Galois Theory

Autmnm'phisﬁl of field K

An 1somorphism from field K to itself is called Automorphism.

The collection of automorphism of K is denoted by Aut(K).

If « € K then we will write oa for o(a)
An automorphism oginAut(K) is said to fix an element o € K 1if oo = «.

If F'is a subset of K the automorphism o is said to fix F' if it fixes all the elements of F' that is ca = aVa € F

Note: Any field has atleast one automorphism that is the identity map.

Notation: Let K /F he an extension of fields. Let Aut(K/F) be the collection of automorphism of K which
fixes F



Prc}pﬂmtmn Aut(ﬁ] is a group under {'Dl’ﬂpﬂbltlﬂﬂ fmd Aut(fx / F’) is a subgroup.

Proof: Since Aut(K ) is the set of all autcnmorphmns of field K.

Let o and 7 € Aut(K) since composition of two isomorphism is an isomorphism so o1 € Aut(K) so Aut(K)
is closed with respect to composition.

Associativity holds and identity elements is identity map

Since map is onto so inverse exists for every nonzero map in Aut(K)

Hence Aut(K) is a group under composition.

Now to show Aut(K/F) is a subgroup of Aut(K)

Let o and 7 € Aut(K/F) that is o, 7 fixes F so for a € F

oT(a) = 0(7(a)) = o(a) = a this is true for every a € F' so o7 € Aut(K/F). Now for any o € Aut(K/F)
o(a)=asoo(a)=asoo" € Aut(K/F) hence Aut(K/F) is a subgroup of Aut(K).



Proposition:Let K/F be field extension and let @ € K be an algebraic over F. Then for any o €
Aut(K/F)oa is a root of the minimal polynomial for a over F that is Aut(K/F') permutes the roots of
irreducible polynomial. Equivalently, any polynomial with coefficient in F' having « as a root also has oo as

a root.
Proof: Let K/F be a field extension and let a be an algebraic over F' then « satisfies a polynomial

"+ @p 12" 4y 2 + ... + 012 + ag, Where a; € F
so we have a® + a, 10" '+ a, 00" %+ ...+ aja+ay =0
Applying automorphism o we get .
o(@") +o@1"") +- - + o(@ma) + o(ap) = o (0) =0.
Using the fact that o is also a multiplicative homomorphism this becomes
©(@)" +0(ap-1)(©@@)" " + - - + a(a1)(o(@)) + o (ap) =0.
By assumption, o fixes all the elementsof F,soo(g;) = a;,i =0,1,...,n—1. Hence
()" + ap_1(ca) " + -+ -+ a(ca) +ag=0. .

But this says precisely that o« is a root of the same polynomial over F as a.



Examples

Let K = Q(W?2). If t € Aut(Q(v/2)) = Aut(Q(+/2)/Q), then t(+v/2) = £+/2
since these are the two roots of the minimal polynomial for /2. Since 7 fixes Q, this
determines T completely:

t(@+bvV2) =atbV2.
The map ~/2 — /2 is just the identity automorphism 1 of Q(+/2). The map
o:2 —/2is the isomorphism
Hence Aut(Q(v/2)) = Aut(Q(+v/2)/Q) = {1,0]}

Let K = Q(~/2). As before, if T € Aut(K/Q), then 7 is completely determined by
its action on +/2 since

T(a + b2 + c(-f’/i)z) ~a+brd2+ ot -2’/5)2.
Since 7 +/2 must be a root of x> — 2 and the other two roots of this equation are not

elements of K
only possibility is /2 = J2ie., T = 1. Hence Aut(Q(3/2) /@) = 1 is the trivial
£roup.



Proposition Let H < Aut(K) be a subgroup of the group of automorphisms of X .
Then the collection F of elements of K fixed by all the elements of H is a subfield of X .

Proof: Leth € H and leta, b € F. Then by definition h(a) = a, h(b) = b so that

h(axb) = h(a)Lh(b) = axb, h(ab) = h(a)h(b) = aband h@ ) = h(a) ' = a1,
so that F' is closed, hence a subfield of K.

Definition. If H is a subgroup of the group of automorphisms of K, the subfield of
K fixed by all the elements of H is called the fixed field of H.



Proposition:

1) If F; C F5 C K are two subfields of K then Aut(K/F5) < Aut(K/F))

2) If H) < Hy < Aut(K) are two subgroups of automorphisms with associated fixed fields F; and F,
respectively then F, C F)

Proof:

1) Suppose F, C F, we have to show that Aut(K/F,) < Aut(K/F;)

since both are groups so it is sufficient to show that Aut(K/F>) C Aut(K/F})

Let o € Aut(K/F,) so o is an isomorphism from K to itself and it fixes F; since F} C F; so ¢ also fixes F)
therefor ¢ € Aut(K/F) hence Aut(K/F;) < Aut(K/F)).

2) Suppose H; < H, since Hy = Set of all automorphism which fixes F; and Hy = Set of all automorphism
which fixes F5

To show F;, C F

Let a € F; and since a(a) = a for o € Hy and as H; < Hj then every element of H; is and element of Hj
that is § € Hy then d € H, since delta fixes every element of F also delta(a) = a for a € F; so a inF} hence
F, C .



Examples
(1) Suppose K = Q(+/2) as in Example 1 above. Then the fixed field of Aut(Q(v/2)) =
Aut(Q(v2)/Q) = {1, o} will be the set of elements of Q(/2 ) with
o(@a+bv2)=a+bV2
since everything is fixed by the identity automorphism. This is the equation
a—bv2=a+ bV2.
which is equivalent to b = 0, so the fixed field of Aut(Q(+/2)/Q) is just Q.

(2) Suppose nﬂw that K = Q(+/2) as in Example 2 above. In this base_Am(K )=1,s0
that every element of K is fixed, i.e., the fixed field of Aut(Q(v2)/Q) is Q(/2).



Proposition: Let E be a splitting field over F' of the polynomial f(z) € F[z]. Then |Aut(E/F)| < [E : F]
with equality if f(x) is separable over F.

Proof:Let F' be a field and E be the splitting field over F of f(zx) € F[z].Since we know that if there is an
isomorphism between F' and F’ then there exist an isomorphism between its splitting field that is F and E’.
we will show by mathematical induction on [E : F.

It [E:F|]=1then E = F so E' = F' then 0 = ¢ then number of extension is 1

If [E: F] > 1 then f(z) has at least one irreducible factor say p(x) of degree > 1 corresponding to this p'(x)
of f'(x). Let a be a root of p(z). If & be any extension of ¢ to E then o restricted to a subfield F(a) of E
is an isomorphism 7 of F(«) to some subfield F'(3) of E.

Since the isomorphism 7 completely determined by the action on « that is by tau(a) since « generates F(a)
over F' so Ta be a root say f3 of p'(z).

c: E = E
| |
t: Fl@) — F'(B

Ll

|
: F — F



Since to count the number of extensions we need to count number of this possible diagrams. The number
of extensions ¢ to an isomorphism 7 is equal to the number of distinct roots 3 of p’(x). Since the degree of
p(z) and p'(z) are both equal to [F(a) : F] so number of extensions of ¢ to 7 is atmost [F(a) : F]

So equality holds if p(z) has distinet roots.

Since E is a splitting field for f(z) over F'(a) and E' is a splitting field of f'(z) over F'(j3) and [E : F(a)] <
|E: F|.

by induction the number of extensions of tau to ¢ is < [E : F(a)].

Since [E : F| = [E : F(a)|[F(a) : F] so the number of extensions of ¢ to o is < [E : F| and equality holds if
f(x) has distinet roots.

Hence |Aut(E/F)| < [E : F]



Definition. Let K/F be a finite extension. Then K is said to be Galois over F and
K /F is a Galois extension if |Aut(K/F)| = [K : F). If K/F is Galois the group of
automorphisms Aut(K / F) is called the Galois group of K/ F, denoted Gal(K / F).

Corollary 6. If K is the splitting field over F of a separable polynomial f(x) then
K /F is Galois.

Proof:Since polynomial 1s separable so 1t has distinet roots so number Df automorphisms 1s equal to degree
of polynomial and since [K : F] = degf(z). Therefore |Aut(K/F)| = [K : F].




Definition. If f(x) is a separable polynomial over F, then the Galois group of f(x)
over F 1s the Galois group of the splitting field of f(x) over F.

Examples
(1) The extension Q(+/2)/Q is Galois with Galois group Gal(Q(+/2)/Q) = {1,0} =
7,/ 27, where o is the automorphism
o :Q(W2) = Q(v2)
a+bvV2— a— b2,

2) The extension Q(+/2)/Q is not Galois since its group of mltﬂmmphisms is only of
order 1.



(3)
To find Aut(Q(v2,v3)/Q)

Since it is the splitting field for the polynomial (2% — 2)(z? — 3)

So any automorphism can be determined by the action on generators v/2 and v/3
Since /2 maps to ++/2 and /3 maps to ++/3.

S50 we have four choice that is

VI N2 (Vi V2 (VI NZ  [VZe -2
Vi A3 {ﬁu-}ﬁ W JEGY S [V P

Define the automorphisms o and r by
V21> —/2 V215 /2

a . T.

Vi 43 Vs -3



Since any element in Q(v@, \/ﬁ} can be written as a + bv2 + ev/3 + dV/6
Soo:a+bv2+ev3+dve = a—byv2+ ev3 — dv6
And7:a+b0vV24+ ev/3+dV6 = a+bvV2 — ev/3 — dv6

Since 0(v/6) = 0(v2v3) = (¢(v2))(0(V3)) = —vV2V3 = —V/6

Similarly for 7



o

Since 02(1/2) = a(0V?2) = o(—/2) = /2
and 02(v/3) = o(0v3) = 0(V3) = V3

Hence 02 = I Similarly 72 =1

oT(V2) = 0(1V2) = 0(V2) = —V2
oT(V3) =0a(rV3) = o(=V3) = -3

Gal(Q(v2.V3)/Q) = {1,0,7,07)

This Galois group 1s iS{]H;lDIpiliC to Klem 4-group. Now to find Subgroups of this Galois group.

Since Sul}grc:ups are {11, {1 gh {17} {1, g}}



To find fixed field w.r.t. each é.uhgmup |

Since identity fixed every element of the field Q(v/2,v/3)
so fixed field w.r.t. {1} is Q(v/2,v/3)
we have to find all elements in Q(\/ﬁ, \/5) which fix by ¢ is o(a+byv/2+¢y/3+ d\/ﬁ) = a+bV/2+ev3+dv6
0-by2+ey3-dvb=a+by2+cy/3+dV6
Compare coefficients we get a =a,-b=b,c=¢,d = —d
So we get b=0,d =0 So fixed field is Q(v/3)
So fixed field w.r.t. {1,0} is Q(v/3)



we have to find all elements in Q(ﬂ, \/ﬁ) which fix by 7is 7(a + b2 +ev/3+ d\/gj = a+b/2+ /3 +dV6
a+b/2-c/3-dvb=a+by2+ey3+dV6

Compare coefficients we get a =a,b=b,-c=c,d =—-d

So we get ¢=0,d = 0 So fixed field is Q(v/2)

So fixed field w.r.t. {1,7} is Q(v2)

we have to find all elements in Q(v/2, v/3) which fix by o7 is m(a—l—b\@ +ev3+ d\/g) =a+by/2+ey/3+dvV6
a—b02-eV3+dv6=a+by2+eV3+dV6

Compare coefficients we get a =a,—-b=b,—c=¢c,d=1d

So we get b=0,c= 0 So fixed field is Q(1/6)

So fixed field w.r.t. {1,07} is Q(V6)

And fixed field w.r.t. {1,0,7,07}is Q



subgroup

fixed field

{1}
{1,0}
(1,07}
{1, 7}

{1,0,7,0t}

Q(w2,+/3)
Q3)
QW6)
QW?2)

Q



4)
 The splitting field of x> — 2 over Q is Galois of degree 6. The roots of this equation

—144/-3 .
are /2, p/2, p2 /2 where p = &3 = +2 is a primitive cube root of unity.

Hence the splitting field can be written Q(+/2, pv/2).

To determine the Galois group we use a more convenient set of generators, namely
/2 and p. Then any automorphism o maps +/2 to one of /2, p +/2, p* /2 and maps
»  —1—4/-3
ptoporp” = 5
P3(x) = x2 + x + 1. Since o is completely determined by its action on these two
elements this gives only 6 possibilities and so each of these possibilities is actually an
automorphism. To give these automorphisms explicitly, let o and t be the automor-
phisms defined by

since these are the roots of the cyclotomic polynomial



{ﬁl—‘rﬂ\/_ J_H"\/_

pep pr>pt=—1-p
basis {1, ¥/2, (¥2)2, p, 0¥2, p(V/2)2).

o(p¥2) = (p)(pV2) = p* V2= (-1 - p)¥/2
=_—J2-p¥2
and we may similarly determine the action of o on the other basis elements. This
gives
o: a+bV2+cVd+dp+epV2+ fpVd +—
a—eV2+(f —OVa+dp+ (b —e)pv2—cp/4.



The other elements of the Galois group are

. V2 V2 V25 p?V2
| e p>p
V2 p*2 2| V2> pa2
TaO : TT
ﬂl-?*ﬂ pl—:-p
Computing ot we have
25 V25 p2
ot
p > p? > p?
ie.,
‘\/’_I—}p'\/_
ot :



so that o7 = ro?. Similarly one computes that 63 = 72 = 1.
Gal(Q(/2, 63)/Q) ={1,0,0% 1,01,70}

Gal(Q(¥2.£5)/Q) = {0, 7) = 5

(3) the field Q( i@_ ) is not Galois over (Q since any ‘aEmmo_r‘pltﬁsm is

determined by where it sends /2 and of the four possibilities {=4/2, i +/2}, only
two are elements of the field (the two real roots).

we have
4

Y

Q c QW2 c ¢ Q2)

e "‘—I—l—_\,-_—"'
2 2




where Q(+/2)/Q and Q(~/2)/Q(+/2) are both Galois extensions
This shows that a Galois extension of a Galois extension
is not nar:cssarily Galois.



Let ¢ be the map t : C — C defined by t(a + bi) = @ — bi (complex conjugation). Prove
that t 18 an automorphism of C.

Solution: Let 7: C' — C defined by T(a + bi) =a — bi
To show 7 is an automorphism
For one-one:
T(a+bi)=7(c+di)=a—-bi=c—di=a=cb=d
soa+bi=c+di
T 1S one one map
since for every element a + bi € C' we can find a — bi € C such that 7(a —bi) = a + bi
So 7 is onto. Now 7[(a +bi)+ (c+di)]=T[(a+¢c)+ (b+d)i]=(a+c)— (b+d)i = (a —bi) + (¢ — di) =
T(a + bi) + 7(c+ di)
T[(a+ bi)(c+ di)] = T[(ac — bd) + (ad + be)i] = (ac —bd) — (ad + be)i = [(a — bi)(c — di)] = T(a + bi)T(c+ di)
S0 7 1s homomorphism.
Hence 7 is an automorphism.



Determine the fixed field of complex conjugation on C.

To determine the fixed field for the complex conjugation that is for 7
to find a+ bi € C such that (a4 bi)=a+bi=a—-bi=a+bi=>a=a,b=-b
= b = 0 so all elements in C such that b = 0 means fixed field is R that is set of real numbers.



Prove that Q(+/2) and Q(+/3 ) are not isomorphic.

To prove Q(v/2) and Q(v/3) are not isomorphic.

Suppose there is an isomorphism between this two field say ¢ : Q(v/2) — Q(v/3) defined by é(a + by/2 =
a+by/3)

Since ¢[(a 4 bv2)(c +dv?2)] = ¢(a + bv2)d(a + by/?2)

= ¢(ac+2bd) + (ad + be)v2] = (a + bV3)(c + dv/3)

= (ac+ 2bd) + (ad + be)V/3 = (ac+ 3bd) + (ad + be)v/3

Compairing the coefficient we get ac + 2bd = ac + 3bd

= 2bd =3bd = 2=3

Which is not possible hence Q(v/2) and Q(y/3) are not isomorphic.



Determine the automorphisms of the extension Q(+/2 )/Q(+/2 ) explicitly.

To determine the automorphisms of Q(2%) over Q(v/2)

Since the polynomial which satisfied by 27 over Q(\/ﬁ} is 22 — /2

so the degree of extension [Q{?{fj : Q(v2) = 2]

So we have 2 antomorphism since the roots of the minimal polynomial is +91
S0 possible mappings are o

and 21 — —21

So Gal(Q(2%) : Q(v2)) = {10}



THE FUNDAMENTAL THEOREM OF GALOIS THEORY

Definition. A character® x of a group G with values in a field L is a homomorphism
from G to the multiplicative group of L:

x:G— L*

i.e., x(g1g2) = x(g1)x(g2) for all g4, g2 € G and x(g) is a nonzero element of L for
allg € G.

Definition. The characters i, x2...., X» of G are said to be linearly independent

over L if they are linearly independent as functions on G, i.e., if there is no nontrivial
relation

axi1ta)y+---+a,x, =0 {(a1,...,a, € L notall )

as a function on G (thatis, a1 x1(g) + axx2(g) + - - - + a, xx(g) = 0 for all g € G).



Theorem

(Linear Independence of Characters) If xy, xa, ..., x, are distinct char-
acters of G with values in L then they are linearly independent over L.
Proof: Suppose the characters were linearly dependent. Among all the linear
dependence relations (2) above, choose one with the minimal number m of nonzero

coefficients g;. We may suppose (by renumbering, if necessary) that the m nonzero
coefficients are ay, as, .. ., 4y:

ay Yy +dg)2+ -+ apxm =0.

Then for any g € G we have
a1x1(g) + a2 )2(g) + - - - + amxm(g) = 0.

Let go be an element with x1(go) # xm(2o) (Which exists, since X3 # Xm)-



 for every element of G, in particular we have
a1X1(808) + a2x2(808) + - - - + Am Xm(808) =0
ie.,
a1 X1(8o)x1(8) + a2 x2(go)x2(g) + - - - + apm Xm (80} Xm (8) = 0. (
Multiplying equation (3) by x,»(go) and subtracting from equation (4) we obtain

[Xm(80) — x1(80)arx1(8) + [Xm(80) — x2(80)lazx2(8) + - - -
+ [Xm(80) — Xm-1(80)am-1Xm-1(g) =0,

which holds for all g € G. But the first coefficient is nonzero and this is a relation with
fewer nonzero coefficients, a contradiction.



Corollary

If 01, 09, ..., 0, are distinct embeddings of a field K into a field L, then

they are linearly independent as functions on K. In particular distinct automorphisms
of a field K are linearly independent as functions on K.



Corollary  Let K/F be any finite extension. Then
Aut(K/F)| < [K : F]

with equality if and only if F is the fixed field of Aut(K /F). Put another way, K /F is
Galois if and only if F is the fixed field of Aut(K /F).

Proof: Let F; be the fixed field of Aut(K /F), so that
FCF CK.

[K : F;] = [Aut(K/F)|. Hence [K : F] = [Au(K/F)|[F : F],



Corollary
Let G be a finite subgroup of automorphisms of a field K and let F

be the fixed field. Then every autﬂnzorpﬂism of K ﬁiing F is contained in G, 1.e.,
Aut(K/F) = G, so that K/ F is Galois, with Galois group G.

Proof: By definition F is fixed by all the elements of G so we have G < Aut(K /F)
Hence |G| < |Aut(K /F)|.
/|G| = [K : F] and by the previous corollary |Aut(K /F)| < [K : F]. This gives
[K : F] = |G| < |Aw(K/F)| < [K : F]



Corollary

If G1 # G are distinct finite subgroups of automorphisms of a field K
then their fixed fields are also distinct.

Proof: Suppose F is the fixed field of G, and F; is the fixed ficld of G,. If F} = F;
then by definition F; is fixed by G,. By the previous corollary any automorphism fixing
Fj is contained in Gy, hence G, < Gj. Sll'l].l.li':ll’l‘_'yr G1 < G7 and so G = Gs.



Definition. Let K/F be a Galois extension. If &« € K the elements oo for ¢ in
Gal(K /F) are called the conjugates (or Galois conjugates) of a over F. If E is a
subfield of K containing F, the field o (E) is called the conjugate field of E over F.

Finally, notice that we now have 4 characterizations of Galois extensions K /F':
(1) splitting fields of separable polynomials over F
(2) fields where F is precisely the set of elements fixed by Aut(K /F) (in general, the
fixed field may be larger than F)
(3) fields with [K : F] = |Aut(K /F)| (the original definition)
(4) finite, normal and separable extensions.



Theorem (Fundamental Theorem of Galois Theory)

|Let K / F be a Galois extension
and set G = Gal(K /F). Then there is a bijection

K 1
subfields E | subgroups H |
of K E <« of G H
containing F | |
F G
given by the correspondences
E the elements of G
fixing £
the fixed field H
of H

which are inverse to each other.



Under this correspondence,

(1) (inclusionreversing) If E;, E> correspond to Hi, Hy,respectively, then Ey C E;
ifand only if H, < H,

(2) [K : E] = |[H|and [E : F]= |G : H|, the index of H in G:

K
} o 1H|

I
E
|} 1G: H]
F
(3) K/E is always Galois, with Galois group Gal(K /E) = H:
K
| H
E



(4) E is Galois over F if and only if H is a normal subgroup in G. If this is the
case, then the Galois group is isomorphic to the quotient group

Gal(E/F) = G/H.

More generally, even if H is not necessarily normal in G, the isomorphisms of
E (into a fixed algebraic closure of F containing K) which fix F are in one to
one correspondence with the cosets {oc H} of H in G.

o) fE;, E; Eurrespnnd to Hy, Hz, re;specfively, then the intersection £, N E;
corresponds to the group ( H;, H; ) generated by H; and H; and the composite
field E, E, corresponds to the intersection H; NH,. Hence the lattice of subfields

of K containing F and the lattice of subgroups of G are “dual” (the lattice
diagram for one is the lattice diagram for the other turned upside down).



Proof: Since for any subgroup H of G we have a unique fixed feld as for distinct subgroups we have
distinct fixed fields. so there is an injection from right to left that is from subgroups to subfields

Now to show there is correspondence between subfields and subgroups.

As K /F is Galois so we can say that K is splitting field of a separable polynomial f(z) € Flz]. Let E be a
subfield of K containing F' so f(z) € E[z] then K is a splitting field of f(x) over E so the extension K/E
is Galois so E is a fixed field of Aut(K/E) < G this implies that every subfield of K containing F* arises as
the fixed field for some subgroup of

Hence there is bijection between subgroups and subfields

To prove 1) if E{ is a fixed field of H 1 :-J,n::l F5 is a fixed field of Hs. Suppose Ey C E5 to show Ho < Hy As
both are groups so we need to show that Ho € Hi Let 0 € Hs since o fixes every element of E5 so it fixes
Ey so ¢ € Hq therefore Hy < Hy Now suppose Hy < H;. Let a € Ey and since o(a) = a for all ¢ € Hy

since Ha < Hy so o(a) = a for all o € Ha

Since Es is a fixed field of Hs so a € E5
Hence E3 C E;.



To prove 2) Let E be a fixed field with respect to a subgroup H since [K : E| = |H| and as K/F is
Galois with Galois group G so [K : F] = |G]
since [K : F|=[K : E|[E : F]= |G| = |H|[E: F]
:>[E:F]:%:|G:H|:indexnf1—[iuf3.
To prove 4) First we will show there is one to one correspondence between embedding of E' and automor-
phisms of K
Let 0 € Gal(K/F') and consider o|g with the subfield o(E) of K. Conversely suppose 7: E — 7(E) be any
embedding of E' which fixes F. since if o € E has m,(z) be a minimal polynomial for a over F then 7(a)
is also root of m, ()
Since K contains all the roots of m,(z) so 7(a) € K hence 7(E) C K
As K is a splitting field of a polynomial f(z) € F since 7(f(z)) = f(z) as 7 fixes every element of F.
hence K is a splitting field for 7(f(x)) also.
S0 we can extend 7 to ¢ as
So every embedding of E is of the form o|g for some o € G.
Now consider two automorphisms ,0’ € G restrict to the same embedding 7 of E fixing F if and only if
o~ 1o’ is the identity map (Since 0 1o’ = I = g0~ o' =0l = ¢’ = 0)
Since H is a subgroup so H contains identity element so I € H that iso™'0’ € H = o' € cH
So distinet embeddings of G are in bijection with cosets of H in G
Since number of cosets of H in G is [G: H| and [G: H| = [E : F]




so |[Emb(E/F)|=[G: H|=|E: F]

The extension E/F is Galois if and only if |Aut(E/F)| = [E : F]

This is possible if and only if every embedding is automorphism of E if and only if o(E) = E,Vo € G
Since a(F) is a subfield of K so there is a subgroup of G which fixes this field.

Since o(a) € o(E) then (cho~')(ca) = (ch)(c~'0)(a) = (ch)(a) = o(ha) = ca,Yh € H ,Since H fixes
elements of E

So cHo ™! fixes o(E)

Since E and o(FE) are isomorphic so [K : E] = [K : o(E)] but [K : E] = |H|

and [K : 0(E)| = |oHo | so |H| = |cHo ™|

Since we have to show that cHo ' = H

Since two subfields are equal if and only if there fixed fields are equal that is ¢(E) = E if and only if c Ho !
that is £ is Galois over F' if and only if H is normal in G.

Since automorphisms are one to one corresponding to cosets of H in G

as H is normal in G so automorphisms are one to one corresponds to elements in G/H
That is Gal(E/F)=G/H



To prove 5) Let Hy and H, are subgroups of G fixing the subfield F, and E; respectively.

Since any element in Hy N H; fixes both E; as well as E; so it fixes every element of composite field EyFE
and conversely if ¢ fixes every elements of E E» so ¢ fixes Ey so ¢ € Hy and similarly o fixes every element
of Fosoc e Hysooe HyNH;



FINITE FIELDS

Finite Fields Since a finite field has characteristic p so it 1s a fAinite dimensional vector space that is if
[F : F,] = n then F has precisely p" elements. Since then F is isomorphic to a splitting field of a polynomial
rP" — x so it is unique up to isomorphism.
Notation: For a finite field of order p" is Fin

Proposition: Any finite field is isomorphic to Fyn for some prime p and for some integer n > 1.The
field F» is the splitting field over F,, of the polynomial 2P" — g, with the cyclic Galois group of order n
generated by Frobenious antomorphism a,. The subfield of F» are all Galois over F}, and are in one to one
correspondence with the divisors d of n. they are the fields F 4, the fixed field of Jﬁ

Proof: Since by definition, finite field has characteristic p so it is finite dimensional vector space over I,
that is [F : Fpl = n 80 |[F| = p" so any finite field is isomorphic to Fpe. Slnce Fyn is a splitting field of the
polynomial zf —x
Consider Frobenins map oy : Fyr — Fyn defined by op(a) = a”

Since Frohenius map is isomorphism so here ¢, is antomorphism. Since [F» : F| = n and if we find
out the powers of o, the we have g = 1 as a” =1 sa we have n elements in the Galois group that is

Gal(Fyr [Fy) ={op.0 oy —I}

A



so this is a cyclic group generated by o,

Gal(Fpn [Fp) =< 0, > 2y
Since rever}fr suhgmlrlp of a cyelic group 1s normal. and subgroups are corresponding to the divisors of n n
Zy s0 so for every divisor d of n there is precisely one subfield of Fy» of order d that is F,« since order of
subgroup is d so degree of extension w.r.t. this subgroup is also d
As every subgroup is normal so every subfield is Galois



GDI‘DHE-H‘}F: The irreducible pDI}'l‘lD!l:liﬂ} r* 4+ 1Z[z] is reducible modulo every prime p

Proof: Consider the polynomial z* + 1 over F}, for the prime p.
Forp=2, 2*4+ 1= (z +1)* so the polynomial is reducible.

Assume that p is odd. Then p® — 1 is divisible by 8

Since p = 1,3, 5, Tmod(8) then p* = 1mod8 that is 8|p® — 1

So 2% — 1[.1‘-"7'2_1 — 1. Since 2% —1 = (2* —1)(z! 4+ 1)

So z% + 1|2® — lt:r'*':’g_l - I|.TpE —zsoxl+ 1|:.*:3':'E — T

Since the roots of the polynomial 2P° _ ¢ are in the field F 72

So extension generated by any root of 2* + 1 is atmost of degree 2 over F|,

which means x* + 1 cannot be irreducible over



Proposition

The polynomial x?" — x is precisely the pmduct of all the distinct
irreducible polynonnals in ]FD [x] of degree d where d runs thmugh all divisors of n.

Proof: Smee Fy« 1s a splitting field of a polynomial ¥ -1

Let p(z) be any irreducible polynomial of degree d , dividing P -1

If o is a root of p(z) then the extension F,(a) is a subfield of Fyn of degree d so d is a divisor of n in this
way we can find 27" — z is the product of all distinct irreducible polynomial.



Proposition Let K; and K; be Galois extensions of a field F. Then

(1) The intersection K; N K3 1s Galois over F.
(2) The composite K; K7 is Galois over F. The Galois group is isomorphic to the
subgroup
H ={(o, 1) | olg,nk, = Tlxink, )
of the direct product Gal(K,/F) x Gal(K,/F) consisting of elements whose
restrictions to the intersection K; N K, are equal.

KK,

g
~

KNk,

F



Proof: 1) Suppose p(z) is an irreducible polynomial in F[z| with a root a € Ky N K.

So a € K since Ky /F is Galois so every root of p(x) is in Ky similarly a € K9 since K3 /F is Galois so
every root of p(x) is in Ko
hence every root of p(x) is in K7 N Ks.

So K N K5 is Galois over F.

2) Suppose K is the splitting field of a separable polynomial f;(z) and K5 is the splitting field of a separable
polynomial fs(zx) then composite field is the splitting field of the squarefree part of the polynomial f;(z)fa(z)
(separable polynomial). So K K5 is Galois over F.

Consider the map ¢ : Gal(K K5 /F) = Gal(K1/F) x Gal(K,/F)

¢(o) = (olk,, 0|k,

Homomorphism: ¢(o7) = (67|k,.07|K,)

oloT) = UIH1T|H;:J|H’E’ |K2)
o(o7) = (ol 0]k, ) (7], TIK) —fﬁ{ﬂ}ti*(ﬂ
Injective: ker(d) = {o € Gal(K1K5)/F |rI:+ =13

ker(@) = {a € Gal(K1Ka2)/F|(alk,,0|K,) 1 (1.1)}

So Kernel of & consists of all mapping ‘ﬁ-hlch are identity on K; as well as K5 so identity on ;K5
hence Ker(¢) = {1} So ¢ is injective.

Now let H be a subgroup of Gal(K/F) x Gal(K3/F) which contains the images of ¢

Since (o|k, )|k,nK, = o|KinK, = (0K, )| KNk,

we want to caleulate order of H since H contains the images of ¢ that is all & such that (o|k,.0x.)
So we want to find number of tuples like (o, 7) such that restriction on K; N K5 are equal



since for every ¢ € Gal{K1/F) we have the elements in Gal(Ko/K{ M K5) which satisfies above condition.
So |H| = |Gal(K1/F)||Gal(K2 /K1 N Ka)|

Since [Kg : .F] [I‘s.g I‘s.l ﬁKgl[K] Iﬁt.{{g F]

so |Gal(Kq/F)| = [Gaf{h’afﬁ} ﬁfi’g )||Gal(K1/F)|

Hence |H| = |Gal(K1/F )| gaiprabrr |

AR/ F)
Since [K1 K3 /F| = [f;aljr:]fg:;;]]

So |H| = [K1 K2/ F]
So images of ¢ is H which is Gal(K1Ky/F)




Corollary

Let K; and K; be Galois extensions of a field F with K; N K; = F.

Then
Gal(K, K,/ F) = Gal(K, / F) x Gal(K3/ F).

Conversely, if K is Galois over F and G = Gal(K /F) = G X G is the direct product
of two subgroups G, and G2, then K is the composite of two Galois extensions K; and
KgﬂfFWiﬂ'l Kan2= F.

Proof: The first part follows immediately from the proposition. For the second,
let K; be the fixed field of G; C G and let K; be the fixed field of G, C G. Then
K; N K; is the field corresponding to the subgroup G,G2, which is all of G in this
case, so K1 N K, = F. The composite K; K3 is the field corresponding to the subgroup
G N Gy, which is the identity here, so K} K; = K, completing the proof.



Corollary

Let E/F be any finite separable extension. Then E is contained in an
extension K which is Galois over F and is minimal in the sense that in a fixed algebraic
closure of K any other Galois extension of F containing £ contains K.

Proof: There exists a Galois extension of F containing E, for example the com-
posite of the splitting fields of the minimal polynomials for a basis for E over F (which
are all separable since E 1s separable over F). Then the intersection of all the Galois
extensions of F containing E is the field K.



Definition. The Galois extension K of F containing E in the previous corollary 1s
called the Galois closure of E over F.

Proposition

Let K /F be afinite extension. Then K = F(6) if and only if there
exist only finitely many subfields of K containing F.

Proof: Suppose first that K = F(6) 1s simple. Let E be a subfield of K containing
F: F CE CK. Let f(x) € F[x] be the minimal polynomial for 6 over F and let
g(x) € E[x] be the minimal polynomial for 6 over E. Then g(x) divides f(x) in E[x].
Let E’ be the field generated over F by the coefficients of g(x). Then E' C E and
clearly the minimal polynomial for @ over E’ is still g(x). But then

[K:E]l=degg(x)=[K:E']



implies that E = E’. It follows that the subfields of K containing F are the subfields
generated by the coefficients of the monic factors of f(x), hence there are finitely many
such subfilds.

Suppose conversely that there are finitely many subfields of K containing F. If F
is a finite field, then we have already seen that K is a simple extension (Proposition 17).
Hence we may suppose F is infinite. It clearly suffices to show that F (o, ) is generated
by a single element since K 1s finitely generated over F. Consider the subfields

Fla+cp), <ceF.

Then since there are infinitely many choices for ¢ € F and only finitely many such
subfields, there exist ¢, ¢’ in F, ¢ # ', with

F(a+cB) = F(a +¢'B).



Then a + ¢ and & + ¢/ B both lie in F(a + ¢f), and taking their difference shows that
(¢c— ) € F(a+cB)Hence B € F(a+cB) and then alsoa € F(a + cB). Therefore
F(a, B) € F(u + cp) and since the reverse inclusion is obvious, we have

F(a, p) = F(a +cp),
completing the proof.



Theorem

(The Primitive Element Theorem) If K/ F is finite and separable, then
K/ F is simple. In particular, any finite extension of fields of characteristic 0 is simple.

Proof: Let L be the Galois closure of K over ¥. Then any subfield of K containing
F corresponds to a subgroup of the Galois group Gal(L/ F) by the Fundamental Theo-
rem. Since there are only finitely many such subgroups, the previous proposition shows
that K/ F is simple. The last statement follows since any finite extension of fields in
characteristic O is separable.



CYCLOTOMIC EXTENSIONS AND ABELIAN EXTENSIONS
OVER Q

since cyclotomic field Q(¢,) of n™ roots of unity is

a Galois extension of Q of degree @(n) where ¢ denotes the Euler g-function. Any
automorphism of this field is uniquely determined by its action on the primitive #™ root

of unity Z,

Consider two groups Z,, and p,,. If we define a function between this two groups say ¢ : Z, — p, by
groups Zp fn group n 7 Hn
d(a) = (&,)* where £, is pr11111t1xe nth root of unity then ¢ 1s an isomorphism.

Since if ¢(a) = ¢(b) = (£)* = (£)? = a = b then ¢ is one one function. since both are finite group so ¢ is
onto. Now ¢(a + b) = (£)*T? = (€)2(£€)" so it is homomorphism. Hence ¢ is an isomorphism.



Since there are precisely ¢(n)
such integers a it follows that in fact each of these maps is indeed an automorphism of

Q).

Theorem
The Galois group of the cyclotomic field Q(¢,) of n™ roots of unity is

isomorphic to the multiplicative group (Z/nZ)™. The isomorphism is given explicitly
by the map

Z/nZ)* = Gal@Q()/Q)
a (mod n) — o,

where o, is the automorphism defined by
0q(5n) = ¢,



Since Gg isan automorphism

Homomorphism

©a0p) (&) = 0a(&D) = 2)°

— gab
-

which shows that g,0, = 0.

we know that every Galois automorphism is of the form o, for a uniquely defined a
(mod n). Hence the map is an isomorphism.



Corollary

Letn = pf pj pk be the de:compnsmnn of the posmve mteger n

into distinct prime powers "Then the cyclntnnnc fields @({pn:) i =1, 2 LK intersect
only in the field @ and their composite is the cyclotomic ﬁeld Q(z,). We have

Proof

Supposc thatn = p{' p5’---p;* is the decomposition of n into distinct prime powers.

Since £/ P is a primitive p}'~th root of unity, the field K; = Q(,a) is a subfield
of Q(z,). Similarly, each of the fields K; = Q({,«),i = 1,2,...,k is a subfield of
Q(¢&,). The composite of the fields contains the p[roduct Eprdpa -+ - Loy which is a
primitive n® root of unity, hence the composite field is Q(¢,). Since the extension

degrees [K; : Q] equal (pi*), i = 1,2,...,k and ¢(n) = ¢(p{)e(p7) - - - (i),
the degree of the composite of the fields K; is precisely the product nf the degrees of

the K:.



Since the intersection of all these fields are Q

Gal(Q(£,)/Q) = Gal(Q(4,21)/Q) x Gal(Q(¢,22)/Q) x - - - x Gal(Q(&,)/Q)

By above theorem
(Z/nZy* = (Z]pQ'Z)* x (ZIPYZL)* x --- x (Z]piZ)™.

Definition. The extension K/F is called an abelian extension if K/F is Galois and
Gal(K/F) is an abelian group.



GALOIS GROUPS OF POLYNOMIALS

If K is a Galois extension of F then K is the splitting field for some separable poly-
nomial f(x) over F. Any automorphism o € Gal(X /F) maps a root of an irreducible
factor of f(x) to another root of the irreducible factor and o is uniquely determined by
its action on these roots (since they generate K over F). If we fix a labelling of the roots
ay, ..., 0, of f(x) we see that any o € Gal(K/F) defines a unique permutation of
ay, ..., 0y, hence defines a unique permutation of the subscripts {1, 2, ..., n} (which
depends on the fixed labelling of the roots). This gives an injection

Gal(K /F) < §,,



(1) Consider the biquadratic extension Q(+/2 , /3 ) over Q, which is the splitting field of
(x%2 —2)(x% —3). Label the roots as &1 = +/2, a2 = —/2, 23 = +/3 and oy = —+/3.
The elements of the Galois group are {1, o, t, ot} where o maps v/2 to —/2 and
fixes +/3 and t fixes +/2 and maps +/3 to —+/3. As permutations of the roots for this

labelling we see that o interchanges the first two and fixes the second two and t fixes
the first two and interchanges the second two, i.e.,

o=(12 and 1=(39)

as elements of S4. Similarly, or by taking the product of these two elements, we see

that
ot = (12)(34) € S4.

Hence

Gal(Q(v2,+3)/Q) = {1,(12), 34), 12)(3%) C S4



(2) The Galois group of x3 — 2 acts as permutations on the three roots v/2, p+/2 and
p* /2 where p is a primitive 3™ root of unity. With this ordering, the generators o
and t we have defined earlier give the permutations

o=(23) 1t=(23)
which gives

(1,0,0%, 1,70, 0%} = {1, (123), (132), (23), (13), (12)) = S;,
in this case the full symmetric group on 3 letters.



Definition. Letxy, x;, ..., x, beindeterminates. The elementary symmetric functions
51, 52, . - . , 8, are defined by

s1=x1+x2+---+2x,
52 = X1X2 +Xx1x3 + - -+ x2ox3 + Xoxg + - - -+ Xp—1 X

Sp = X1X2 " Xp



Definition. The general polynomial of degree n is the polynomial

(x —xp))(x —x2) -+« (x — xp)

whose roots are the indeterminates xj, xo, . .., X,,.

Since

x—x)(x —x) - (x —x,) = x" — spx" P F X2 oo+ (=15,

(1) The expression (x;3 — x2)? is symmetric in x1, x2. We have

(1 — x2)% = (1 +x2)? —dx1x0 = Sf — 452,

a polynomial in the elementary symmetric functions.



(2) The polynomial x? + xZ + x2 is symmetric in xy, x2, X3, and in this case we have

X2+ x5 + 2% = (0 + x2 + x3)7 — 20002 + x1x3 + x203)
= 312 — 257.

(3) The polynomial x?xZ + x#x2 + x2x2 is symmetric. Since
(x1x2 + x1x3 + xgxg)z = x:lzx% + xf.rjz + x%x% + 2(1%12173 + x%xlxg <+ x%xlxz)
= fx% +xixd + x%:t% + 2x1x2x3 (1 + x2 + x3)

we have
x%x% +xfx§ + x%x% = .s*% — 25153.



Definition. Define the discriminant D of x;, x3, . .., x,, by the formula
D= H(JC,* - .Ij)z_

i<j

If the roots of the polynomial f(x) = x" + @p—1x""' + - - - + a1x + ap are
o1, 02, ..., oy, then the discriminant of f(x) is?

D =] [ — o).

i<j
Note:
The Galois group of f(x) € F[x] is a subgroup of A, if and only if
the discriminant D € F is the square of an element of F.



Polynomials of Degree 2

Note that this restates results we obtamed previously by explicitly solving for the
roots: if the polynomial is reducible (namely D is a square in F), then the Galois group
is trivial (the splitting field is just F), while if the polynomial is irreducible the Galois
group is isomorphic to Z /27 since the splitting field is the quadratic extension F(+/D).

Consider the polynomial x2 + ax + b with roots o, 8.

D = 5% — 45y = (—a)* — 4(b) = a* — 4b,



Polynomials of degree 3

Suppose the cubic polynomial is
f(x) =x*+ax* +bx +c.

If we make the substitution x = y — a/3 the polynomial becomes
g =y +py+q

where | |
p=30b- @) g= E(zﬁ —9ab + 27¢).

= —4‘;:73 — 27q2.

D = a?b? — ab3 — 4a3c — 27¢% + 18abe



(Galois Group of a Cubic)

a. If the cubic polynomial f(x) is reducible, then it splits either into three linear
factors or into a linear factor and an irreducible quadratic. In the first case the Galois
group is trivial and in the second case the Galois group is of order 2.

b. If the cubic polynomial f(x) is irreducible then a root of f(x) generates an
extension of degree 3 over F, so the degree of the splitting field over F 1is divisible by
3. Since the Galois group is a subgroup of S3, there are only two possibilities, namely

Ajz or §3. The Galois group is Ajz (i.e., cyclic of order 3) if and only if the discriminant

D is asquare.



Polynomials of Degree 4

Let the quartic polynomial be
f)=x*4+ax* +bx* +cex+d
which under the substitution x = y — a/4 becomes the quartic
M=y +p’+agy+r
with
1 2
p= g(—?rﬂ + 8b)
1
q = §(ﬂ — 4ab + 8c)

r= Zsiﬁ(-:m" + 16a’b — 64ac + 256d).



D = 16p*r — 4p’q* — 128p*r* + 144 pg*r — 27" + 256¢°

D = — 128b*d?* — 4a’c? + 16b%d — 4b3c¢? — 27a*d?* + 18abc?
+ 144a%bd? — 192acd? + a*b*c* — 4a*b3d — 64 c2d
+ 144bctd + 2564 — 27c¢* — 80ab*cd + 18abcd.
(Galois group of a quartic)
If D is not a square, then G = 4.

D is a square, then G = Aj.



