Chapter 2: Cyclic Groups

Definition: Cyclic group
A group G is called cyclic if there is an element a € G such that G = {a"|n € Z}
Notation:A G is a cyclic group generated by a is denoted by G =< a >.
Example: Z=<1>=<-1>,7,=<1>=<n-1>,Zg=<1,3,5,7>

Theorem: Let G be a group and a € G. If a has infinite order, then a' = o’ if and only if i = j. If
a has finite order say n, then < a >= {e,a,a?,...,a" '} and a = o if and only if n divides i — j.

Proof:If a has infinite order, then there does not exists a positive integer n such that a™ = e. As
ad=a"=>ad"T=es0i—j=0=1i=j.

Now suppose |a| = n to prove < a >= {e,a,a?,...,a" "1}

since a,a?,...,a" L a" =e €< a >

now suppose a” is an element of G.

Apply division algorithm to k& and n, there exists an integer ¢ and r such that k =gn+r with 0 <r <n
ak — aqn-l—r = qi"q" = (an)qar =elq" = q"

so a¥ €< a > therefore < a >= {e,a,d?,...,a" "'}

now suppose a’ = a’ to prove that n divides i — j.

Asa’=a’ so a7 =

Apply division algorithm to ¢ — j and k there exists ¢ and r such that i — j=gn+r with 0 <r <n

then a'=7 = @9"*" = (a")%a" = e%a” = ea” = a"

Since a7 = e = a” = e but n is the least positive integer such that a” = e

sor=0=ndivides i — j

Conversely suppose n divides ¢ — j so ¢ — j = ng,

then a'=7 = a"? = (a")? = e = e so thet a’ = a’.

Corollary: For any element a € G, |a| =< a >
Proof: Since if |a| = n then < a >= {e,a,a?,...,a" "1}
So|<a>|=n=|q

Corollary: Let G be a group and let a € G such that |a| = n. If a* = e, then n divides k.

Proof: Since a* = e = a” so a* = a° so n divides k — 0 that is k.

Theorem:Let a be an element of order n in a group and let k& be a positive integer.
Then < a* >=< a9°4"k) > and |a*| = n/ged(n, k)

Proof: Let G be a group and a € G such that |a| =n let d = ged(n, k) and let k = dr
Since a* = (a?)" s0 < a¥ >C< a? >

as d = ged(n, k) so there exists s and ¢ such that d = ns + kt

So ad — ans+kt — ansakt — (an)s(ak)t — e(ak)t c< ak >

<at>c<ad" >

Therefore < a* >=< @9k >

Since |a| = n, first to prove that |a?| = n/d for any divisor d of n

Consider (a))"/?=a" =¢

So |a?| < n/d Suppose i be a positive integer less than n/d such that (a?)’ = e

but as i < n/d = di < n = a¥ = e which is not posssible as n is the order of a so n should be smallest.
Therefore |a?| = n/d for any divisor d of n.

Since < aF >=< a9k >= | < a¥ > | = | < a9 k) > | = |q9°dR)| = /ged(n, k)

Corollary: In a finite cyclic group, the order of an element divides the order of the group.
Proof: Let G be a finite cyclic group such that G =< a > and |G| =n

Since any element in G is of the form a* so |a*| = n/gcd(n, k)

Since ged(n, k) divides n so n/ged(n, k) is a divisor of n

S o order of any element in G divides the order of G.



Corollary: Let |a| =n. Then < a' >=< a/ > if and only if ged(n,i) = ged(n, j)

and |a*| = |a’| if and only if ged(n,i) = ged(n, j)

Proof: Suppose |a| =n and < ' >=<a’ >

since < @' >=< 9™ > and < @/ >=< @9°4™I) >

So we have < a9°4(") >=< q9¢d(mJ) >= |g9edni)| = |gged(n.)|

Since |a9°™9)| = n/ged(n, i) and |a9°4™9) | = n/ged(n, 7)

n/gcd(n,i) = n/ged(n, j) = ged(n, j) = ged(n, i)

Conversely Suppose ged(n, j) = ged(n, i) =< a9 >=< q9¢4)) >=< ¢t >=< o >
Similarly |a’| = |a/| if and only if ged(n, i) = ged(n, §)

Corollary: Let |a| = n. Then < a >=< a’ > if and only if ged(n,j) =1

and |a| = | < a? > | if and only if ged(n, j) = 1.

Proof: Let |a] =n and < a >=< @/ >&< a >=< a’ >& ged(n, 1) = ged(n, j) & 1 = ged(n, j)
Similarly |a| = | < @’ > | if and only if ged(n, j) = 1.

Fundamental theorem of cyclic groups:

Every subgroup of a cyclic group is cyclic. Moreover if | < a > | = n, then the order of any subgroup of
< a > is a divisor of n; and for each positive divisor k of n, the group < a > has exactly one subgroup of
order k namely < a"/F >

Proof: Let G be a cyclic group such that G =< a >

Suppose H be a subgroup of G.

To prove H is cyclic. If H = {e} then H is cyclic.

Suppose H # {e}. First we have to show that a' € H for a positive integer t.

Since G =< a > and H is a subset of G so elements of H is of the form a

If t < 0 then and H is a subgroup so a~¢ € H so —t > 0 therefore a® € H for a positive integer ¢.

Now let m be the least positive integer such that a™ € H so < a™ >C H

To prove H =< a™ >. Let b€ H and H C G so b € G , we can write b = a* for some k.

Now apply division algorithm to & and m we get get an inetgers ¢ and r such that
k=mqg+r where 0 <r <m.

Then o = a™It" = a™a" = a" = a~™a"

Since a* =b € H and a=™4 = (a™) % isin H so a” € H.

But m is the least positive integer such that a™ € H and r < m

So r = 0 therefore b = a* = a™? = (a™)? €< a™ > so H C< a™ >

Therefore H =< a™ > so H is cyclic.

Now suppose | < a > | =n and H is any subgroup of < a >. Since H =< a"™ >, where m is least positive
integer such that a™ € H. As |H| = | < a™ > | = |a™| = m/gcd(n, m) so m/ged(n, m) divides n so order of
H divides order of group.

Since a™ = e and e € H so a™ € H as a” is in H so k = mq so here n = mgq.

Let k be a positive divisor of n. To show that < a”/* > is the one and only one subgroup of order k.

| < a™* > | =1|a"*| = n/ged(n,n/k) = n/n/k = k So order of < a™/* > is k.

Now to prove uniqueness. Suppose H is another subgroup of < a > of order k.

Since H =< a™ >, where m is a divisor of n.

So ged(n,m) =m and |H| = | < a™ > | = |a™| = k and k = |a™| = |a9°¥"™)| = n/ged(n, m) = n/m.

So k=n/m=m=n/kso H=<a"*>.

k

Corollary: For each positive divisor &k of n, the set < n/k > is the unique subgroup of Z, of order k.
Moreover these are the only subgroups of Z,.

Proof: Since the group Z, is cyclic with Z, =<1 >.

And Z, is additive group so for every divisor k of n we have a unique subgroup of order k£ namely
<n/kl>=<n/k >
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Theorem: If d is a positive divisor of n, the number of elements of order d in a cyclic group of order
n is ¢(n).

Proof: Let G be a cyclic group such that G =< a >.

As d is a divisor so G has exaclty one subgroup of order d say H.

.Then every element of order d also generates the subgroup H.

An element a* generates H if and only if gcd(k,d) = 1.

Number of such elements are ¢(d).

Theorem: In a finite group, the number of elements of order d is dividsible by ¢(d).

Proof: Let G be a finite group.

If G has no elements of order d then statement is true, since ¢(d) divides 0.

Suppose a € G such that |a| = d. Since < a > has ¢(d) elements of order d.

If all elements of order d in G are in < ¢ > then done.

Suppose there is an element b € G of order d which is not in < a >

then < b > also has ¢(d) elements of order d so we have 2¢(d) elements of order d in G provided that < a >
and < b > have no elements of order d in common. If there is an element ¢ of order d that is both < a >
and < b >, then we have < a >=< ¢ >=<b > so b €< a >, which is contadiction.

Continuing in this way we see that number of elements of order d in a finite group is a multiple of ¢(d).
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