Chapter 2: Cyclic Groups

Definition: Cyclic group

A group G is called cyclic if there is an element $a \in G$ such that $G = \{a^n | n \in Z\}$ Notation: A G is a cyclic group generated by a is denoted by $G = \langle a \rangle$. Example: $Z = \langle 1 \rangle = \langle -1 \rangle$, $Z_n = \langle 1 \rangle = \langle n-1 \rangle$, $Z_8 = \langle 1, 3, 5, 7 \rangle$

Theorem: Let G be a group and $a \in G$. If a has infinite order, then $a^i = a^j$ if and only if i = j. If a has finite order say n, then $\langle a \rangle = \{e, a, a^2, ..., a^{n-1}\}$ and $a^i = a^j$ if and only if n divides i - j. **Proof:** If a has infinite order, then there does not exists a positive integer n such that $a^n = e$. As $a^i = a^j \Rightarrow a^{i-j} = e \text{ so } i-j = 0 \Rightarrow i = j.$ Now suppose |a|=n to prove $<a>=\{e,a,a^2,...,a^{n-1}\}$ since $a,a^2,...,a^{n-1},a^n=e\in <a>$ now suppose a^k is an element of G. Apply division algorithm to k and n, there exists an integer q and r such that k = qn + r with $0 \le r < n$ $a^{k} = a^{qn+r} = a^{qn}a^{r} = (a^{n})^{q}a^{r} = e^{q}a^{r} = a^{r}$ so $a^k \in \langle a \rangle$ therefore $\langle a \rangle = \{e, a, a^2, ..., a^{n-1}\}$ now suppose $a^i = a^j$ to prove that n divides i - j. As $a^i = a^j$ so $a^{i-j} = e$. Apply division algorithm to i - j and k there exists q and r such that i - j = qn + r with $0 \le r < n$ then $a^{i-j} = a^{qn+r} = (a^n)^q a^r = e^q a^r = ea^r = a^r$ Since $a^{i-j} = e \Rightarrow a^r = e$ but n is the least positive integer such that $a^n = e$ so $r = 0 \Rightarrow n$ divides i - jConversely suppose n divides i - j so i - j = nq, then $a^{i-j} = a^{nq} = (a^n)^q = e^q = e$ so that $a^i = a^j$.

Corollary: For any element $a \in G$, $|a| = \langle a \rangle$ **Proof:** Since if |a| = n then $\langle a \rangle = \{e, a, a^2, ..., a^{n-1}\}$ So $|\langle a \rangle| = n = |a|$

Corollary: Let G be a group and let $a \in G$ such that |a| = n. If $a^k = e$, then n divides k. **Proof:** Since $a^k = e = a^0$ so $a^k = a^0$ so n divides k - 0 that is k.

Theorem:Let *a* be an element of order *n* in a group and let *k* be a positive integer. Then $\langle a^k \rangle = \langle a^{gcd(n,k)} \rangle$ and $|a^k| = n/gcd(n,k)$ **Proof:** Let *G* be a group and $a \in G$ such that |a| = n let d = gcd(n,k) and let k = drSince $a^k = (a^d)^r$ so $\langle a^k \rangle \subset \langle a^d \rangle$ as d = gcd(n,k) so there exists *s* and *t* such that d = ns + ktSo $a^d = a^{ns+kt} = a^{ns}a^{kt} = (a^n)^s(a^k)^t = e(a^k)^t \in \langle a^k \rangle$ $\langle a^d \rangle \subset \langle a^k \rangle$ Therefore $\langle a^k \rangle = \langle a^{gcd(n,k)} \rangle$ Since |a| = n, first to prove that $|a^d| = n/d$ for any divisor *d* of *n* Consider $(a^d)^{n/d} = a^n = e$ So $|a^d| \leq n/d$ Suppose *i* be a positive integer less than n/d such that $(a^d)^i = e$ but as $i \leq n/d \Rightarrow di < n \Rightarrow a^{di} = e$ which is not posssible as *n* is the order of *a* so n should be smallest. Therefore $|a^d| = n/d$ for any divisor *d* of *n*. Since $\langle a^k \rangle = \langle a^{gcd(n,k)} \rangle \Rightarrow |\langle a^k \rangle | = |\langle a^{gcd(n,k)} \rangle | = |a^{gcd(n,k)}| = n/gcd(n,k)$

Corollary: In a finite cyclic group, the order of an element divides the order of the group. **Proof:** Let G be a finite cyclic group such that $G = \langle a \rangle$ and |G| = nSince any element in G is of the form a^k so $|a^k| = n/gcd(n,k)$ Since gcd(n,k) divides n so n/gcd(n,k) is a divisor of n S o order of any element in G divides the order of G. **Corollary:** Let |a| = n. Then $\langle a^i \rangle = \langle a^j \rangle$ if and only if gcd(n, i) = gcd(n, j)and $|a^i| = |a^j|$ if and only if gcd(n, i) = gcd(n, j)**Proof:** Suppose |a| = n and $\langle a^i \rangle = \langle a^j \rangle$ since $\langle a^i \rangle = \langle a^{gcd(n,i)} \rangle$ and $\langle a^j \rangle = \langle a^{gcd(n,j)} \rangle$ So we have $\langle a^{gcd(n,i)} \rangle = \langle a^{gcd(n,j)} \rangle \Rightarrow |a^{gcd(n,i)}| = |a^{gcd(n,j)}|$ Since $|a^{gcd(n,i)}| = n/gcd(n,i)$ and $|a^{gcd(n,j)}| = n/gcd(n,j)$ Since $|a^{gcd(n,i)}| = n/gcd(n,j) \Rightarrow gcd(n,j) = gcd(n,i)$ Conversely Suppose $gcd(n,j) = gcd(n,i) \Rightarrow \langle a^{gcd(n,i)} \rangle = \langle a^{gcd(n,j)} \rangle \Rightarrow \langle a^i \rangle = \langle a^j \rangle$ Similarly $|a^i| = |a^j|$ if and only if gcd(n,i) = gcd(n,j)

Corollary: Let |a| = n. Then $\langle a \rangle = \langle a^j \rangle$ if and only if gcd(n, j) = 1and $|a| = |\langle a^j \rangle|$ if and only if gcd(n, j) = 1. **Proof:** Let |a| = n and $\langle a \rangle = \langle a^j \rangle \Leftrightarrow \langle a^1 \rangle = \langle a^j \rangle \Leftrightarrow gcd(n, 1) = gcd(n, j) \Leftrightarrow 1 = gcd(n, j)$ Similarly $|a| = |\langle a^j \rangle|$ if and only if gcd(n, j) = 1.

Fundamental theorem of cyclic groups:

Every subgroup of a cyclic group is cyclic. Moreover if $|\langle a \rangle| = n$, then the order of any subgroup of $\langle a \rangle$ is a divisor of n; and for each positive divisor k of n, the group $\langle a \rangle$ has exactly one subgroup of order k namely $< a^{n/k} >$ **Proof:** Let G be a cyclic group such that $G = \langle a \rangle$ Suppose H be a subgroup of G. To prove H is cyclic. If $H = \{e\}$ then H is cyclic. Suppose $H \neq \{e\}$. First we have to show that $a^t \in H$ for a positive integer t. Since $G = \langle a \rangle$ and H is a subset of G so elements of H is of the form a^t If t < 0 then and H is a subgroup so $a^{-t} \in H$ so -t > 0 therefore $a^t \in H$ for a positive integer t. Now let m be the least positive integer such that $a^m \in H$ so $\langle a^m \rangle \subset H$ To prove $H = \langle a^m \rangle$. Let $b \in H$ and $H \subset G$ so $b \in G$, we can write $b = a^k$ for some k. Now apply division algorithm to k and m we get get an inetgers q and r such that k = mq + r where $0 \le r < m$. Then $a^k = a^{mq+r} = a^{mq}a^r \Rightarrow a^r = a^{-mq}a^k$ Since $a^k = b \in H$ and $a^{-mq} = (a^m)^{-q}$ is in H so $a^r \in H$. But m is the least positive integer such that $a^m \in H$ and r < mSo r = 0 therefore $b = a^k = a^{mq} = (a^m)^q \in \langle a^m \rangle$ so $H \subset \langle a^m \rangle$ Therefore $H = \langle a^m \rangle$ so H is cyclic. Now suppose $|\langle a \rangle| = n$ and H is any subgroup of $\langle a \rangle$. Since $H = \langle a^m \rangle$, where m is least positive integer such that $a^m \in H$. As $|H| = |\langle a^m \rangle| = |a^m| = m/gcd(n,m)$ so m/gcd(n,m) divides n so order of H divides order of group. Since $a^n = e$ and $e \in H$ so $a^n \in H$ as a^k is in H so k = mq so here n = mq. Let k be a positive divisor of n. To show that $\langle a^{n/k} \rangle$ is the one and only one subgroup of order k. $|\langle a^{n/k} \rangle| = |a^{n/k}| = n/gcd(n, n/k) = n/n/k = k$ So order of $\langle a^{n/k} \rangle$ is k. Now to prove uniqueness. Suppose H is another subgroup of $\langle a \rangle$ of order k. Since $H = \langle a^m \rangle$, where m is a divisor of n. So gcd(n,m) = m and $|H| = |\langle a^m \rangle| = |a^m| = k$ and $k = |a^m| = |a^{gcd(n,m)}| = n/gcd(n,m) = n/m$. So $k = n/m \Rightarrow m = n/k$ so $H = \langle a^{n/k} \rangle$.

Corollary: For each positive divisor k of n, the set $\langle n/k \rangle$ is the unique subgroup of Z_n of order k. Moreover these are the only subgroups of Z_n .

Proof: Since the group Z_n is cyclic with $Z_n = <1>$.

And Z_n is additive group so for every divisor k of n we have a unique subgroup of order k namely < n/k.1> = < n/k>

Theorem: If d is a positive divisor of n, the number of elements of order d in a cyclic group of order n is $\phi(n)$.

Proof: Let G be a cyclic group such that $G = \langle a \rangle$. As d is a divisor so G has exactly one subgroup of order d say H. .Then every element of order d also generates the subgroup H.

. Then every element of order a also generates the subgroup r

An element a^k generates H if and only if gcd(k, d) = 1.

Number of such elements are $\phi(d)$.

Theorem: In a finite group, the number of elements of order d is dividsible by $\phi(d)$.

Proof: Let G be a finite group.

If G has no elements of order d then statement is true, since $\phi(d)$ divides 0.

Suppose $a \in G$ such that |a| = d. Since $\langle a \rangle$ has $\phi(d)$ elements of order d.

If all elements of order d in G are in $\langle a \rangle$ then done.

Suppose there is an element $b \in G$ of order d which is not in $\langle a \rangle$

then < b > also has $\phi(d)$ elements of order d so we have $2\phi(d)$ elements of order d in G provided that < a > and < b > have no elements of order d in common. If there is an element c of order d that is both < a > and < b >, then we have < a > = < c > = < b > so $b \in < a >$, which is contadiction.

Continuing in this way we see that number of elements of order d in a finite group is a multiple of $\phi(d)$.