; > 0 or 3, < 0 we have strict inequality, that is,
By > 6 > 0.
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The result stated in Theorem 3.3.1 can be obtained graphically. Refer to
Figure 3.3.2. We have considered the case when X and Z are dichotomous.
Since X and Z are independent same p is used to take average of wp and w,
and that of g{wp) and g(un).

From the figure it is clear that

g(m(0)) > n(1)

implying that 8 > é,. Here we have taken 3, to be positive. For negative 3
positions of wy and w,; are interchanged.

If X is replaced by —X or in other words if 8; < 0 then the relationship
between 3; and §, is reversed. But §, is always less than () in magnitude.
We state this result in Theorem 3.3.2 and prove it in sequel. For 8, < 0 the
function g(.) becomes convex and we have the desired result. The convex

function g(.) for negative 3, (3, = —2.0) is depicted in Figure 3.3.3.

Theorem 3.3.2 Let Y be the dichotomous response variable taking values as
O0or 1. X and Z are explanatory variables. Further X and Z are independent.
Ifﬁl < 0, then ,51 < (5[ < Q.

Proof:

case 1: X and Z are dichotomous variables.

Since 8, < 0, the function g(.) as defined in (3.3.4) is convex. Hence

g9(m(0)) < =(1)

where )
__erp{lbo+ 5
g(m(0)) = 1 +exp{dp+ 5}

Hence 8, < 8;. Further for 3; < 0, n(1) < #(0) so that §; < 0. Thus

B €6, <0.
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case 2: Let X be dichotomous and Z be discrete taking values as 0,1,. . .,

As earlier we can write
k

m(0) =Y _n(0,2)P(Z = 2)

=0

and

k
m(1) = gg(ﬂ(O,Z))P(Z =2)

where g(.) is as defined in (3.3.4).

For 8, < 0 the function g(.) is convex so that

g9(m(0)) < =(1)

implying that 3, < §,. Further as in case 1 for 7, < 0, #(1) < #(0). Hence
0, < 0.

Thus 3, < 4, <0.

case 3: Let X be a nonnegative valued continuous random variable and
Z, a continuous variable.

Since 3, < 0, the function g,(.) as defined in (3.3.6) is convex. Hence
9:(m(0)) < w(r) VI

which implies that

exp{do + By} < erp{dp + 6,1}

1+ exp{do + iz} — 1+ exp{bo + 6,1} vz

so that
B < b
Further m(x} < w(0) for all x implies that 8, < 0.
Thus

B <4, <0.
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As earlier in all the three cases equality holds if 5, = 0. Further for positive
or negative 3, strict inequality holds. Here also we can give a simple geometric
proof of the Theorem 3.3.2 when X and Z are dichotomous. Refer to Figure
3.3.4. We observe that

g9(m(0)) < =(1)

implying that 3, < §,.

Now we consider the case of 3; = 0.

Theorem 3.3.3 Let Y be the dichotomous response variable taking values as -
Oor 1. X and Z are ezplanatory variables. Further X and Z are independent.
If B =0 then 8§, = 0.

Proof:

case 1: Let X be dichotomous and Z be discrete taking values as 0,1,. . .,

Here we can write

7(z) = zk:ﬂ'(r,z)P(Z =z|X =x)
=0

Since X and Z are independent, P(Z = z|X = 1) = P(Z = 2).
Hence
k

7(0) = 3" 7(0,2)P(Z = 2)

=0

and A
m(1) = EQ(W(O, 2))P(Z = z2)

where g(.) is as defined in (3.3.4).
For 8, =0, n(0, 2) = g(m(0,2)) V2 implying that x(0) = x(1). Hence the

result.
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case 2: Let X be a nonnegative valued continuous random variable and
Z , a continuous variable.

As earlier, since 8, = 0, w(0,z) = g-(7(0,2)) Vz,z2 implying #(0) =
n(z) Vz.Hence d§, =0.

Thus to summarize the above results, when X and Z are independent we
have:

(i) If By =0 or 3, =0 we get 5, = 4,.

(ii) In all other cases 4, is less than 8, in magnitude.

Here we discuss few examples in light of Theorem 3.3.1 and Theorem 3.3.2.
Example 3.3.1 Consider the following hypothetical data.

Table 3.3.1

Y=0|Y=1| Total

Z=0|X=0 ] 15 20
X=1 2 18 20
Total 7 33 40

Z=1|X=0| 15 5 20
X=1| 10 10 20
Total 25 15 40

Note that P(X = 1) is same for Z = 0 and Z = 1, indicating that X and
Z are independent. The resulls of fitting logistic regression model (3.2.1) are
given in Table 3.3.2.
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Table 3.3.2

8 S.E.(3)
Bo=1.0086 | 0.4599
By =1.0986 | 0.5456

B = -2.1972 | 0.5591

If we combine the data over Z we have data as given in Table 3.3.3.

Table 3.3.3

Y=0|Y=1| Total
X=0 20 20 40
X=1 12 28 40
Total 32 48 80
We fit model (3.2.2) to the data in Table 3.3.3. The estimates of & and &,

are given in Table 3.3.4.
Table 3.3.4

é S.E.(8)
do=0 0.3162
6, =0.8473 | 0.4680
Here X and Z are independent. Further 3, > 0. We observe that 3, >

4, > 0.

We now discuss one example in which Y and X are dichotomous, but Z
takes 3 values.

Example 3.3.2 Consider the hypothetical data in Table 3.3.5. Here also we
observe that P(X = 1) is same for Z = 0 end Z = 1, indicating that X and

Z are independent.
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Table 3.3.5

Y=0|Y=1| Total
Z=0}{X=0]| 10 30 40
X=1 4 36 40
Total | 14 66 80
Z=1{X=0}| 30 10 40
X= 20 20 40
Total o0 30 80
Z=2|X=0| 20 20 40
X=1| 10 30 | 40
Total | 30 50 80

If we fit logistic regression model (3.2.1) we have the results as given in
Table 3.3.6.

Table 3.3.6

3 S.E.(3)

Ho=0 0.2717

6 = 1.0984 0.3014
Ba(1) = 1.0982 | 0.3850
B2(2) = —=1.0985 | 0.3408

If the data are amalgamated over Z we get Table 3.3.7.
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Table 3.3.7

Y=0[|Y=1]| Total

X=0| 60 60 120

X=1| 34 86 120
Total 94 146 | 240

Results of fitting model (3.2.2) are given in Table 3.3.8.

Table 3.3.8

5 S.E.(6)
bo=0 | 0.2727
8, = 09280 | 0.2727

Here also we observe that 3, > 6, > 0.

So far we have assumed that X and Z are independent. What happens if
X and Z are not independent?

Counsider the case when X and Z are dichotomous, but not independent.
Thus in this case py # p,. Further let 5, be positive. Then we may have a
situation as depicted in Figure 3.3.5. e observe that in this case

9(=(0)) < =(1)

implying that 3, < §;. Here p, is large as compared to py.
Further if p, is small as compared to py we may get w(1) < m(0)} which
implies that 4, < 0; a paradoxical situation. How small p, should be? In the

following we discuss bounds on p, in these situations.
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We define

po{w; ~ wo) — (g9(wo) — wo)
"= 3.3.7
g(wr) — g(wo) (3:3.7)
and
glwo(l = po) + wipo] — g(wo)
"= 3.3.8
() — g(wo) 338)
where the function g(.}, we and w, are as defined earlier. We note that p* and

p** are functions of Gy, 8, and f,. Further p* and p** are not defined if 3, = 0.

For the sake of definiteness we assume 3, to be positive.

Theorem 3.3.4 LetY, X and Z be dichotomous variables taking values as 0
or 1. Further X and Z are not independent and let 5, > 0. Then we have:
(i) If py < p* then 8, <0 i.e. Simpson’s paradoz occurs.
(it) If pr 2 p** then b, > 1.

(1ii) po lies between p* and p**.

Proof:

(i) ; < p* implies that x(1) < #x(0). Hence §; <0

(ii) p, > p°** implies that 7(1) > g{=(0)). Hence §, > 3,.
(iii) First we prove that p°* < py.

We can write p* as

Pt = [ Po(wn —wo) | [ g(wo) — wy ]
g(wr) — g(wo) g{w1) — glwo) |

The proof is obvious if
Uy = Uy
<l
g{wn) — g(wo)

If it is greater than 1, we can write

P’ =p(l+¢€)-¢
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where
€ = (un ~ wo) — (g(wy) — g{un))
: g(wy) — g(wo) -

and
g(wo) — wo
g(wn) - g(wo)
It may be noted that ¢; < ¢€]. This implies that p* < py.

€] =

Now we prove that p** > pg. Since §; > 0, the function g(.) is concave
and hence
glwo(1 — po) + wipo] > g(wo)(1 — po} + g(w1)po
which implies that p** > py.
Thus pqg lies between p* and p**. We note that p** is always less than one
while p* need not be positive always. If p* is negative we will never come
across a paradoxical'situation.

We have a similar result for 3, < 0 which is given in Theorem 3.3.5.

Theorem 3.3.5 LetY, X and Z be dichotomous variables taking values as 0
or 1. Further X and Z are not independent and let By < 0. Then we have:
(i) If py = p* then 6, 2 0 i.e. Simpson’s paradoz occurs.
(i)} If pr S p** then 6, < B).
(iii) po lies between p** and p°.

Proof:

(i) p1 2> p* implies that #(1) > =(0). Hence &; > 0.

(i) p < p** implies that (1) < g(x(0)). Hence 4, < 3;.
(iii) First we prove that p* > py.

We can write p* as

. _ [ PO(wl-‘wo) ] + l wo—g(wo)
P = (o) —gtwo)| ™ | gun) = g(wo) |~
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The proof is obvious if

w — Uy
> 1.
g(uwr) — g(wo)

If it is less than 1, we can write

P'=po(l —€e2) +¢;

where
(g{wy) = g(wo)) — (wy — wy)
g(un) — g(wy)

€2 =

and
wo — g{wo)
g(un) — g(wo)’
It may be noted that e; < €5 . This implies that p* > py.

€©=

Now we prove that p** < pg. Since 3; < 0, the function g(.) is convex and

hence
glwo(1 = po) + wipo] < g(wo)(1 — po) + g(w1)po

which implies that p** < py.

Thus py lies between p** and p*. We note that in this case p** is always
less than one and p° is always positive. If p* is greater than one, then we will
never have a Simpson’s paradox.

So far we have obtained bounds on p, in two cases. We have assumed X
and Z to be dichotomous and considered the cases when 3, > 0, 3; > 0 and
B <0, B; > 0. The conditions on p, when 5, > 0 and B, < 0 are same as in
Theorem 3.3.5. Similarly, the bounds on p, in case of 3, < 0 and 3 < 0 are ‘
same as in Theorem 3.3.4. If 3, = 0 then we will never come across Simpson's
paradox.

It may be noted that for 3, = 0, p* = p** = po. The corresponding results

are given in Theorem 3.3.6.
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Theorem 3.3.6 Let Y, X and Z be the dicholomous variables taking values
as 0 or 1. Further X and Z are not independent. Let 3, = 0. Then we have:
(i) If p1 < pp then &, < 0.
(ii) If py > po then 6, > 0.

We illustrate Theorems 3.3.4 and 3.3.5 with the help of following examples.

Example 3.3.3 Here we discuss one ezample to illustrate effect of omitting
an important covariate. We treat the data as population. The data in Table
3.3.9 is reported by Wermuth(1976 b). Here the response variable is infant
survival taking values 0 (no) and 1 (yes). The covariates considered are age
of mother (X ) taking values as 0 (less than 30 year) and 1{30 and above) and
length of gestation (Z ) taking values as 0 (< 260 days) and 1 (> 260 days). We
are interested in finding out how these variables are related to infant survival.

We fit the logistic regression model. The results are given in Table 3.3.10.

Table 3.3.9

Infant Survival
Length Of Gestation | Age of Mother | No Yes

< 260 days <30 year 59 355
30 and above | 45 158

> 260 days < 30 year 30 4471
30 and above | 15 1718
Table 3.3.10
Variable 3

Age of mother | -0.4475
Gestation 3.3113
Constant 1.7579
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The value of B is -0.4475 suggesting that chances of infant survival are
56% more if age of mother is less than 30 years. It is well known that length
of gestation is a vital factor in infant survival. The same is suggested by the
data. However if this important factor gets omitted then we have the following

results.

Table 3.3.11

Variable é
Age of mother | -0.5506
Constant 3.9931

Here §, = —0.5506 suggesting that chances of infant survival are 73% more
if age of mother is less than 30 years.

It can be seen that in this ezample pp = 0.9157, p, = 0.8951,p" = 0.9556
and p** = 0.9084. Since 5, <0, A2 >0, and p; < p**, we have &; < ;.

Example 3.3.4 We have considered this example earlier in Chapter 2. We
once again report the fictitious data in Table 3.3.12.

Table 3.3.12
Y=0|Y=1]| Totd
Z=0|X=0| o0 100 | 150
X=1| 20 60 80
Z=1|X=0[( 30 10 40
X=1 50 40 120

If we fit logistic regression model to these data, we have By = 0.4054 and
By = —1.7917. If we ignore the variable Z, the amalgamated data is given in

Table 3.3.13.
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Table 3.3.13

Y=0|Y=1| Total
X=0| 100 100 | 200
X=1| 80 110 | 190
180 210 | 390

Now, if we fit logistic regression model with variables Y and X only we have
8, = —0.3184. We observe that p, = 0.6, p* = 0.4104, 5, > 0 and 3 < 0.

Since p; > p* we have Simpson’s paradoz.

Now we consider the case when X is nonnegative valued continuous vari-

able. As earlier we define two quantities

« _ Polwy — wo) = (g-(wo) — wy)
T g=(w1) — g:(wo) (3:39)

and
e _ gr[wo(1 ~ po) + wrpo] — g-(wo)

— 3.3.10
: o) — g:(wo) (3:3.10)
where the function g.(.) is as defined in (3.3.6). As earlier p; and p}* are

functions of By, By, 32 and x. Here also p; and p:* are not defined for 3 = 0.

In fact, when 8, = 0 Simpson's paradox will not occur. Henceforward we have

assumed [; to be positive. Comments regarding 8 < 0 apply in these cases
also.

Theorem 3.3.7 LetY and Z be dichotomous variables. We assume X to be a
nonnegative valued continuous variable. Further X and Z are not independent.
Let 8, > 0. Then we have:

(i) Ifp= < p; Vz then 6, < 0.

(i) If pz 2 pi* Vz then 6y 2 f.
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Proof:

() p- £ p; Vz implies that (2} < x(0) Vz. Hence 6, < 0.

(i) pr 2 p:* Vz implies that n(z) > g.(m(0)) Vz. Hence &, > B,-
We have a similar result for 3, < 0.

Theorem 3.3.8 LetY and Z be dichotomous variables. We assume X to be a
nonnegative valued continuous variable. Further X and Z are not independent.
Let 5, < 0. Then we have:

(i) If ps 2 i Vx then 6, 2 0.

(it) If pr < pi° Vz then §, < 5.

Proof:

(i) p= 2 p: ¥z implies that #(z) > n(0) Vz. Hence §, > 0.

(ii) p» < p}* Vz implies that #(r) < g,(7(0)) Vz. Hence §; < 3.

The result for 3, = 0 as given in Theorem 3.3.6 also holds well when X is
continuous, nonnegative valued variable and Z is a dichotomous variable. In
this case since §; = 0,p; =p* =py Vr

We illustrate Theorem 3.3.7 with the help of following example,

Example 3.3.5 Let Y and Z be dichotomous variables and X be a non-

negative valued continuous variable. Let

__emplpr}
1 + exp{pr}

Without loss of generality we assume the range of X as [0.1].

4

Now p, < p? for all £ implies that

p< lln [__p;__] vr € [0,1). (3.3.11)
—r |l-pm
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Right hand side of the equation (3.3.11) is decreasing in z. Therefore infimum

erists at z=1.

Thus if p<in [l—fip-:-] then paradoz occurs.

So far we have assumed Z to be dichotomous. But all the results easily
extend to the case when Z takes more than two values. Let Z take values
0,1,....k. Then the extension of Theorem 3.3.7 and Theorem 3.3.8 are given

in Theorem 3.3.9 and Theorem 3.3.10 respectively. Proofs are on similar lines.

Theorem 3.3.9 Let Y be dichotomous response variable. Let X be nonneg-
ative valued continuous variable and Z be a discrete variable taking values as

0,1, ..k Assume 8, > 0. Let

p,=(P(Z=01X =0),P(Z=1|X =0),...,P(Z = k|X = 0))
and
p.=(P(Z=0|X =2),P(Z=1]X =1),...,P(Z = kIX =1)).
(i) If p, is such that

k
Zk:srxlwto, P(Z=2X=2) <Y 7(0,2)P(Z=2z|X =0) Vz

== =0

then 8, < 0 i.e. Simpson's paradoz occurs.
(1) If p_ is such that

igz[W(O,Z)]P(Z =z|X=1)20: Lz: 7(0,2)P(Z = 2| X =0) Y

=0
then 6[ 2 ﬂl'

Theorem 3.3.10 Let Y be dichotomous response var'ic_:ble. Let X be nonneg-
ative valued continuous variable and Z be a discrete variable taking values as

0,1,....k. Assume B, <0. Let

p, = (P(Z =0]X =0),P(Z=1X =0),...,P(Z =X =0))
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and
p,=(P(Z=0X=1),P(Z=1X=1),...,P(Z =k|X =1)).

(1) If p_ is such that

k k
S 0.07(0,2)]P(Z =21X =2) > ) _n(0,2)P(Z=2|X=0) Vz

== ==0
then 8, > 0 i. e. Simpson’s paradox occurs.
(1) If p, is such that
k k
Y 6:(7(0,2)]P(Z = 2] X =2) < g: [Z 7{(0,z)P(Z = 2| X =0) \Z3
=i ==0

then 61 S ﬁ[.
To illustrate these two theorems we discuss one example,

Example 3.3.6 Let Y be dichotomous variable taking values as 0 or 1. For
illustration purpose we assume X to be dichotomous taking values as 0 or 1.
Further Z is discrete taking values as 0, 1 and 2.

Let By =0, 5 =1, B2 = 0.5. Let pg = (poo. o, Po,2) be fized at (0.2, 0.4,
0.4). Let py = (P10, P11, P1,2) where pi; = P(Z = j|X =1).

Now
2

2
Zgllﬂ(o, )|P(Z=2|X=1)= Z:r(O,z)P(Z =z|X =0)
==0 ==0
implies that

—0.1498p, o — 0.0633p;, = —0.0553

Thus if left hand side of the above equation is less than -0.0553, we have
a paradorical situation, that is 8, < 0. The region where we get a paradoz is

depicted in Figure 3.3.6.
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The two theorems above easily generalize to the case when Z is continuous.

Proofs are again on similar lines.

Theorem 3.3.11 Let Y be a dichotomous response variable, X be a non-
negative valued variable and Z be a continuous variable. Further X and Z are
not independent. Let 8) > 0. Then we have:

(1) If E[g:(n(0,2))]|X =2] < E[(0,2)| X =0] Vz thend, <O0.

(it) If E|g:[7(0,2}}|X = 2] > ¢, [E[n{0,2))X =0])  Vz then §, > 3.

We have a similar result for 3, < 0 which is given in the following theorem.

Theorem 3.3.12 LetY be dichotomous response variable, X be a non-negative
valued variable and Z be a continuous variable. Further X and Z are not in-
dependent. Let 3, < 0. Then we have

(i) If E [9.]7(0,2)]|X = z] > E[#(0,2)[ X =0] Vz thené; >0.

(1) If E [g=[n(0,2)]I1X = 2] < 9. [E[n(0, 2] X =0]]  Vz then b, < 5.

3.4 Dichotomous Response: Effect of X chang-
ing with Z

In the previous section we have assumed g3, the regression coefficient of ¥’
on X to be same for various valucs of Z. In this section we assume that 3,
changes with Z. Thus, let 8,(z) represent the regression coefficient of X for

Z = 2. Hence, the logistic regression model of Y on X and Z is given by

_ exp{fo + Bi(2)x + B2} 341
me2) =17 erp{fo + Bi(2)x + B2z} -

where 7(z, z) denotes the conditional probability P(Y = X = 2,2 = z).

Here X and Z may be discrete or continuous.
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If we ignore the important covariate Z then the logistic regression model

of Y on X is given by

_ exp{dy + 6,7}
(=) 1 + exp{do + 6,1}

(3.4.2)

where 7(z) denotes the conditional probability P(Y = 1|X = ). As before,
for the case of dichotomous Y, X, and Z we write probabilities n{z,z) and

n{z) in Tables 3.4.1 and 3.4.2 respectively.

Table 3.4.1
Y=0 Y=1
= = 1 Jo
Z=0]X=0 1+exp{do} 1+ezplido
X=1 1 expl{do+3:(0)}
- 1+exp{do+5:(0}} 1+ezp{do+31(0)}
— 1 o+
Z2=1|X=0| e Trempldot 52
X =1 1 exp{Jo+d1(1)+3a}
= 0 | 1rerp{lrdiN+32} | Temp{l+di(1)+3:}

£(0) and B,(1) represent the log-odds ratios for tables corresponding to

Z = 0 and Z = 1 respectively while 4, represents log-odds ratio for the

combined Table 3.4.2.

Table 3.4.2
}’ = 0 Y =1
_ 1 erp{fo}
X=0 1+exp{éo} 1+ezpi{éo}
X =1 1 exp{do+8. }
- Y+erp{dg+8,} | l+expl{do+d,}

We assume that 8,(z) > 0(< 0)

V2.
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Definition 3.4.1 We say that the amalgamation paradoz occurs if §; < inf. 8,(z)
or &, > sup, G,(z)

If Z takes finite number of values then we say that the amalgamation
paradox occurs if §; < min. 8,(z) or §; > max. 4,(z)

To begin with we assume that X and Z are independent. We have the
following results.

Theorem 3.4.1 Let Y be the dichotomous response variable taking values as
Oor 1. X and Z are explanatory variables. Further X and Z are independent.
Let 51(z) >0 Vz Then 0 < é), < sup. Gi(z2).

Proof:
case 1: X and Z are dichotomous variables.

It may be noted that a(x) can be expressed as

n(z) = n(x,0)(1 — p;) + 7(z,1)p: (3.4.3)
where
p-=P(Z=1X=1).
Thus, G} o+ B0}
exp{fo exp{Bo +
O = Tep(ay ) Tr el + 537
and

_ eap{fo+B(0)} , exp{fo + B + B1(1)}
m(1) = 1+ exp{Bo +x@1(0)}(1 P+ + exp{fo + 52 AP

X and Z are independent so that pyp = p; = p, say. Let

_ _exp{Bo}
g = I+ ea‘p{ﬂo} (344)



CHAPTER 3. DICHOTOMOQUS RESPONSE 68

and
_ _ezp{Bo+ B3}
" T explfo + B} (345)
Hence, we have
m(0) = wo(1l — p) + wyp
Let
w*(1) = Imaz{wo)(1 — p) + Gmaz(un)p
where eIP{ﬁvm}
b
Gmaz(b) = T b erp Bt = 1) (3.4.6)
and
Pimaz = m?xﬂl(z)‘
But from (3.4.2) -
- €ITpido
m(0) = 1 + exp{do}
e {0+ 51
__expidp+a
m(1) = 1+ exrp{do + 61}
Since §,(z) > 0 V2, the function gmaz{-) is concave. Hence
gma=(m(0)) 2= =°(1)
where (5o + B}
_crp
gmn.t('r(o)) =1 +c.’!.'p{6o+ﬂ...u}'

We obscrve that #*(1) > m(1). Hence Buar = max;f5i(z) > 4. Further
n(1) > =(0). Thus

0<é < nl:axﬁl(z).

case 2: Let X be dichotomous and Z be discrete variable taking values as
0l1,..., k
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Here we can write

k
m(z) =) w(zr,2)P(Z =z2|X =)

==0
Since X and Z are independent P(Z = z|X = z) = P(Z = z).

Hence

|«

7(0) = ) #(0,2)P(Z = z)

i

and
k

7(1) =Y w(1,2)P(Z = 2).

Let )
7°(1) = 3 gmas(7(0, 2))P(Z = 2)

=0

where gmaz(.) is as defined in (3.4.6).

Since G(z) >0 Vz the function gma(.) is concave so that
gmaz(7(0)) > 7*(1).

Further 7*(1) > =(1) implying that Smar > 6. As in case I, for B1(z) >0 Vz
n(1) > =(0). Hence §, > 0.
Thus
0<é < m:axﬁl(z).

case 3: Let X be a nonnegative valued continuous random variable and

Z , a continuous variable. Here we can write 7(r) as
n(r) = f‘n’(r, 2)p(z|r)dz (3.4.7)

where p(z|z) denotes conditional density of Z given X.

Since X and Z are independent, we can write p(z|z) = p(z). Thus

(0) = j (0, 2)p(2)dz
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and
(z) = / (z, 2)p(2)dz.
We define ‘
5°(@) = [ ghup(m(0,2)p(2)dz
where
Giglt) = T ST (348)
and

Brup = sup Bi(2).

For 8,(z) >0 Vz the function g5,,(.) is concave. Hence
g:up(n'(O)) >n(zr) Vz.

Further n*(z) > w(z) Vz which implies that

exp{bo + BeupT} exp{dp + 6,7}

V.
1 + exp{fo + Brupz} ~ 1 +exp{do + d17} ¥

so that

ﬁmp > 6!-

Further m(z) > m(0) for all x implies that &, > 0.
Thus
0<é < sup Bi(2)-

It may be noted that in all the three cases B4 is either positive or negative
or equal to zero.

The result stated in Theorem 3.4.1 can be obtained graphically. Refer to
Figure 3.4.1. We have considered the case when X and Z are dichotomous.
Here we have assumed G to be positive, 3,(0) = 1.5 and 6;(1) = 2.5. From
the figure we observe that gma(7(0)) > 7*(1) > w(1). Hence the result.
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Figure 3.4.1
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We now check whether 4, < min. 3;(z). For this purpose we define b* as

. _ gmiﬂ(“'(o)) — 77(110)
w(1,1) — 7(1,0)

where
GIP{ﬂmin }b

Gmin(b) = 1+ b(exp{Bmin} — 1)

(3.4.9)

and

ﬁmin = m-_-inﬂl(z)

Theorem 3.4.2 Let Y be dichotomous response variable. Suppose X and Z
are independent, dichotomous variables. Let 3,(2) >0 Vaz.

(i) For B3 > 51(0) — Bi(1), if p < b* then 6, < min, By(2).

(i) For 3; < $1(0) = Bu(1), if p > b* then §, < min. B;(2).

(iii) If B, = 61(0) = Bi(1) then &; > min. fy(2).

Proof:

(i) Let B, > 5;(0) — Bi(1). p < b* implies that 7(1) < gmin(7(0)). Hence
8, < min. 5(z).

(ii) Let B; < 5;(0) — Bi(1). p > b* implies that 7(1) < gmin(7(0)). Hence
0, < min. 5i(2).

(iii) Let 8, = £1(0) — Bi(1). Further, suppose 31(0) > 31(1). Then 7(1) =
gmin(7(0,1)). Since f; is positive, 7(0) < 7(0,1) which implies that 4, >
min. 5,(z). Similarly, if 51(0) < £i(1) then x(1) = Fmin(w(0,0)). Since 3 is
negative, w(0) < m(0,0) which implies that 8, > min; 8i(z2).

We discuss one example to illustrate the above theorem.
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Example 3.4.1 Consider data given in Table 3.4.3.

Table 3.4.3
Y=0|Y=1| Total
Z=0|X=0| 12 38 50
X=1 4 46 a0
Z=1(X=0]| 33 67 100
X=1| 12 88 100

If we fit the logistic regression model we get By = 1.1526, 5,(0) = 1.2897,
B£1(1) = 1.2843 and 3, = —0.4445. If the data are pooled over Z we have
combined data as given in Table 3.4.4

Table 3.4.4

Y=0|Y=1| Total
X=0 49 105 150
X=1 16 134 150
Total { 61 239 | 300

Now if we fit the logistic regression model we get §; = 1.2779. In this case
p = 0.6667 and b* = 0.6525 and B < £i(0) — Hi(1).

Theorem 3.4.2 can be extended when X and Z are continuous. The exten-

sion is given in Theorem 3.4.3. Let

_ exp{Binsz}b
T 14 blexp{Bingz} — 1)

g5 (b) (3.410)

where

ﬂinf = “gfﬁl (Z)
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Theorem 3.4.3 Let Y be dichotomous response variable. Suppose X is a
nonnegative valued continuous variable and Z is a continuous variable. Fur-
ther X and Z are independent. Let Bi(z) > 0 Vz. If [ n(z,2)p(z)dz <
95 1. 7(0,2)p(2)dz] Yz then 6, < inf. Bi(2).

Proof: Let X be a nonnegative valued continuous random variable and

Z, a continuous variable. Here we can write m(z) as

w(z) = [= #(z, 2)p(z)x)dz (3.4.11)

where p(z|z) denotes conditional density of Z given X.

Since X and Z are independent, we can write p(z|z) = p(z). Now,

f:'rr(.‘l‘, 2)p(z)dz < gf,,; [/: 7(0, Z)p(z)dz] V1

implies that
7(z) < ghoy[m(0)] V=
which further implies that &, < inf. 8i(2)-
If 5,(z) <0 Vz we have similar results. We give these in Theorem 3.4.4,
Theorem 3.4.5 and Theorem 3.4.6.

Theorem 3.4.4 Let Y be the dichotomous response variable taking values as
0 or 1. X and Z are explanatory variables. Further X and Z are independent.
Let 3,(2) <0 Vz Then inf. 31(2) <8, <0.

Proof:

case 1: X and Z are dichotomous variables.

As carlier we can write

7(0) = wo(l — p) + wap
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where wp and w, are as defined in (3.4.4) and (3.4.5) respectively. Let
7"(1) = gmin(wo)(1 = P} + gmin(wy)p

where gmin(.) is as defined in (3.4.9). But from (3.4.2)

— BIp{Jo}
n(0) = 1 + exp{do}

and
exp{dy + &}
1)= .
m(1) 1 + exp{do + &}

Since 3;(z) < 0 Vz, the function gm;s(.) is convex. Hence

gmivl(n(o)) S ‘n'“(l)

where
| _ e,rp{tfo + 5rm‘n}
gmm(”(o) ) 1 + e;rp{(so + ﬂnu’n} .

We observe that a**(1) < w(1). Hence Bmin = min; 5;(2z) < §,. Further
7(1) < #(0). Thus

min 5(z) < 6, <0.

case 2: Let X be dichotomous and Z be discrete variable taking values as
01,..., k.

Here we can write

n(z) = t 7(zr,2)P(Z = z|X = 7).

==0
Since X and Z are independent P(Z = z)X =1) = P(Z = 2).
Hence

k

x(0) = )_ #(0,2)P(Z = 2)
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and
k

7(l) = Ew(l,z)P(Z = z)
Let o
(1) = ;gmfn(ﬂ(og 2))P(Z = 2)

where gmin(.) is as defined in (3.4.9). Since 3;(z) <0 Vz the function gmin(.)

is convex so that
Imin(7(0)) < 7™ (1).
Further #**(1) < m(1) implying that Gpin < ;. Asincase 1, for 5,(z) <0 Vz
#(1) < 7(0). Hence §, < 0.
Thus

min 3,(z) < &, < 0.

case 3: Let X be a nonnegative valued continuous random variable and

Z , a continuous variable. Here we can write n(z) as
n(z) = jw(z,z)p(z[z)dz
where p(z|z) denotes conditional density of Z given X.
Since X and Z are independent, we can write p(z|z) = p(z). Thus
#x(0) = .[W(O,z)p(z)dz
and
w(z) = -[ﬂ(z,z)p(z)dz.
We define
n**(x) = f g5 (m(0, 2))p(z)d2
where gZ,/(.) is as defined in (3.4.10). For Ai(z) < 0 Vz the function

g7as(.) is convex. Hence

9ing(m(0)) < 7%(z) < m(z) V=
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which implies that

exp{do + Binsz} erp{dy + &z}
1 + exp{dp + Binyz} 1+ exp{do + 1z}

Vz

so that
Bing < 61.
Further n(z) < 7(0) for all x implies that 4, < 0.
Thus .
il::lfﬁ;(z) <4, <0.

It may be noted that in all the three cases 3; is either positive or negative
or equal to zero.

Let
o _ gw(‘ﬁ(())) - 'H'(].,O)
(L 1) — 7(1,0)

where gmax(.} is as defined in (3.4.6). It may be noted that b* and b* are

b

always positive but may exceed unity in some cases.

Theorem 3.4.5 Let Y be dichotomous response varieble. Suppose X and Z
are independent, dichotomous variables. Let pi(2) <0 Vz.

(i)For B2 > Bi(0) — Bi(1), if p > b*° then 8, > max. fi(2).

(ii)For B3 < Bi(0) = Bi(1), if p < b** then &, > max. B(z).

(iii) For By = $(0) — Bi(1), ) < max; Bi(z).

Proof: (i) Let & > £i{0) = 6:(1). p 2 0™ implies that 7(1) = gmaez(7(0)).
Hence 8, > max. 5(2).

(i) Let 8; < B1(0) = Bi(1). p < b** implies that (1) > Gmaz(m(0)). Hence
8, > max. 5,(2).

(iii) Let 8; = £1(0) = Bi(1). Further, Suppose 5(0) > 6i(1). Then 7(1) =
9maz(7(0,0)). Sinée B, is positive, (0,0) < x(0) which implies that &, <

max. 3,(z).
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Similarly, if 5,(0) < 8,(1) then 7(1) = gma=(7(0, 1)). Since 3; is negative,
#(0,1) < «(0) which implies that §; < max. £;(z).

Theorem 3.4.6 Let Y be dichotomous response variable. Suppose X is a
non-negative valued continuous variable and Z is a continuous variable. Fur-
ther X and Z are independent. Let B,(z) < 0 Vz. If [.w(z,2)p(z)dz 2>
Grup S 7(0,2)p(2)dz] Vz then 6, 2 sup. Bi(z).

Proof: Let X be a nonnegative valued continuous random variable and

Z, a continuous variable. Here we can write 7(z) as

#{r) = /= n(z, z)p(z]r)dz

where p(z]r) denotes conditional density of Z given X.

Since X and Z are independent, we can write p(z|r) = p(z). Now,
[z, 2z 2 gy | [ 0. 2)pl2)dz| v

implies that
w(z) 2 g5,p7(0)] Vz

which further implies that &; > sup. 8i(z).

So far we have assumed that X and Z are independent. If X and Z are

not independent we have following results.

Theorem 3.4.7 Let Y be dichotomous response variable. Suppose X and
Z are dichotomous variables. Further X and Z are not independent. Let
fi(z) >0 (<0) Ve
(i) Let B > 41(0) — B(1)-
(a) If py < b° then &, < min, Bi(2).
() If pr > b** then &, 2 max; B (z).
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(ii) Let B; < B,(0) = Bi(1).
(a) If py 2 b* then &, < min. 5,(z).
(b) If ;y < b** then 6, > max. @l(z).

Proof:

(i} Let B2 > 51(0) — Bi(1). py < b* implies that 7(1) € gmin(7(0)). Hence
41 < min. 3,(z).

Further p; 2 6** implies that x(1) > gn.-(7(0)). Hence §, > max. 5,(z).

It may be noted that in this case b* < b*".

(ii) Let 85 < 51(0) — Bi(1). p1 > b* implies that 7(1) < gmin(7(0)). Hence
01 € min. 3,(2).

Further p; < 5** implies that @(1) 2 gma(7(0)). Hence é§; > max; 5;(z).

It may be noted that for 3z < 3,(0) — 5i(1), b** < b*.

Further for 5, = 5,(0) — 5i1(1), b* and b** are not defined. In fact in this
case we will never come across a paradoxical situation.

For nonnegative valued continuous variable X and a continuous variable

Z we can extend the above theorem. It is given in Theorem 3.4.8.

Theorem 3.4.8 LetY be dichotomous response variable. Suppose X is a non-
negative valued continuous variable and Z is a continuous variable. Further
X and Z are not independent. Let §,(z) >0 (< 0) V.
(i) If [ w(z, 2)p(zlz)dz € giy [, w(0, 2)p(2)dz] vz then &, < inf. By(2).
(i) If [, 7n(z, 2)p(2|z)dz 2 g7, [J. (0, 2)p(2)d2]  Vz then é; 2 sup, Bi(2).

Proof:

(i) Let X be a nonnegative valued continuous random variable and Z, a

continuous variable. Here we can write w(x) as

n(z) = _/: w(z,z)p(z]:c)fiz
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where p(z|z) denotes conditional density of Z given X.

Now,

_/:w(z,z)p(zh:)dz < Gy U: ﬂ(O,z)p(z]x)dz] vz

implies that
n(z) < giy[x(0)] vz
which further implies that §; < inf. 5:(z).
(ii)
/: n(z, 2)p(2|z)dz > g5, [ ]_ 7(0, 2)p(z|z)dz| Vz
implies that

(1) > g5,,[7(0)] Vz

which further implies that &; > sup. Bi(z).

80



Chapter 4

LOGISTIC REGRESSION
MODEL: POLYTOMOUS
RESPONSE

4.1 Introduction

Logistic regression is most frequently used to model the relationship between
a dichototnous outcome variable and a set of covariates. But with few mod-
ifications it may be employed when response variable is polytomous. The
extension of the model for a dichotomous outcome variable to a polytomous
outcome variable is easily illustrated when the outcome variable has three cat-
egorics. Further generalization to an outcome variable with more than three
categorics is more of a notational problem than a conceptual one. Hence we
will consider only the situation when the ontcome variable has three categories.
Section 4.2 discusscé preliminaries and notation while section 4.3 and section

4.4 discuss main results of this chapter.

81
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4.2 Preliminaries

In developing models for a polytomous outcome variable we need to be aware
of its measurement scale. Here we assume a nominal scaled ocutcome variable.
Let the categories of the outcome variable Y be coded as 0, 1 and 2. In this
model we have two logit functions: one for Y = 1 versus Y = 0, the other
for Y = 2 versus Y = (. Here the group coded Y = 0 will serve as reference

outcome value. The two logit functions {(Hosmer and Lemeshaw, 1989) are as

- follows:
P(Y=1X=z,Z=2)]
In PY=0X=1z,Z=2), =bo+ Bz + B2
and .
(P(Y =2|X =1,Z =2) _
in PY=0X=z,Z=2) =1+ NI + 2

Thus the three conditional probabilities are denoted by m;(z,2) = P(Y =

jlX = z,Z = z} j=0, 1, 2 and are given as follows.

1
mo(T,2) = T3 exp{o + Aiz + Brz} + exp{vo + niz + 1p2}
(5.2) = exp{fo + A1z + Boz} A
TS T 1 exp(do + Bi + Baz} + exp{vo + 11z + 12}
exp{vo + T + 122}
7"2(1'.'2) =

1 + exp{Bo + A1z + oz} +exp{vo + iz + w2}
If we ignore the variable Z and cousider X as the only covariate then the

logistic regression model is given as:
m(r) = P(Y=0X=1)

1
1+ exp{dy + 6,2} + exp{mo + mz}

m(z) = P(Y =1|X=1z)
exp{o + 611} .
1 + exp{dy + 61z} + exp{no + mz}
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my(x)

P(Y =2|X =z)

- ezp{no + mz}
1+ exp{by + 1z} + exp{mp + mz}

It may be noted that 8, and v; represent effect of X when Z is taken into

consideration. If Z is ignored &, and 1, represent the effect of X.
Let X and Z be dichotomous variables taking values as 0 or 1. Table 4.2.1
and Table 4.2.2 give the probabilities 7;(z, z) and ;(z) respectively.

Table 4.2.1
X=0 X=1
— _ 1 1
Z=01Y=0 1+ezplo}+ezp{in} 1+exp{do+8;1 }+exp{im+1}
Y =1 erp{do} exp{do+id }
- 1+exp{do}+ezp{p} 1+ezp{do+3: }+exp{sp+i }
Y =2 ezp{vo} exp{m+in}
- 1+ezp{,y }+erp{in} l+exp{do+di }+exp{in+in }
1 1
Z=11Y=0 14+exp{p+dz}+explin+in} | 1+erp{do+31+3}+exp{in+in+in}
Y =1 exp{3o+3a} erp{G+di+5:}
- 1+ezp{do+da}+ezp{im+in} | 1+exp{do+d1+3:}Herplint+or+iz)
Yy=2 erp{up+1a} erp{ip+1y +ia}
- 1+exp{Jo+ih}+ezp{in+in} | 1+ezp{do+ii+d:}+ezp{intin+ia}
Table 4.2.2
erp{fo} exp{mo}
X=0 l+up{éolWe.rp{rp} 1+erp{do}+erp{np} 1+ezp{doHexp{mo}
1 exp{fo+&1} exp{no+m}
X=1 T+exp(dotds Jrezplotm]} | V+exp(do+oi}+erp(no+m} | 1+exp{do+di}+ezp{mo+m}

In section 4.3 we assume that the effect of X as measured by 5; and v, is
same for different values of Z. In section 4.4 we have relaxed this condition.

For Z = z the effect of X is measured by 8;(z) and ¢ (z).
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4.3 Polytomous Response: Effect of X free
from Z

We begin with the concept of paradox. We assume that 3; and v; have same
sign. If 4, and 7; do not have the same sign as that of 8, and v, then it is a
paradoxical situation.

Let 3; > 0(< 0) and »; > 0(< 0). Then we say that the Simpson’s paradox
occurs if any of the following three is satisfied. |

(i) 8y < 0(> 0), m > 0(< 0).

(i1) &; > 0(< 0), ; < O(> 0).

(iii) &, < 0(> 0), m < 0(> 0).

To begin with we assume that X and Z are dichotomous independent
variables. Unlike dichotomous response case here we can observe a paradoxical
situation in spite of independence of X and Z. We prove this in sequel. For

the sake of definiteness we assume G; and v, to be positive.

Theorem 4.3.1 Suppose the response variable Y takes three values namely 0,
1 and 2 and X and Z are independent, dichotomous variables. Let 5, > 0 and

v, > 0. Then we may come across a paradozical situalion.
Proof: It may be noted that we can write m;(z) as
WJ(I) = "j(r! 0)(1 - p:) + ﬂj('r! l)pt 1=0,1, 2.

where p;, = P(Z = 1|X = z). X and Z are independent so that p; = p for all
x. Let 8, > 0 and 1, > 0. Then we have one of the following three cases. It
may be noted that in each case equality holds at only one place.

case(i):

m(1) < mo(0)
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ﬂl(l) 2 TI'I(O)
m(1) 2 my(0).

[7’1 (0)]
mo(0)

n [vrou) >1n [now)

These three inequalities imply that
m(1)
In 212
n [7"0 a )] >In
which further implies that §; > 0.

Similarly,

implies that n; > 0.

Thus in this case we do not come across a paradoxical situation.

case(ii):
mo(l) < mo(0)
m(l) = m(0)
m(l) < m(0).

These inequalities imply that 6; > 0, but ;; <0 if :—:%% < :—:%.
Thus here a paradoxical situation arises.
case(iii):

m(1) < mo(0)

m(1) £ m(0)

m(l) = m(0).

As in case(ii) here m >.0, but §; can be negative.

Theorem 4.3.2 Suppose the response variable Y takes three values namely 0,
1 and 2 and X and Z are independent, dichotomous variables. Let 3, < 0 and

v, < 0. Then we may come across a peradoxical situation.
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Proof: As earlier we have one of the following three cases. It may be

poted that in each case equality holds at only one place.

case(i):
170(1) > 71'0(0)
m(l) < m(0)
11'2(1) $ 71'2(0).

These three inequalities imply that

in [71’0(1) <lin LTO(O)]

which further implies that é; < 0.
71'2(1) 71'2(0)
g [Wo(l)] <in ["70(0)]

Thus in this case we do not come across a paradoxical situation.

Similarly,

implies that ;m; < 0.

case(ii):
wo(l) > wo(0)
m(l) £ m(0)
ma(l) 2 m2(0).

These inequalities imply that §; <0, but g > 0 if Eﬁ-{% > :—38—;.

Thus here a paradoxical situation arises.

case(iii):
mo(l) > mo(0)
m(1) = m(0)
1I'2(].) S 11'2(0).
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As in case(ii) here 7; < 0, but 4, can be positive,
Thus when response variable Y has three categories we may come across
a paradoxical situation though X and Z are independent. We discuss one

example to illustrate the above theorems.

Example 4.3.1 Consider hypothetical data given in Table {.3.1.

Table 4.3.1
Y=0|Y=1|Y=2
Z=0|X=0]|918{66| 79258 | 2277
X=1|114017| 885674 | 309
Z=1|X=0|807326| 189375 3299
X =1/ 45208 | 95459 | 202

If we fit logistic regression model to the data set given in Table 4.3.1 we get

81 = 4.50 and 11 = 0.09. If the data are pooled across Z, it results into Table
{.3.2

Table 4.3.2
X =011725792 | 268633 5576
X=1| 159225 | 981133 | 411

Now if we fit logistic regression model to the pooled data we get 6, = 3.678
and g, = —0.007. Thus though 6, is posilive m, is negalive and we have a
paradozical situation.

In Theorem 4.3.1 and Theorein 4.3.2 we have assumed X and Z to be inde-
pendent, dichotomous variables. The case of dichotomous but not independent

X and Z can be similarly discussed. In this case also we have a possibility of

the paradox.
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4.4 Polytomous Response: Effect of X chang-

ing with Z

Here we assume that the log-odds ratios are different for different values of Z.

For dichotomous X and Z the probabilities are given in Table 4.4.1 and Table

44.2.
Table 4.4.1
X=0 X=1
— 1 1
Z=0{Y=0 1+ezp{dv}+ezplin} 1+4ezp{do+081(0)} +exp{to+11(0)}
Y=1 ezp{do} exp{do+8:(0)}
= T+exp{ido} +exp{in} L+ezp{3o+51(0)}+ezp{an+1 (0)}
Y=2 exp{n} exp{ry+1,(0)}
= 1+exp{do}+exp{in} 1+ezp{ do+81 (0)}+ezp{m+11{0)}
Z=1|Y=0 1 L
= = 1+ezp{dot i J+eap(w+in} | 1+ezp{do+8:(V)+ 5} +eap{mtni(l)+in}
Y=1 exp{do+g:} exp{do+ (D+}
- 1+exp{o+i:}+explin+in} | 1dezp{do+di(1)+ida}+exp(rutin(l)+in}
Y =9 exp{votin) exp{vp+u (111}
= l+erp{dg+ih}+exp{mtin} | l+explido+idi(1)+o premp{mtri{l)+in}
Table 4.4.2
Y=0 Y =1 Y=2
1 erp{fo} erp{ng}
X=0 1+ezp{do}+exp{mo} 1+ezp{do}+ezp{m} 1+ezp{do}+ezp{mo}
{8o+61} ezp{no+m}
X=1 1+ezp{60+a';}l+u7{m+m} l+ap{5m|}+ulp{m+m} 1+ezp{éo+b } +expimo+m}

As in section 4.3 we assume that 3,(z) and »{2) have same sign for all z.

Let 5i(z) > 0(< 0) and 11(z) > 0(< 0) Vz. Then we say that the Simp-

son's paradox occurs if at least one of the following four holds.




CHAPTER 4. POLYTOMOQOUS RESPONSE 89

(i) &) < min; B)(2).

(i} 8; > max; G (2).

(iii) m < min; p»(2).

(iv) m > max, 1n(2).

We can easily extend Theorem 4.3.1 and Theorem 4.3.2 in this set up. We
have stated the results in Theorem 4.4.1 and Theorem 4.4.2. The proofs are

exactly on same lines.

Theorem 4.4.1 Suppose the response variable Y takes three values namely 0,
1 and 2 and X and Z are independent, dichotomot_us variables. Let 3,(z) > 0-

and 11(2) >0  Vz. Then we may come across Simpson’s paradoz.

Theorem 4.4.2 Suppose the response variable Y takes three velues namely 0,
1 and 2 and X and Z are independent, dichotomous variables. Let 5,(2) <0

and 11(2) <0  Vz. Then we may come across Simpson’s paradoz.

Following example will illustrate the above theorems. We have taken X

and Z to be dichotomous.

Example 4.4.1 Consider data given in Table 4.4.3.

Table 4.4.3
Y=0[Y=1|Y=2
Z=0|X=0]| 4955 | 4955 91
X=1| 1180 | 8723 97
Z2=1|X=0| 1142 | 8438 | 420
X=1| 420 | 8438 | 1142
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Log-odds ratios for the data set given in Table 4.4.3 are 5(0) = 2.00,

B1(1) = 1.00 , 1,(0) = 1.50 and v,(1) = 2.00. If the data are pooled across Z,
it resulls into Table 4.4.4.

Table 4.4.4

Y=0|Y=1|Y=2
X=0| 6097 | 13393 | 511
X =1\ 1600 | 17161} 1239

For the pooled data set we get the log-odds ratios as §, = 1.58 endmy = 2.22.

Thus n; > max. v (z) and we have Simpson’s paradoz.



Chapter 5

COX REGRESSION MODEL:
CONTINUOUS RESPONSE

5.1 Introduction

In clinical trials the outcome variable of interest may not be simply the occur-
rence or non-occurrence of an event. Instead interest may focus on the length
of time to the event, termed survival time or failure time. A distinguishing
feature of survival data is that it is subject to censoring. Very often one does
not observe survival time for all individuals in a study. One may only know
that a particular individual’s follow up was censored at time T.

In 1958, Kaplan and Meier proposed and studied the product-limit esti-
mator of a survival function based on censored data. In 1972, Cox proposed
the proportional hazard model for performing regression analysis of survival
time on a set of covariates. At about the same time Feigl and Zelen (1965)
considered various exponential regression models. One of their models was

equivalent to the Cox model with baseline hazard constrained to be constant

91



CHAPTER 5. COX REGRESSION MODEL 92

for all time. However, unlike Cox, they formulate the model in terms of para-
meterization of mean survival time. The novelty of Cox model was to model
the hazard function rather than the mean or some other measure of location.
The original paper by Cox (1972) introduced the model, which revolutionized
the field. There were several issues that were to challenge the statistical com-
munity. Omission of important explanatory variables was one such problem,
which is dealt by several researchers (Lagakos and Schoenfeld (1984), Solomon,
P. J. (1984), Morgan, T. M. (1986), Drake, C. and McQuarrie, A. (1995)). In
this chapter we deal with the effect of omission of an important covariate on
parameters of the model. Section 5.2 gives preliminaries and notation while
main results are discussed in section 5.3 and section 5.4. Last section discusses

some examples.

5.2 Preliminaries

Let Y denote a random failure time and X and Z be two explanatory variables.
The conditional hazard of Y given the explanatory variables at time y is defined
as

. Ply<Y<y+ylY 2y X=1,Z=2)
Myle, 2) = Jim, Ay -

Cox proposed that the conditional hazard be modeled as product of baseline

hazard Ao(y) and an exponential form that is linear in explanatory variables.
Mylz, 2) = do(v)ezp{Biz + B22}

Here 3, and j3; are regression parameters. The model discussed above is appro-
priate for the failure time data arising from continuous distributions. However
failure time data is sometimes discrete either through the grouping of contin-

uous data due to imprecise measurement, or because time itself is discrete.
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A discrete failure time regression model was proposed by Cox (1972) and it
specifies a linear model for hazard probability at each potential failure time.
If Ao(y)dy is an arbitrary discrete hazard, the hazard A(y|z, z) is given by

Alylz, 2)dy  _ do(y)dyezp{Biz + Br2}
1 = Aylz, z)dy 1 — Ao(y)dy '

This is a linear logistic model with an arbitrary logistic location parameter

corresponding to each discrete point.

5.3 Discrete Failure Time

Let Y denote the discrete failure time. For illustration purpose, we assume
that Y takes three values viz, 0, 1 and 2. The results can be easily generalized
to the case of finitely many values of Y. It may be noted that we have derived
the results for population.

For discrete failure time the hazard can be written as

AMylz, 2)dy=P(Y =y|lY 2y, X =2,2 =2).

Hence
P(Y=in2y,X=I,Z=Z) _ '\O(y)
’"[I—P(Y=ylvzy,x=z,z=z) i e |
= Boly) + Bz + Bz

where Go(y) = In [%]' B1 and 3, represent effects of X and Z respec-
tively.
Thus we have
PY=0Y 20,X=2z,Z=2) = PY=0|X =z,Z =2)

exp{Bo(0) + BiT + Ba2}
1+ exp{fo(0) + iz + oz}
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Further

Y = 7= = _2P{Bo(1) + Bz + Brz}
PY=1Y21,X=12,Z=2) T+ coplBo() 3 Bz T o) (5.3.1)

Therefore, P(Y = 1|X = z,Z = z) is given by

PY=1X=z,Z2=2z)= ezp{fo(1) + AiT + Ba2}
(1 + ezp{Bo(1) + Biz + Baz})(1 + exp{Bo(0) + 5"§ + Bz))
(5.3.2

and hence

1

PY=2AX=22=2)= (1 + ezp{Bo(1) + 1z + Loz} }(1 + exp{Bo(0) + ﬂw) +5z})
(5.3.3

Now if we ignore the covariate Z we have

PY=ylY 2y, X =1)
1-P(Y =ylY 2y, X =1)

In = do(y} + 01(y)z (5.3.4)

It may be noted that the regression coefficient of X depends on the value of
Y. Thus when covariate Z is ignored effect of X is measured by two parameters
4,(0) and &,(1). We prove in the sequel that 3, is greater than 4,(0) and é,(1)

in magnitude.

Theorem 5.3.1 Let Y be a discrete failure time taking values as 0, 1 and 2.
X and Z are independent explanatory variables. Let 3, represent effect of X
in presence of Z. 8;(0) and 6,(1) represent effect of X in absence of Z. Let
B >0. Then 8, 2 6,(0) >0 and 3, 2 6;(1) > 0.

Proof:

case 1: X and Z are dichotomous variables taking values as 0 or 1.

We can write P(Y =0|X =) as

(5.3.5)
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where p, = P(Z = 1|X = z).
Thus

Py =o|x = 0) = 2B} ) _ezp{Bo(0) + o} Po (5.3.6)

1 + exp{Bo(0)} 1+ exp{Bo(0) + B}
and
3 _ v _ _exp{Bo(0) + B} . ezp{fo(0) + B2 + 1}
P =0 = 1) = () + 63 P T explo0) + B +oy
537

X and Z are independent so that pgp =p, =p, say.

Thus we have

PY=0X=0) = w(l-p)+wp
_ ezp{60(0)}
1+ exp{do(0)}’

say
and

P(Y=0X=1) = g(uwp)(1-p)+g(uw))p
__exp{d(0) + 6,(0)}
"~ 14 exp{0o(0) + 5,(0)}

y Say

where

P 2 10)
71+ exp{Be(0)}’

. _ _ezp{5(0) + 5>}
1+ ezp{Bo(0) + B2}’

and \
_ bexp{ 5
g(b) = 1+ blexp{Bi} - 1)

For 8, > 0 the function g(.) is concave so that

(5.3.8)

g[P(Y =0|X =0)] > P(Y =0|X =1).
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It implies that

ezp{do(0) + B}  _exp{o(0) +6,(0)}
1+ exp{60(0) + 1} ~ 1+ exp{6o(0) + 6:(0)}
and hence 8, 2 6,(0). Further P(Y = 0|X = 1) > P(Y = 0|X = 0) implies
that 4,(0) > 0 and hence 8y > §;(0) > 0.
We can write P(Y = 1Y > 1,X =1z) as

PY=1Y21LX=z2)=PY=1Y 21,X=2,Z=0)(1-p.)+

PY=1lY21,X=z,Z=1)p; (5.3.9)

Proceeding on same lines we have £, > 6,(1) > 0.
case 2: X is a nonnegative valued continuous variable and Z is a dichoto-

mous variable.

As earlier
_ v —m__ezp{B(0)} ezp{5o(0) + B2}
Py =01x=0)= 1+ ezp{ﬁo(O)}(l Po) + 1 + ezp{Be(0) + [)'z}po (5:310)
and
iy — oy ezp{6o(0) + Bz} exp{o(0) + B2 + Pz}
PY =0[X =z) = 1 + ezp{5o(0) + Bz} (1 p1)+1 + exp{Go(0) + 3 ?- ﬁlz})pl
5.3.11

Thus we have

PY =0X=0) = wy(l-p)+uwip

_ _ezp{5(0)} say

1+ ezp{6o(0)}’

and

PY=0X=1) = g:(wg)(1—p)+g:(v})p
exp{o(0) + 6,(0)x}
1 + ezp{6o(0) + 6,(0)z}’

say
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where wj and wy are as defined earlier and the function g,(.) is given by

_ eoplBupp
9:(b) = 14 blezp{Biz} — 1)

For 8, > 0 the function g;(.) is concave so that

(5.3.12)

g:[P(Y =0X=0)] > P(Y =0|X =1) Vz.

It implies that

exp{8y(0) + Bz} S exp{8y(0) + 6,(0)z}
1+ exp{do(0) + A1z} ~ 1+ exp{do(0) + 6,(0)x}

and hence B, > 6,(0). Further P(Y = 0]X =) > P(Y = 0]X = 0) Vz
implies that §,(0) > 0 and hence 5, > §,(0) > 0.

Vr

On similar lines we can prove that 3; > 4;(1) > 0.

The result corresponding to 8, < 0 is stated and proved in the following.

Theorem 5.3.2 Let Y be a discrete failure time taking values as 0, 1 and 2.
X and Z are indcpendent explanatory variables. Let 8, represent effect of X
in presence of Z. §,(0) and 6,(1) represent effect of X in absence of Z. Let
B1 < 0. Then B, < 6,(0) <0 and 3, < §,(1) < 0. '

Proof:
case 1: X and Z are dichotomous variables taking values as 0 and 1.

For §; < 0 the function g(.) as given by (5.3.8) is convex so that
g[P(Y =0|X =0)) < P(Y =0[X =1).

It implies that

exp{8o(0) + 51} < exp{do(0) + 5,(0)}
1 + ezp{do(0) + 51} ~ 1+ exp{do(0) + 6,(0)}
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and hence 8, < 6,(0). Further P(Y = 0|X = 1) < P(Y = 0|X = 0) implies
that 6,(0) < 0 and hence 8, < 6,(0) < 0.

On similar lines we can prove that 3, < §;(1) < 0.

case 2: X is a nonnegative valued continuous variable and Z is a dichoto-
mous variable.

For $8; < 0 the function g-(.) as given by (5.3.12) is convex so that
g:[P(Y=0X=0)<PY=0X=z) Vr

It implies that

ezxp{6p(0) + Sz} < exp{do(0) + 6,(0)z}
1 + exp{6o(0) + Biz} ~ 1+ exp{o(0) + 6,(0)x}

and hence 8, < 6,(0). Further P(Y =0 X =z) < P(Y =0 X =0) Vz
implies that 4,(0) < 0 and hence 3; < 6;(0) < 0.
Similarly we can prove that 8, < §,(1) < 0.

vz

Note that for both the theorems strict inequality holds well if 52 > 0 or
Ba < 0. Further if 8, = 0 or 8, = 0 then we get §,(0) = &,(1) = By.

5.4 Continuous Failure Time

Let Y denote continuous failure time. X' and Z are explanatory variables.

The hazard for continuous failure time data can be written as
Aylz, 2) = Mo(y)ezp{Biz + B22}. (5.4.1)

Here we measure the effect of X by 8, that is, log of hazard ratio. We want
to investigate the effect of missing the variate Z on ;. To begin with we
assume that X and Z are independent. We have assumed 3 to be positive.

The results also hold well if 3, is negative.



CHAPTER 5. COX REGRESSION MODEL 99

Theorem 5.4.1 Let Y denote continuous failure time while X and Z are
independent ezplanatory variables. Let 3, represent effect of X when Z is
taken into consideration and &, represent effect of X when Z is ignored. If
B > 0 then By 2 6, > 0. |

Proof:

case 1: X and Z are dichotomous variables taking values as 0 or 1.

Here we write n(y|z, 2) as

m(ylz,2) = P(Y 2ylX=12,Z=2)
= /m f(t|z, z)dt

where the density function is given by

fltlr, 2) = Ao(t)exp{Brz + Baz}exp{— Ao (t)ezp{Biz + B22}}
and
Aa(t) = [ do(u)du.
Let n(ylz) = P(Y 2 y|X = 2).

It may be noted that 7(y|z) can be written as

n(y|z) = m(y|r,0)(1 — p:) + 7(ylz, 1)p:

where p, = P(Z =1|X = z).
Further X and Z are independent implying that p. = p for all x. Thus we

have

7(yl0) = =(y[0,0)(1 - p)+ =(y[0,1)p

= e:rp{— Mo (y)}' say
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and

n(y[l) = ¢*(m(y|0,0))(1 — p) + g"(n(¥[0,1))p
= ezp{— A; (y)ezp{di}}, say

where

g'(b) = b=P, (5.4.2)

Note that though we do not write explicitly, here §; depends on y. For 8, > 0

the function ¢*(.) is convex. Hence

g°(n(yl0)) < =(yl1) vy

implying that

exp{— A (¥)ezp{B:}} < exp{- Ag (y)ezp{fi}} Wy

which further implies that 8; > &. Further m(y|1) < =(y|0) for all y implies
that 6[ > 0. Thus 8, > 8§ >0,

case 2: X is a nonnegative valued continuous variable and Z is a dichoto-
mous variable.

As earlier,
w(yl0) = =(yl0,0)(1 —p) +=(y}0,1)p
= ezp{-N(v)},  say
and

n(ylz) = gx(x(¥10,0))(1 - p) +gz(x(y[0,1))p

= ezp{— A (y)ezp{di1z}}, say

where
gi(b) = b=FA=), (5.4.3)
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For 3, > 0 the function g3(.) is convex. Hence

g:(m(y]0)) £ m(ylz) Yy Vz

implying that
ezp{— Ag (v)ezp{Biz}} < exp{— Aj (v)ezp{diz}} Vy Vz

which further implies that 3, > §;. Further n(y|z) < 7(y|0) Vz Vy implies
that é; > 0. Thus 3, > 4, > 0.

A similar result can be given for 3, < 0.

Theorem 5.4.2 Let Y denote continuous failure time while X and Z are
independent explanatory variables. Let 3, represent effect of X when Z is
taken into consideration and §; represent effect of X when Z is ignored. If
B <0 then 8, <6, <0.

Proof:
case 1: X and Z are dichotomous variables taking values as 0 or 1.

For #; < 0, the function g*(.) as given by (5.4.2) is concave. Hence
g (n(y|0)) 2 n(yl1) Vy
implying that
exp{~ Ay (V)ezp{B1}} 2 exp{— A; (y)ezp{Bi}} Wy

which further implies that 8; < &;. Further m(y[1) > m(y|0) for all y implies
that &, < 0. Thus 6, < & <0.

case 2: X is a nonnegative valued continuous variable and Z is a dichoto-

mous variable.
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For 8, < 0, the function g;(.} as given by (5.4.3) is concave. Hence

g:(m(y|0)) > w(ylz) Vy Vz

implying that

exp{— Ay (y)exp{Biz}} = exp{— A (y)exp{diz}} Yy V=

which further implies that 3) < §,. Further #(y|z) > #(y|0) Vz Vy implies
that §; < 0. Thus 8 <6, <O0.

So far we have assumed that the explanatory variables X and Z are in-
dependent. Now we relax this condition. Suppose that X and Z are not
independent. Further X and Z are dichotomous variables taking values as 0
or 1. As in chapter 3 we define:

ot = polwy — wy) — (9" (wp) — wy)
¢ g~ (wi) — g*(wp)

and

‘ g"(w) — g*(w5)
where wg = #(y|0,0), wj = 7(y[0,1) and g*(.) is as defined in (5.4.2). It may
be noted that p; and p;* depend on the value of Y.

Theorem 5.4.3 Let Y denote continuous failure time while X end Z are
dichotomous ezplanatory variables taking values as 0 or 1. Further X and Z
are not independent. Let 8, > 0 and 3, > 0. Then we have:

(i) If py < p; then 8, €0 i.e. Simpson’s paradoz occurs.

(i) If p 2 p* then 6, 2 5.

(iii) po lies between p? and p2°.
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Proof:

(i) 71 < p; implies that 7(y|1} > #(y|0) and hence §, < 0.

(ii) pr 2 p implics that x(y|1) < g*(7(y|0)) and hence &, > B,.
(iii) First we prove that p} < py.

We can write p! as

p.=[ Po(w — wi) _[ wg — g"(w5) ]
g (wg) ~g*(w})}  |g°(wg) —g(w)]

The proof is obvious if

wo — Wj
" — <1
9°(wg) — 9" (wi)
If it is greater than 1, we can write

p; =po(l +e€)—¢

where
. _ (g = ) = (g"(uw) ~ 9"(})
g (w3) — g (w})

and
oo o= gt(wp)—
g (wg) — g7(w})
It may be noted that € < €*. This implies that p; < po.

Now we prove that p2* > py. Since 8, > 0, the function g*(.) is convex and

hence
g"[wi(1 - po) + wipo) < g"(wg)(1 = po} + ™ (wi)Po
Since g*(w}) = g°(w3) < 0 we have p2* > po.
Thus pg lies between p; and p;°. It may be noted that pi* is always less

than one while p; need not be positive always.

A similar result for 8, < 0 is given in Theorem 5.4.4. Proof follows on

same lines.
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Theorem 5.4.4 Let Y denote continuous failure time while X and Z are
dichotomous ezplanatory variables taking values as 0 or 1. Further X and Z
are not independent. Let §) < 0 and 3, > 0. Then we have:

(i) If pp 2 p? then 6, 2 0 i.e. Simpson’s paradoz occurs.

(ii) If py < p;* then 6) < Bi.

(iii) po lies between p2* and p..

It may be noted that if 5; > 0 and 8> < 0 then conditions on p, are same
as given in Theorem 5.4.4. That is, in this set up we get Simpson’s paradox if
1 2 p:- Similarly conditions on p; when 5; < 0 and 3; < 0 are as in Theorem
5.4.3. If B2 = 0 then we will never come across Simpson’s paradox. Further if
B/ = 0 then p; = p.* = pp. The corresponding results are given in Theorem
5.4.5.

Theorem 5.4.5 Let Y denote continuous failure time while X and Z are
dichotomous explanatory variables taking values as 0 or 1. Further X and Z
are not independent. Let , = 0. Then we have:

(i) If ;1 < py then 8, <0.

(ii) If py > po then &, > 0.

Now we assume that X is a nonnegative valued continuous variable. As

earlier we define

po(w] — wy) — (g:(wg) — wp)
gz (wy) — gz(wg)

p(z) =

and

gz [w3(1 — po) + wipo] — g2 (wp)
gz(wy) — gz (wp)
where w) = n(y]0,0), w} = n(y|0,1) and g3(.) is as defined in (5.4.3).

p(z) =
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Theorem 5.4.8 Let Y denote continuous failure time while X is a nonneg-
ative continuous variable and Z is a dichotomous erplanatory veriable teking
values as 0 or 1. Further X and Z are not independent. Let 5, > 0 and
B, > 0. Then we have:

(i) If pr <pl(z) Vr thend) <0 ie Simpson's peradoz occurs.
(i) If p 2 p2*(z) Vz then b, 2 6y

Proof:
(i) p- < pt(r) Vz implies that w(ylz) > 7(y{0) and hence é; < 0.
(ii) pr 2 po(z) Vz implies that m(y|z) < gz(7(y|0)) and hence & 2 b

Theorem 5.4.7 Let Y denote continuous failure time while X is a noﬁneg-
ative continuous variable and Z is a dichotomous ezplanatory variable taking
values as 0 or 1. Further X and Z are not independent. Let B < 0 and
B, > 0. Then we have:

(i) If p: 2 pi(z) Vz thend 20ie. Simpson's paradoz occurs.

(i) If p: < pi*(x) Vz thend < 5.

Proof follows on similar lines. Comments regarding negative 3, made ear-

lier apply in this case also.

5.5 Illustrations

In this section we discuss two examples in light of the theory discussed in

previous sections.

Example 5.5.1 This ezample is about the remission time data (Freireich,
E.O. et. al.(1963) as reported in Kleinbaum (1995)). The data set is given

in Table 5.5.1. These data involve two groups of leukemia patients with 21



CHAPTER 5. COX REGRESSION MODEL 106

patients in each group. Group 1 is the treatment group and group 2 is the
placebo group. The data set contains enother covariate logWBC, which is a
well-known prognostic indicator of survival for leukemia patients,

We discuss this example with reference to the Theorem 5.4.3. The response
variable, Y, is wecks until going out of remission, X is group status (0 for
treatment and 1 for placebo) and Z is logWBC (0 for logWBC < 3 and 1 for
logWBC > 3). We treat these data as population. The results of fitting Coz
model are given in Table 5.5.2.

In this ezample we note the following:

(i) From Table 5.5.2 we observe that By = 1.2435. As 3 > 0, survival time
(in remission) for patients receiving treatment is longer than that of patients
receiving placebo.

(ii) Our interest is to know the effect on the regression coefficient of X if the
important covariate Z gets omitted. From data py = 0.2380 and p; = 0.5714.
As noted earlier 8y, regression coefficient of X in the reduced model depends
on the value of Y. Table 5.5.3 gives few values of Y along with corresponding
values of 8, and p2*. The values of p; are negative, and therefore are not given
here. From Table 5.5.3 we observe that in each case & <P asp <p.-

(iii) As 6, > 0 for all values of Y considered here, even when WBC is
ignored the effect of treatment is seen to be similar, but slightly different in
magnitude. If ;1 falls below p; (which is not possible in this ezample because
p. happens to be negative) then &, would become negative indicating exactly

opposite sign for the difference between treatment and placebo effect.
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Table 5.5.1
Group 1 (X =0) Group 2 (X =1)
Weeks (y) | log WBC indicator | Weeks (y) | log WBC indicator
6 0 1 0
6 1 1 1
6 1 2 1
7 1 2 1
10 0 3 1
13 0 4 1
16 1 ) 4 0
22 0 5 1
23 0 ] 1
6+ 1 8 1
9+ 0 8 1
10+ 0 8 0
11+ 0 8 1
17+ 0 11 1
19+ 0 11 0
20+ 0 12 0
25+ 0 12 1
32+ 0 15 0
32+ 0 17 0
24+ 0 22 0
35+ 0 23 0

+ denotes censored observation.
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Table 5.5.2

Variable | Coefficient { S.E.
X 1.2435 | 0.4306
Z 1.6007 0.4665

Table 5.5.3

6 oy
1.2262 ) 0.6024
1.2313] 0.6103
1.2350| 0.6105
1.2370 | 0.6105

P P S

Example 5.5.2 The data were collected in an investigation of the survival
times of female black ducks (Pollock, K. H. et. al. (1989)). Fifty such ducks
from New Jersey were captured and their weight and length recorded. They
were then fitted with radios. The birds included 31 hatch-year birds (born
during previous breeding season) and 19 after-hatch-year birds (all at least one
year old). The data are shown in Table 5.5.4.

The response variable, Y, is survival time. Age group is denoted by X
taking values as 0 (less then one year) and 1 (at least one year). Another
important variable is weight. Mean weight 1s 11 60. Hence we have taken the
variable Z as weight taking values as 0 (< 1160) and I (> 1160). The resuits
of fitting Cozx model are given in Table 5.5.5.



CHAPTER 5. COX REGRESSION MODEL 109
Table 5.5.4
(X=1) (X=0)
Survival time | Weight | Survival time | Weight | Survival time | Weight
2 0 6+ 0 63+ ]
6+ 1 7 0 63+ 0
13 0 14+ 0 63+ 0
16+ 0 22 0 63+ 1
16 1 26 0 63+ 0
17+ 0 26 1 63+ 0
17 1 27 0 63+ 0
20+ 0 29 0 63+ 0
21 0 32 0 63+ 1
28+ 1 34 1 63+ 0
32+ 1 34 1 63+ 0
41 0 37 1 63+ 0
54+ 1 40 0
ST+ I 44 0
63+ 0 49+ 0
63+ 1 56+ 1
63+ 1 56+ 0
63+ 1 57+ 1
63+ 1 58+ ¢
+ denotes censored observation.
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Table 5.5.5

Variable | Coefficient | S.E.
X 0.3557 1§ 0.5571
Z -0.4731 | 0.5545

We note that (i) Since 8, > 0, survival time for birds born in previous

breeding season is longer than that for the after-hatch-year birds.

(ii) The two variables X and Z are not independent. Further 3, is negative.
From the data pg = 0.2581 end p, = 0.5789.

(1ii) Our interest is to know the effect of omitting Z on regression coefficient
of X. Table 5.5.6 gives few values of Y along with corresponding 6, and p*.
The values of p; are not reported here as all of these are greater than one and
the condition py > p. will never be satisfied. Hence in this case also we wnll
not come across Simpson's paradoz.

(iv) From Table 5.5.6 we observe that for all the values of Y considered
here 8, is positive. Thus when the variable weight is ignored, the effect of age
is seen to be similar, but different in magnitude. We observe that in each case

since py > p2*, &, is less than 53,.

Table 5.5.6

) pe
0.1818| 0.2124
0.18171 0.1992
0.1855 | 0.1875
0.1920 | 0.1777
0.2002 | 0.1697
0.2091 | 0.1633

W 2 S A e




Chapter 6

AN OVERVIEW AND
FUTURE AVENUES

6.1 An Overview

A paradox arising out of aggregation or amalgamation of data is known for
several decades. The paradox has been traced back to Yule {1903) by Good
and Mittal (1987). Mittal (1991) has distinguished three types of paradoxes
that may arise as a resuit of amalgamation of contingency tables. These are
Yule's association paradox, Yule's reversal paradox or Simpson’s paradox and
amalgamation paradox. For real life data we rarely observe Yule’s association
paradox. Though amalgamation paradox is more frequent it is Simpson’s
paradox that creates problems of interpretation. This is the reason why it
attracted several researchers. What would be the best is to find the statistical
explanation of any paradox when it occurs. It is given through necessary and
sufficient conditions for the paradox that can be described in statistical terms.

Such conditions have been studied in literature. We have taken a review of it
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in chapter 2.

We have looked at the paradox as a consequence of omitting an important
variable. Let Y be the response variable under consideration and X and Z are
two explanatory variables. Qut of these let X be the variable of primary inter-
est. Our aim was to study the association between Y and X in two cases, (i) in
presence of Z and (ii) when Z is missed. That is we have studied conditional
bivariate distribution of Y and X conditional on Z and unconditional distri-
bution of Y and X. The most common example of modeling the relationship
between the response variable and explanatory variables is the linear regres-
sion model. Effect of omitting an important variable on regression coefficient
in linear regression model has been studied by Samuels (1993).

It is often the case that the outcome variable or response variable is dis-
crete taking on two or more possible values. Over the last decade the logistic
regression model has become the standard method of analysis in this situation.
In chapter 3 we have considered logistic regression model with dichotomous
response. If X and Z are also dichotomous then we have two 2 x 2 contingency
tables. We have considered 3, the log-odds ratio or regression coefficient of
X as measure of association between Y and X. If the two tables are amalga-
mated over Z that is, if the variable Z is missed, we get a single 2 x 2 table.
Let &, be the log-odds ratio for this table.

Initially we have assumed same S, for all values of Z and investigated the
relationship between B, and §. When X and Z are independent we have
shown that §, is always less than 53, in magnitude. When X and Z are not
independent we may get into a paradoxical situation. We have given necessary
and sufficient conditions for Simpson’s paradox in case of dichotomous X and

Z.
It is usually the case that the two 2 x 2 contingency tables have different
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odds ratios. In other words regression coefficient of X changes with Z. We
have considered this case in chapter 3.

The results for dichotomous response do not extend to the case of polyto-
mous response. In fact we have seen that for the simplest case of dichotomous,
independent X and Z, we have a possibility of a paradox.

The results derived for the logistic regression model with dichotomous re-
sponse extend casily to Cox regression model. Here the measure of association

is logarithm of hazard ratio.

6.2 Future Avenues

Throughout this dissertation we have discussed population results. We wish
to investigate extensions of these results in samples in our further study.
Good and Mittal (1987) have discussed how amalgamation paradox can be
avoided using suitable designs of sampling experiments. According to them if
sampling design is both, row and column uniform then amalgamation paradox
for odds ratio can be avoided. A row and column uniform design can be
obtained if the sample is taken by fixing both, row and column totals.
Samuels (1993) has extended the results regarding association reversal for
population in form of 2 x 2 x k contingency tables to simple sampling designs.
If a contingency table is generated by either (i) simple random sampling from
population (ii) product binomial sampling with fixed row totals or (iii) prod-
uct binomial sampling with fixed column totals, then the table of expected
frequency cannot exhibit association reversal unless the population does.
Anotler question of interest can be how a sampling design can remedy
an association reversal that may exist in the population. Samuels (1993) has

proved that if a contingency table is generated by stratum-matched sampling,
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then association reversal cannot occur either in the data or in the table of
expected frequencies. Thus matching prevents association reversal so that a
summary statistic calculated for a collapsed table cannot misrepresent the di-
rection of association in the separate tables. This does not mean that matching
is always a good thing or that the resulting data should be analyzed using only
the collapsed table.

We look at the paradox from different viewpoint. If the paradox exists in
the population then it should be reflected in the sample. In fact, we should
not try to avoid the paradox. We look at the paradox as an opportunity to
have more insight of the problem under consideration. Existence of paradox
may reveal a variable that is missed in the study. In Example 1.1.3 we come
across Simpson’s paradox when the variable victim's race is included. This
gives us an opportunity to look at the data more carefully and come to a
sensible conclusion.

If the paradox exists in the population, what is the probability that it
will occur in the sample? On the other hand it may happen that there is
no paradox in the population, but sample shows the paradox. What are the
chances that such an event will occur? We wish to deal with such population
sample relationship in our further study.

A rigorous simulation study may help to auswer these questions. We have
not done such a rigorous simulation study. But we have conducted a simulation
study on smaller scale, We have cousidered two cases. In the first case,
we considered population with no paradox. X and Z were independent and
population size was 2000. Hundred random samples each of size 200 were
taken from this population. We observed no paradox in these samples. In the
second case we considered population with Simpson’s paradox. Population size

was 1950. We took 100 random samples each of size 195 from this population.
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Out of 100 samples we observed paradox in 76 cases.

Another important question that needs to be answered is how to identify
that a particular variable is missed or omitted. Diagnostic procedures devel-
oped so far for linear, logistic or Cox regression model do not identify a missing
variable.

In chapter 1, we have studied association between defendant’s race and
death penalty verdict. Studying 2 x 2 table corresponding to defendant’s race
and death penalty verdict will not reveal the missing variable. To identify such
a variable an insight of the problem is required. In this example a sociologist

may point out the missing variable.
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