Progressive Education Society's Modern College of Arts, Science and Commerce Shivajinagar (Autonomous), Pune 411005 Department of Mathematics S.Y.B.Sc. Ordinary Differential Equations Practical 1: Linear Differential Equation with constant coefficients

Question: Find the solution of the following linear differential equations:

1.
$$(D+2)^{3} y = 0$$

2. $\frac{d^{2}y}{dx^{2}} - 4\frac{dy}{dx} + 13y = 0$
3. $(D^{4} - 6D^{3} + 18D^{2} - 24D + 16) y = 0$
4. $(D^{2} + 9) y = 0$
5. $(D^{4} - D^{3} - 18D^{2} + 52D - 40) y = 0$
6. $(D^{2} - 9) y = 3e^{2x} + 2e^{3x}$
7. $(D^{3} - D^{2} - 6D) y = 1 + x + e^{-x}$
8. $(D^{2} - 4) y = 3x^{2}$
9. $(D^{3} + 1) y = 4\cos^{3}x$
10. $(D^{2} - 2D + 5) y = e^{2x}\sin x$
11. $\frac{d^{2}y}{dx^{2}} - 8\frac{dy}{dx} + 9y = 40\sin 5x$
12. $(D^{2} + 2)) y = x^{2}e^{3x} + e^{x}\cos 2x$
13. $(D^{2} - 2D + 1) y = xe^{x} + 7x - 2$
14. $(D^{4} + 5D^{2} + 6) y = \cos 2x + \sin 3x$
15. $(D - 2)^{2} y = \frac{1}{x^{2}}e^{2x}$
16. $(D^{2} + D + 1) y = e^{4x}(2x + 3)$
17. $(D^{3} - D^{2} + 3D + 5) y = e^{x}\cos 2x$
18. $(D^{2} - 1) y = x\cos 3x$

Progressive Education Society's Modern College of Arts, Science and Commerce Shivajinagar (Autonomous), Pune 411005 Department of Mathematics S.Y.B.Sc. Ordinary Differential Equations Practical 2: Non-homogeneous Linear Differential Equations

ical atane

Question.1: Solve the following differential equations by method of variation of parameters:

1.
$$(D^2 - 1) y = \frac{2}{1 + e^x}$$

2. $\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} = e^x \sin x$
3. $x^2 \frac{d^2 y}{dx^2} + x\frac{dy}{dx} - y = x^2 e^x$
4. $x^2 \frac{d^2 y}{dx^2} - x\frac{dy}{dx} = x^3 e^x$
5. $(x+2)\frac{d^2 y}{dx^2} - (2x+5)\frac{dy}{dx} + 2y = (x+1)e^x$
6. $\frac{d^2 y}{dx^2} - 6\frac{dy}{dx} + 9y = x^{-2}e^{2x}$
7. $y'' - 2y' + y = \frac{e^x}{x^2}$
8. $(x^2 + 1) y'' - 2xy' + 2y = 6(x^2 + 1)^2$

Question.2: Solve the following differential equations by method of reduction:

1.
$$(3-x)y'' - (9-4x)y' + (6-3x)y = 0$$

2. $\frac{d^2y}{dx^2} - (1+x)\frac{dy}{dx} + xy = x$
3. $x\frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} - y = e^x$
4. $x\frac{d^2y}{dx^2} + (x-1)\frac{dy}{dx} - y = x^2$
5. $x\frac{d^2y}{dx^2} - (2x+1)\frac{dy}{dx} - (x+1)y = x^3e^x$
6. $x^2y'' + y' - (1+x^2)y = e^{-x}$
7. $xy'' + (x+2)y' - 2y = x^3$
8. $(1-x^2)\frac{d^2y}{dx^2} - 4x\frac{dy}{dx} - (1+x^2)y = x$
9. $y'' - 4xy' + 4x^2y = e^{x^2}$

Progressive Education Society's Modern College of Arts, Science and Commerce Shivajinagar (Autonomous), Pune 411005 Department of Mathematics S.Y.B.Sc. Ordinary Differential Equations Practical 3: Power Series Solutions

Question: Find the power series solution of the following differential equation

1.
$$(x^{2} - 1) \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} - y = 0$$
 near $x = 0$.
2. $(1 - x^{2}) \frac{d^{2}y}{dx^{2}} + 2x \frac{dy}{dx} - y = 0$ near $x = 0$.
3. $(x^{2} - 1) \frac{d^{2}y}{dx^{2}} + 3x \frac{dy}{dx} + xy = 0$ near $x = 0$.
4. $y'' - xy' + 2y = 0$ near $x = 1$.
5. $(1 - x^{2}) \frac{d^{2}y}{dx^{2}} + 2x \frac{dy}{dx} - y = 0$ near $x = 0$.
6. $\frac{d^{2}y}{dx^{2}} - 2x^{2} \frac{dy}{dx} + 4xy = x^{2} + 2x + 4$ in powers of x .
7. $\frac{d^{2}y}{dx^{2}} + x^{2}y = 2 + x + x^{2}$ about $x = 0$.
8. $y'' - y' = x$ about $x = 0$.
9. $(x^{2} - 1)y'' + xy' - y = 0$ near $x = 0$.
10. $x \frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} + 2y = 0$ about $x = 1$.

Ordinary Differential Equations 3 By Prof. P. M. Paratane, Modern College, Pune 5

Progressive Education Society's Modern College of Arts, Science and Commerce Shivajinagar (Autonomous), Pune 411005 Department of Mathematics S.Y.B.Sc. Ordinary Differential Equations Practical 4: System of first order equations

Question: Solve the following simultaneous equations:

1.
$$\frac{dx}{dt} = x - 2y, \frac{dy}{dt} = 5x + 3y.$$

2. $\frac{dx}{dt} + 7x - y = 0, \frac{dy}{dt} + 2x + 5y = 0.$
3. $\frac{dx}{dt} + 2x - 3y = t, \frac{dy}{dt} - 3x + 2y = e^{2t}.$
4. $\frac{dx}{dt} + 2x + 4y = 1 + 4t, \frac{dy}{dt} - 3x + 2y = \frac{3t^2}{2}.$
5. $\frac{dx}{dt} + 5x + y = t, \frac{dy}{dt} - x + 3y = e^{2t}.$
6. $\frac{dx}{dt} - y = t, \frac{dy}{dt} + x = 1.$
7. $\frac{dx}{dt} + x - y = e^t, \frac{dy}{dt} + y - x = 0.$
8. $\frac{dz}{dx} + 4z + 3y = x, \frac{dy}{dx} + 2z + 5y = e^x.$
9. $\frac{dz}{dx} = x + y, \frac{dy}{dx} = x + z.$
10. $\frac{dx}{dt} + \frac{dy}{dt} - 2y = -e^t, \frac{dy}{dt} + x - y = e^{2t}.$
11. $\frac{dx}{dt} - \frac{dy}{dt} - y = -e^t, \frac{dy}{dt} + x - y = e^{2t}.$
12. $\frac{dx}{dt} + \frac{dy}{dt} - 2y = 2\cos t - 7\sin t, \frac{dx}{dt} - \frac{dy}{dt} + 4x = 4\cos t - 3\sin t.$
13. $\frac{dx}{dt} + 2\frac{dy}{dt} - 2x + 2y = 3e^t, 3\frac{dx}{dt} + \frac{dy}{dt} + 2x + y = 4e^t.$
14. $4\frac{dx}{dt} - \frac{dy}{dt} + 3x = \sin t, \frac{dx}{dt} + y = \cos t.$

Ordinary Differential Equations 4 By Prof. P. M. Paratane, Modern College, Pune 5

- 1. Test the linear independence of the following sets of functions
 - (a) $1+x, 1+2x, x^2$
 - (b) $x^2 1, x^2 x + 1, 3x^2 x 1$
 - (c) $e^{x}, e^{-x}, \sin ax$
 - (d) $\sin x, \cos x, \sin 2x$
- 2. Prove that $\sin 2x$ and $\cos 2x$ are solutions of differential equation y'' + 4y = 0 and these solutions are linearly independent.
- 3. Find the solution of differential equation y''' y'' 4y' + 4y = 0 and determine whether the solutions are linearly dependent or independent.
- 4. Solve the following simultaneous equations: $(5D+4)y (2D+1)z = e^{-x}$, $(D+8)y 3z = 5e^{-x}$
- 5. Show that x = 0 is an ordinary point of differential equation $(x^2 + 1)\frac{d^2y}{dx^2} + x\frac{dy}{dx} xy = 0$. Hence, find the power series solution of it.
- 6. Verify that e^x and x are solution of homogeneous equations corresponding to $(1-x)y_2+xy_1-y=2(x-1)^2e^{-x}$, 0 < x < 1. Thus, find its general solution by method of variation of parameters.
- 7. Find the solution of the linear differential equation $(D^3 5D^2 + 8D 4)y = e^{2x} + 2e^x + 3e^{-x}$.
- 8. Solve the differential equations by method of reduction $xy'' + 2(x+1)y' + (x+2)y = (x-2)e^{2x}$
- 9. Find the solution of the linear differential equation $(D^3 3D^2 6D + 8)y = xe^{-3x}$
- 10. Solve the differential equations by method of variation of parameters $x^2 \frac{d^2y}{dx^2} 2x \frac{dy}{dx} + 2y = \frac{1}{x^2}$.
