Taylor’s Theorem and Extreme Values

Definition 1: Local (Relative) Maximum Value:
Suppose f(z,y) is defined on region R. (a,b) is a point in R and in domain of f(z,y).
f(a,b) is called a local (relative) maximum value of function f(z,y) if there exists some
neighbourhood of (a,b) such that for every point (a + h,b + k) of this neighbourhood
f(a,b) > f(a+ h,b+ k).
The point (a, b) is called Local (Relative) Maximum point.

Definition 2: Local (Relative) Minimum Value:
Suppose f(z,y) is defined on region R. (a,b) is a point in R and in domain of f(z,y).
f(a,b) is called a local (relative) minimum value of function f(x,y) if there exists some
neighbourhood of (a,b) such that for every point (a + h,b + k) of this neighbourhood
fla,b) < fla+ h,b+ k).
The point (a,b) is called Local (Relative) Minimum point.

Definition 3:Local (Relative) extreme Value:
f(a,b) is said to be a local (relative) extreme value of the function f(z,y) if it is either
a local (relative) maximum or local (relative) minimum value.

First Derivative Test:(Necessary condition for extremum):
If f(z,y) has a local maximum or minimum value at an interior point (a,b) of its domain
and if the first partial derivatives f,(x,y) and f,(x,y) exists in a neighbourhood of (a, b)
then f,(a,b) =0 and f,(a,b) = 0.

Remark:
The converse of the above theorem is not true.

For example: Consider f(z,y) = 2? — 3.

Here fa:('r?y) = QJI,fy(JI,y) = _2y‘

Take the point (a,b) = (0,0). Then f,(0,0) =0 and f,(0,0) = 0.

This shows that both the first order partial derivatives at (0,0) vanish but f has neither
maxima nor minima at (0, 0).

Consider any neighbourhood of (0, 0) for small values of h both (2h, h) and (h, 2h) points
are in neighbourhood of (0,0) and we have f(2h,h) > 0, f(h,2h) < 0 — f has neither
maxima nor minima at (0, 0).

Thus, it is clear that vanishing of the first order partial derivatives is a necessary condi-
tion but not sufficient condition.

Definition 4: Critical Point or Stationary Point:
A point (a,b) is said to be a critical point or a stationary point of a function f(z,y) if

fr(a’7 b) =0= fy(av b)

Definition 5: Saddle Point:
A point (a, b) is said to be saddle point of a function f if in every neighbourhood of (a, b)
there are points (x,y) for which f(z,y) < f(a,b).



Second Derivative Test For Extrema:
Suppose f(z,y) is a function of two variables x and y defined in region R such that its
first and second order partial derivatives are continuous in some neighbourhood of (a, b)
of the region R and f,(a,b) =0 = f,(a,b) then
(i) f has local maximum at (a,b) if
faz(a,b) <0, fou(a,b) - fyy(a,b) — gy(a,b) > 0.
(ii) f has local minimum at (a,b) if
faz(a,b) >0, frz(a,b) - fyy(aa b) — x2y(a7b> > 0.
(iii) f has saddle point at (a,b) if
fiﬁ$(a’7b) ’ fyy(a,b) - :3y(a7 b) <0.
(iv) Test is inconclusive at (a, b) if

f:c:r:(aa b) . fyy(a7 b) - 3y(a’ b) 0.

The expression fgg - fyy — fgy is called discriminant of f and

fmc f:r;y
fzy fyy

fm: : fyy - fxzy =



Example 1 Find extreme values of the function
flz,y) = 2(2% — y?) — 2t +y*.
Solution:
fo=4x — 423 fo. =4 — 1227
fo=—4y+49> fp, = —4+12¢9° fo, =0
For extremum we have
f»=0,f,=0.
Sdr —4x =0and —4y + 4y =0
SoAr(l—2?) =0 and 4y(—1+y?) =0
=2=0,1-22=0andy=0,-1+9y?>=0
=xr=0,xr==xland y =0,y = 1.
So we have 9 possibilities that is (0,0), (0,1), (0, —1),(1,0),(—1,0),(=1,1), (=1, —1).
Now at point (0,0)
Furl0,0) = 4, ,(0,0) = 4, £,(0.0) =0
Fuo - Fiy — 2, = (4)(=4) = 0 = =16 < 0
So (0,0) is a saddle point for the function f.
Now at point (0,1)
f:cx(o 1) = 4 >0, fyy(0> 1) =38, f:c7y(07 1) =0
for o — 2, = (1)) —0 =320
So (0,1) is a local minimum for the function f.
Now at point (0,-1)
fa:x( - ) =4>0, fyy(oa _1) =38, fw,y(oa _1) =0
foa foy— 13 = (1)(8) ~0=32>0
So (0,—1) is a local minimum for the function f.
Now at point (1,0)
fmt(l 0) = _8 <0, fyy(LO) = —4, fw,y(LO) =0
Foo foy = 12, = (=8)(=4) =0 =32 > 0
So (1,0) is a local maximum for the function f.
Now at point (-1,0)
fzx( ) _8<O7fyy<_170) = _47fz,y(_170) =0
Fuo Fyy— 12, = (—8)(—4) =0 =32 > 0
So (—1,0) is a local maximum for the function f.
Now at point (1,1)
Furll, 1) = =8 < 0.y (1,1) =8, fuy(1,1) = 0
foa fuy— 12, = (-3)(3) ~ 0= —64 < 0
So (1,1) is a saddle point for the function f.
Now at point (-1,-1)
fual—L=1) = =8 < 0, fyy(—1,=1) = 8. fr,(~1.—1) =0
foa fyy = 2, = (~8)(8) =0 = =64 < 0
So (—1,—1) is a saddle point for the function f.
Now at point (1,-1)
frz( - ) = _8 < O’fyy<17 _1) =38, fm,y(lv _1) =0
Fuo fow = 12, = (=8)(8) — 0 = =64 < 0
So (1,—1) is a saddle point for the function f.
Now at point (-1,1)



Jax(—1,1) = =8 <0, f,, (—1,1) =8, f2,(—1,1) =0

So (—1,1) is a saddle point for the function f.

Example 2 Investigate the maximum and minimum values of
fl@,y) = (v +y—1D(a® + ).
Solution:
fo =2 + 4>+ 20(x +y — 1),
fy=2"+y* +2y(x +y - 1),
fmz:6x+2y_27
fyy = 22 + 6y — 2,
fay = 2y + 2x.
For extremum, we have f, =0 = f,
St +y? +2x(r+y—1)=0..(:) and
2+ y*+2y(x+y—1)=0...(i1)
Subtracting (i) and (i), we get (z +y — 1)(x —y) = 0.
=cr=yorz=1—uy.

Case (1): With z =y (i) becomes
P+ 2?4+ 2z(x+x—1=0)
622 =20 =0
ie. 2x(3z—1)=0
=z=0o0rz= %
As x =y, we get the points as (0,0) and (%, %)

Case (2): Withz =1 —y in (i), we get 1 — 2y +2y?> =0
This has imaginary roots.
. The stationary points are (0,0) and (3, 3).
At point (0,0),
Jee = =2 <0, fyy = _Qafxy =0
e fy— P = (-2)(-2) =4 >0
= f has maximum at (0,0) and f(0,0) = 0.

At point (%, %),

fxx:§>0>fy2y:§a2fx32/:§1 »
Sfen s Sy — oy = (5)E) - () =5 <0
= f has saddle point at (3, ).



Example 3 Find extreme value of a function.
flr,y) =2y —2® —y* — 20 — 2y + 4.
Solution:
fz :y_2x_2>fy:x_2y_2afxm =2 <O7fyy: _27f:py: 1
For extremum, we have f, =0 = f,
Sy—2xr—2=0and x — 2y — 2 = 0 solving these for x and y we get x =y = —2.
.. The point (=2, —2) is the only point where f may have extreme values.
Now for - fyy — fo, at (=2, -2) = (=2)(-2) — 1> =3 > 0.
= f has local maximum at (-2, —2), and f(—-2,-2) = 8.

Example 4 Find and classify the extreme points of the function
fla,y) = a* =32y + ¢,

Solution:

fo = 42° — 6y,
fy = —32% 4+ 3y,
fzx - 12372 - 6y7

For extremum, we have f, = 0= f, . 42® — 6zy = 0, 32> + 3y* = 02z(22* — 3y) = 0,
Sy==dx=12=0o0r22% =3y

sz =3 orx =32 - The critical points are (2, 2), (32, 2) and (0,0).

fow =12(3)* = 6(3) =18 > 0,
fyy - 6(%) = 97

o Jaw e Sy — f2, = (18)(9) — (=9)> =81 > 0.

= f has local minimum at (2, 2).

Similarly f has also local minimum at (32, 3)
At point (_73,%) ,
fyy = 6(%) =9,
fey = _6(%3) =9
o Jax e Sy — f2, = (18)(9) — (9)* = 81 > 0. = f has local minimum at (3, 3).

At point (0,0)
fm: = O?fyy = Oafmy = 0.
fmz 'fyy - gy =0
. test fails.
But f(z,z) = 23(1 — 2x)
. For0<z <3, f(z,z) >0and for 3 <2 <0, f(z,z) <0.
= [ has saddle point at (0, 0).



Example 5
Find extreme values of the function
fla,y) =ay+ 2 +2
Solution:
fm = y - 2_(2) )
fy = o0 %,
fmz = 3
fyy = _g
fay = 1.
For extremum, we have f, =0 = f,
y———Oandx—y = 0.

4
200z* __ 0

50
= y = 2 with this x — y— = 0 becomes r — 515 =

0

3
2500)

= (1 - 2500)
=xz=0or (1-—
LT = 0.
Puttlng this in y — 2% = 0 gives y = 2.
*.(5,2) is the only pomt where f take extreme value.
f2(5,2) = % >0,
Suy(5,2) =5,
fy(5.2) = L
v far fay = £ = (96) — ()2 =3>0
= f has minimum at (5,2) and f(5,2) = 30

=0.

Example 6
Find extreme values of the function

fl,y) =322(y — 1) +y*(y —3) + 1.

Solution:

fm = 656(1/ - 1)7

fy =32 = 2y +y*)
fyy=6(y—1)

fay = 62

For extremum, we have f, =0 = f,

o 6z(y—1)=0and 3(z% -2y + %) =0
=z=0o0ry=1.

When 2 =0,22 -2y + 42 =0

=y=0o0ry=2.

When y = 1,22 — 2y + 4% =0

= x = £1.

*. The stationary points are (0,0), (0,2),(1,1),(—1,1).

At point (0, 0),
fmx =—-6< Oa
fyy ==



fmy
= f has maximum at (0,0) and f(0,0) = 1.

At point (0,2) ,

fxa::6>07
fyy:6>
fmy:O

R e my =36 —0=36>0. = f has minimum at (0,2) and f(0,2) = —3.

At point (1,1)

fm;t:()vfyy 0 facy_6
. qu$'fyy $y_0 36—_36<0

= f has saddle point at (1,1).

At point (—1,1)
f:c:e:O7fyy 0 f:cy_
L. fzx * fyy xy — O 36 — _36 < O
= f has saddle point at (—1,1).

Example 7
A rectangular box open at the top is to have a volume of 32m3. What must be the
dimensions so that the total surface area is minimum?
Solution
Let the length, breadth and height of the rectangular box be z,y, z respectively, with
surface S and volume V.
Here, V = 32m® = zyz = 32...(i)
We want to minimize the surface area of the rectangular box.
But surface area = S is given by S = 2z(z + y) + xv.

But from (i), z = ii

LS =y +64(5 + ) = fla,y)say,

64 64 128 128
NOWS =y — Sy:x——Sm:x—g,Syy:y—g,Swyzl.

227 y2
For extremum, s, =0 =5,
y———Oandx—y—O
:cy—64andya:—64
:>a:y—ya::>x—y y— 1=0

:>x—x——0:>x —64:>x—4andhencey—4
. The point (4,4) is only point at which S may take extreme value.
At point (4,4),
%:2>0 Syy(4,4) =2,5,, = 1.
Szz - Syy — Sgy—Z( )—12=3>0
= S has minimum at (4,4).
We have V =2yz =32 .. (4)(4)2 =32 =z =2.
. At (4,4,2), S has minimum value.



S () min = 22(x + y) + 2y

=2(2)(4+4)+ (4)(4)

(S)min =32+ 16 = 48

Hence, Length = 4m, breadth = 4m, Height = 2m.

In example (4), we have obtained the minimum of the function xz* — 3z%y + ¢* and

in example (7), we have found the minimum of the function 2z(z + y) + xy subject to
the condition zyz = 32. Here we observe that these two problems are of different types.
example (4) is a problem of free extrema where as example (7) we have an additional
condition called constraint or side condition i.e. problem is of constrained extrema.
To solve example (7) we have obtained the function S in terms of two variables x and y by
replacing the value of z from the side condition. Another method to solve the problems of
constrained extrema is given by 'Lagrange’. The method is known as 'Lagrange’s method
of multipliers.



4.2: Lagrange’s Method of undetermined multiplier(s) :
M-(1): Let f(z,y,2) be a function of three variables z,y, z which is to be examplained
for extremum and let the variables x, y, z are connected by the relation ¢(z,y, z) = 0...(1)
Since f(x,y,z) is to have extremum
9 =09 =0,% =0,

“8:6_87831 8’82 5
so that 6—£d:c + 8—£dy + 8—£dz =0...(2)
Differentiating the relation (1) we have
%dw + g—idy + %dz =0...(3)
Multiply equation (3) by a parameter A and adding in equation (2) we get
(5 +2)dx + (5 + A52)dy + (5L + A52)dz = 0.
This equation will be satisfied identically if coefficients of dx, dy, dz are 0.
ie. if
9 4 N2 —0..(4)
9 4 A% —(...(5)
)

of | a8
o L A% = 0...(6

The equation (1),(4),(5) and (6) will determine the values of z,y,z and A for which
f(z,y, z) stationary.

Example 1. Divide the number 36 into three parts so that continued product of the
first, square of second and cube of third may be maximum.

Solution :

Let the numbers be z, vy, z respectively.

and f(z,y,z) = ry?z% and g(x,y,2) = r +y + 2z = 36 Construct the auxiliary function
F as

F=f(z,y,2) + Ag(z,y, 2)

F=xy’2+ XNz +y+z—36)

Differentiating F' partially w.r.t. x,y, 2 and A, and then equating to 0, we get

F, =922+ X=0...(1)

F,=2zy2> + A =0...(2)

F, =3xy?22 + X =0...(3)

Fy\=x+y+2—-36=0...(4)

Now multiply equation (1) by z, (2) by v, (3) by z and adding,we get
6ry*22 + Nz +y+2)=0
s 62223 + 360 =0

223
=\ = "=

Putting this value in
2?23 + A =0

e 2.3 my?E _
oyt === =0
(- %) =
=>1-2=0"2y°2"#0
=z = 6.

Similarly putting the values of X in 22?2 + Ay = 0 and 3xy%2% + Az = 0 respectively we
get y =12 and z = 18.



The three numbers are 6,12, &18.
and f(6,12,18) = 6(12)%(18)% = 5038848.

Example 2: Obtain the shortest distance of the point (1,2,—3) from the plane
2z — 3y + 62 = 20.
Solution :
Suppose A(1,2,—3) and let p(x,y, z) be any point on the plane (say) ¢(x,y,z) = 2z —
3y + 6z —20=0.
The distance = d*> = Ap = (x — 1)+ (y — 2)* + (2 + 3)* = f(z,y, z). Which is to be
minimize.
Construct the auxiliary function
F= f(x>yv Z) + )\qb(x,y, Z)
SF=(x—12+(y—2)%+ (2 +3)% + A2z — 3y + 62 — 20).
Differentiating I’ w.r.t. x,y, 2z and A, equate to zero
F,=2(z—1)—2\=0...(1)
F,=2(y—2)—3\=0..(2)
F,=2(2+3)+6A=0...(3)
Fy=2r—-3y+62—20=0

Multiply equation (1) by (z — 1), (2) by (y — 2), (3) by (2 + 3) we get

2(x —1)2 +2X(xz — 1) = 0...(5)

2(y —2)* = 3\(y — 2) = 0...(6)

2(z2+3)2+6A (2 +3)=0...(7)

Addmg (5), (6) and (7) we get 2[(x— 122 +(y—2)2+(2+3)?| + A2z — 3y +62) + 22X = 0
2+ 2 =0 =% 2 43=12

Takmg value of X in equation (1), (2) and (3) we get

x—1—221,y—2:2_1—‘f i

L@ = () (5P ()

= d=06.

*. The shortest distance is 6 unit.

Example 3: Show that the greatest value of 8zyz under the condition
z —|— % +5=1is \6/‘5
Solution :
Let f(x,y,2) = 8zyz, g(z,y, 2 ):ﬁ—l—%—i—é—l—O
We construct the auxiliary function F' as F' = 8zyz + )\( + % —|— = -1)
Differentiate F' partially w.r.t. x,y, z and A, then equatlng to zero, We get
F, =8yz+ 22 =0...(1)
F, = 8zz + ”g’ =0...(2)
F, _8:zcy+2]A =0...(3)

Multiply equation (1) by z, (2) by y, (3) by z we get
=%+ % +2-1=0..(4)
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8ryz + == 2’\‘”2 =0...(5)
8xryz + 2’\y =0...(6)
8ryz + 2’\42 =0...(7)

Adding these equatlons we get
24a:yz+2)\( + 4+ 2 ) 0
= 24xyz + 2)\ =0= )\ — 12xyz.
Putting the value of A in equation (5), we get 8zyz +
= 8zryz(l — %) =0
=9-322=0"ayz #0
= r = /3.

2(—12xyz)-x>
— =0

Similarly putting the value of A in equation (6) and (7) respectively, we get
=4 and 2 = 2
y=_and z= .
. The point (v/3, \/ig, \/lg) is the stationary point.
. Maximum value of zyz is 8(v3)(-%)(%) = &

V3/\3 3
Example 4:
Find the greatest and smallest values of the function f(z,y) = xy takes on the ellipse
CE2 2 o
< T y? =1.
Solution :

2

We have f(z,y) = zy, Suppose g(z,y) = % + % —1=0.
vi=5li+ 8
Vg =3Li+ 5

Vf:yg—kx}andVg: +7yj Zi+yj.
Now consider
Vf = A\Vyg

Syl ag = MNE+y))

yz—l—xj—)\mz%—)\yj
:y——xandx—)\y

y—AAy:&y(——l)
..y—Oor(I—l) 0
= \=+2

Case 1: If y = 0 then z = 0 .". we get the point (0,0). But (0,0) is not on the given
ellipse. ...y # 0.

Case 2: If y # 0 then A = +2 -, x = +2y with this g(z,y) =0
gives B2 48— 1 = 4y + 4y =8 = y = £1.
*. The cr1t1cal pomts are (+£2,1) and (£2,—1) The greatest value of function f(x,y) =
xy = 2. and the smallest value of function f(z,y) = zy = —2.

11



Example 5: Find the extreme value of the function f(x,y) = 3z + 4y on the circle
2?2+t =1.
Solution:
We have f(x,y) = 3z + 4y. Suppose g(z,y) = >+ —-1=0
Vf= z + aij
Vf = 32—1—4] and Vg = 21 + 2yj
Consider
Vf=AVg
37+ 47 = \(227 + 2y))
= 2xA =3 and 2y\ =4
Since)\#O,x:% andy:%
With this, g(z,y) = 0 becomes
(5)*+ (5)2 —1=0=4)\? =25\ = £5.
srx=+42andy=+3
. The stationary points are (£2, +3).
The extreme values of f(z,y) = 3z + 4y are 5 and —5.

Example 6: Find the extreme values of f(z,y,2) = x — 2y + 5z on x* +y* + 2% = 30.
Solution:
We have f(z,y,2) =z — 2y +5z.
Suppose g(z,y,2) =22+ 3> +22—-30=0
vi=9%i+%j+5kand vg = 3%+ 325 + 5k
Vf—5—2]—|—5k and Vg = 221 — 2yj + 22k.
Consider
Vf=AVyg
o0 —2) + 5k = N(2xi — 2yj + 2zk)
= 2x/\ =1,2y\ = —-2,22A=5
T=on Y= =0
. g(x,y,2) = 0 becomes (55)% + (1) + (55)? —30 =0 = A = %3
Putting this value of A in x,y, z we get x = £1,y = +£2, 2 = 45.
.. The stationary point is (z,y, z) = (£1,£2, £5). So that the extreme values of function

f(z,y,z) are 22 and —20.
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Taylors Formula For Functions of Two Variables
Theorem: If f(z,y) and its partial derivatives of order (n + 1) are continuous in the
neighbourhood of a point (a,b) and if (a + h,b + k) is any point in this neighbourhood
then there exists a positive number ¢, 0 < ¢ < 1 such that

- o 0 1,0 0., 10
9 n 1 9 9 n+1
ka—y) fla,b) + o 1)!(hax +k8y) fla+ ch, b+ ck)

Proof: :Let x = a+ ht,y = b+ kt; where 0 <t < 1 is a parameter
2o f(zy) = fla+ ht,b+ kt) = F(t).
Since f(z,y) possesses continuous partial derivatives of order n+ 1 in any neighbourhood
of point (a,b), F(t) is continuous in [0, 1] and
of de  Of dy
F'(t)= — —+ —.—
®) Ox dt + Oy dt

I LA AR R

a@gf ; dy , or dy
- (h% + k%z—;ay)h + (ha(fgx + k%’;)k
— h2§—; + Qhkggy + k? ;;2
= (ha% + ka%)Qf
Continuing in this way we have F"*!(t) = (h% + k(%)”“f

By Maclaurin’s theorem, we have
F(1) = F(0) + F'(0) + 5 F"(0) + ... + 4 F™(0) + (nil)!F”“(c) ..... (1)
But F(1) = f(a+ h,b+ k)

F(0) = f(a,ab) 5
F = (h— -
0= i + kgptta
" o v Y
F"(0) = (hax +k8y) fla,b)...
0 0.,
F(0) = (h + k)" f(0.b)
9, 0
n+1 — (P ~ \n+1
Ft1(0) (h&c +k6y) fla+ch,b+ ck)
Putting all these values in equation (1) we get
fla+hb+k)= f( b)+(h£+k3)f( b)+l(hﬁ+k3)2f(a b) + +i(h3+
@i BEA ar oyl \ O T\ TRy TGO T o ey
8 n a a n+1
ka—y) fla,b) + (n+1)!(hax +k8y) fla+ ch,b+ ck)
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Remark: 1.The last term is called the remainder and the theorem is called Taylor’s
expansion about the point (a,b)
2.Another form of Taylor’s Formula is

P y) = Fab) + (@ —a) 2+ = )20, b) + =[x —a) 2+ (y b)a%ww b +

ox dy 2! Ox
1 0 0
o+ =z —a)=— —b)=—" b
4ol = g+ (o= b5 )+
1 0 0
- _ _ —_ b= n+1 _ b —b
il s + = D e el — )b cly )
This is called Taylor’s expansion of f(x,y) about the point (a,b) in the powers of
(.CL' o CL), (y - b)
3If a=0,b=0 and h, k are independent variables that is h = z, k = y then we get

0 0 0 0 0 0
F@,5) = F0,01+a 545 F0.0) 45505+ 2000t F(0,0)+

1 0 0

m@% + ya—y)”“f(c:p,cy)

This is called Maclaurin’s expansion.
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Examples
1. Expand f(z,y) = 2® + zy? in the powers of (z — 2) and (y — 1).
Solution: We have f(z,y) = 2* + zy*,a=2,b=1
- f(2,1) = 10.
fm:3x2+y2-'- fx(271):137fy QIy fy< 1) 4
fow = 67, f2e(2,1) = 12, f,, = 27, f,,(2,1) = 4
fa:y = 2y7 f:cy(2> 1) = 27 f:ca:a: 6 fzxx(Q 1) 6 fyyy = fyyy<2a 1)
foyy = 25 fayy(2,1) = 2, fazy =0, f12y(2,1) = 0

By Taylor’s formula

fla+h,b+ k)= f(a, b)+(ha%+k%)f(a,b) (ha%Jrka@y)

0., 1 0 0 i
putting all th values in this , we have
P oyt =104+ 13— 2) +4(y — 1) + 3[12(z = 2)* + 4(z = 2)(y — 1) + 4(y — 1)} +
§l6(z —2)° +2(z —2)(y — 1)?]

Flab) £+~ (h%

™

2. Expand f(z,y) = sinxy in the powers of (z — 1) and (y — §) upto second degree
terms. -
Solution:Here f(z,y) = sinzy,a=1,b=%

S fLE) =1
fe = ycosxy o fe(1, %) =0
fy = xcosxy S f(1L5)=0
fow = —y 2sinay Cfee(1,5) = *TWZ
fyy = —x? stnxy fm(la %) = -1
[y = —TYSINTY + cosxy, S fa(1,5) =
Now by Taylor’s formula
hobt k) = fab) + (b + k2 f(ab) + =2+ k2P f(ab)
fla+h, R ox oy @ 2% Ox oy @

csinzy =14 gl(x = 1)*(/4) + 2w = 1)(y —m/2)(=7/2) + (y = 7/2)*(=1)]
cosingy - (z—1)P2 -3z —1)(y —n/2) — %(y —m/2)%

3. Find the cubic approximation for f(z,y) = ¥ near the point (1, 1)
Solution: Here f(z,y) =a2Y,a=1,b=1,.. f(1,1) =1

fm = yxyil fac(la 1) =1
fy=a"1ogx (1) =0

foo = yly — D)av™? S fae(1,1) =0
fyy = log x.2¥.logx S fw(1,1) =0

foy =YL +logz.y.a¥! cof(1,1) =1
f$$1‘ - ( - 1)(y - 2)1@73 fx$z(17 1) =0
Joyy = (log z)?zY log x o fy(1,1) =0
fowy = (* —y)z¥?logx + 22 (2y — 1) O faay(1,1) =1
faoyy = V" Hog z + log x(—y.x¥~Hogx + 2v~1) e fagy =0

Putting all this values in Taylor’s formula, we have
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5 mw\

(z,y)=av =1+ (r—1).1+ (y 1)0+§[(m—1) O+2(x—1)(y—1).1+(y—1)20] +
[(z —1)2.0+3(x — 1)*(y — 1)1—1—3(:5 )(y —1)%20+ (y — 1)3.0]
VYxl4(e—1)+(x—-1)(y—1)+i(z—-1)72(y—1)
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