
Chapter 2: Cyclic Groups

Definition: Cyclic group
A group G is called cyclic if there is an element a ∈ G such that G = {an|n ∈ Z}
Notation:A G is a cyclic group generated by a is denoted by G =< a >.
Example: Z =< 1 >=< −1 > , Zn =< 1 >=< n− 1 > , Z8 =< 1, 3, 5, 7 >

Theorem: Let G be a group and a ∈ G. If a has infinite order, then ai = aj if and only if i = j. If
a has finite order say n, then < a >= {e, a, a2, ..., an−1} and ai = aj if and only if n divides i− j.
Proof:If a has infinite order, then there does not exists a positive integer n such that an = e. As
ai = aj ⇒ ai−j = e so i− j = 0⇒ i = j.
Now suppose |a| = n to prove < a >= {e, a, a2, ..., an−1}
since a, a2, ..., an−1, an = e ∈< a >
now suppose ak is an element of G.
Apply division algorithm to k and n, there exists an integer q and r such that k = qn+ r with 0 ≤ r < n
ak = aqn+r = aqnar = (an)qar = eqar = ar

so ak ∈< a > therefore < a >= {e, a, a2, ..., an−1}
now suppose ai = aj to prove that n divides i− j.
As ai = aj so ai−j = e.
Apply division algorithm to i− j and k there exists q and r such that i− j = qn+ r with 0 ≤ r < n
then ai−j = aqn+r = (an)qar = eqar = ear = ar

Since ai−j = e⇒ ar = e but n is the least positive integer such that an = e
so r = 0⇒ n divides i− j
Conversely suppose n divides i− j so i− j = nq,
then ai−j = anq = (an)q = eq = e so thet ai = aj .

Corollary: For any element a ∈ G, |a| =< a >
Proof: Since if |a| = n then < a >= {e, a, a2, ..., an−1}
So | < a > | = n = |a|

Corollary: Let G be a group and let a ∈ G such that |a| = n. If ak = e, then n divides k.
Proof: Since ak = e = a0 so ak = a0 so n divides k − 0 that is k.

Theorem:Let a be an element of order n in a group and let k be a positive integer.
Then < ak >=< agcd(n,k) > and |ak| = n/gcd(n, k)
Proof: Let G be a group and a ∈ G such that |a| = n let d = gcd(n, k) and let k = dr
Since ak = (ad)r so < ak >⊂< ad >
as d = gcd(n, k) so there exists s and t such that d = ns+ kt
So ad = ans+kt = ansakt = (an)s(ak)t = e(ak)t ∈< ak >
< ad >⊂< ak >
Therefore < ak >=< agcd(n,k) >
Since |a| = n, first to prove that |ad| = n/d for any divisor d of n
Consider (ad)n/d = an = e
So |ad| ≤ n/d Suppose i be a positive integer less than n/d such that (ad)i = e
but as i ≤ n/d⇒ di < n⇒ adi = e which is not posssible as n is the order of a so n should be smallest.
Therefore |ad| = n/d for any divisor d of n.
Since < ak >=< agcd(n,k) >⇒ | < ak > | = | < agcd(n,k) > | = |agcd(n,k)| = n/gcd(n, k)

Corollary: In a finite cyclic group, the order of an element divides the order of the group.
Proof: Let G be a finite cyclic group such that G =< a > and |G| = n
Since any element in G is of the form ak so |ak| = n/gcd(n, k)
Since gcd(n, k) divides n so n/gcd(n, k) is a divisor of n
S o order of any element in G divides the order of G.



Corollary: Let |a| = n. Then < ai >=< aj > if and only if gcd(n, i) = gcd(n, j)
and |ai| = |aj | if and only if gcd(n, i) = gcd(n, j)
Proof: Suppose |a| = n and < ai >=< aj >
since < ai >=< agcd(n,i) > and < aj >=< agcd(n,j) >
So we have < agcd(n,i) >=< agcd(n,j) >⇒ |agcd(n,i)| = |agcd(n,j)|
Since |agcd(n,i)| = n/gcd(n, i) and |agcd(n,j)| = n/gcd(n, j)
n/gcd(n, i) = n/gcd(n, j)⇒ gcd(n, j) = gcd(n, i)
Conversely Suppose gcd(n, j) = gcd(n, i)⇒< agcd(n,i) >=< agcd(n,j) >⇒< ai >=< aj >
Similarly |ai| = |aj | if and only if gcd(n, i) = gcd(n, j)

Corollary: Let |a| = n. Then < a >=< aj > if and only if gcd(n, j) = 1
and |a| = | < aj > | if and only if gcd(n, j) = 1.
Proof: Let |a| = n and < a >=< aj >⇔< a1 >=< aj >⇔ gcd(n, 1) = gcd(n, j)⇔ 1 = gcd(n, j)
Similarly |a| = | < aj > | if and only if gcd(n, j) = 1.

Fundamental theorem of cyclic groups:
Every subgroup of a cyclic group is cyclic. Moreover if | < a > | = n, then the order of any subgroup of
< a > is a divisor of n; and for each positive divisor k of n, the group < a > has exactly one subgroup of
order k namely < an/k >
Proof: Let G be a cyclic group such that G =< a >
Suppose H be a subgroup of G.
To prove H is cyclic. If H = {e} then H is cyclic.
Suppose H 6= {e}. First we have to show that at ∈ H for a positive integer t.
Since G =< a > and H is a subset of G so elements of H is of the form at

If t < 0 then and H is a subgroup so a−t ∈ H so −t > 0 therefore at ∈ H for a positive integer t.
Now let m be the least positive integer such that am ∈ H so < am >⊂ H
To prove H =< am >. Let b ∈ H and H ⊂ G so b ∈ G , we can write b = ak for some k.
Now apply division algorithm to k and m we get get an inetgers q and r such that
k = mq + r where 0 ≤ r < m.
Then ak = amq+r = amqar ⇒ ar = a−mqak

Since ak = b ∈ H and a−mq = (am)−q is in H so ar ∈ H.
But m is the least positive integer such that am ∈ H and r < m
So r = 0 therefore b = ak = amq = (am)q ∈< am > so H ⊂< am >
Therefore H =< am > so H is cyclic.
Now suppose | < a > | = n and H is any subgroup of < a >. Since H =< am >, where m is least positive
integer such that am ∈ H. As |H| = | < am > | = |am| = m/gcd(n,m) so m/gcd(n,m) divides n so order of
H divides order of group.
Since an = e and e ∈ H so an ∈ H as ak is in H so k = mq so here n = mq.
Let k be a positive divisor of n. To show that < an/k > is the one and only one subgroup of order k.
| < an/k > | = |an/k| = n/gcd(n, n/k) = n/n/k = k So order of < an/k > is k.
Now to prove uniqueness. Suppose H is another subgroup of < a > of order k.
Since H =< am >, where m is a divisor of n.
So gcd(n,m) = m and |H| = | < am > | = |am| = k and k = |am| = |agcd(n,m)| = n/gcd(n,m) = n/m.
So k = n/m⇒ m = n/k so H =< an/k >.

Corollary: For each positive divisor k of n, the set < n/k > is the unique subgroup of Zn of order k.
Moreover these are the only subgroups of Zn.
Proof: Since the group Zn is cyclic with Zn =< 1 >.
And Zn is additive group so for every divisor k of n we have a unique subgroup of order k namely
< n/k.1 >=< n/k >
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Theorem: If d is a positive divisor of n, the number of elements of order d in a cyclic group of order
n is φ(n).
Proof: Let G be a cyclic group such that G =< a >.
As d is a divisor so G has exaclty one subgroup of order d say H.
.Then every element of order d also generates the subgroup H.
An element ak generates H if and only if gcd(k, d) = 1.
Number of such elements are φ(d).

Theorem: In a finite group, the number of elements of order d is dividsible by φ(d).
Proof: Let G be a finite group.
If G has no elements of order d then statement is true, since φ(d) divides 0.
Suppose a ∈ G such that |a| = d. Since < a > has φ(d) elements of order d.
If all elements of order d in G are in < a > then done.
Suppose there is an element b ∈ G of order d which is not in < a >
then < b > also has φ(d) elements of order d so we have 2φ(d) elements of order d in G provided that < a >
and < b > have no elements of order d in common. If there is an element c of order d that is both < a >
and < b >, then we have < a >=< c >=< b > so b ∈< a > , which is contadiction.
Continuing in this way we see that number of elements of order d in a finite group is a multiple of φ(d).
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