Progressive Education Society's Modern College of Arts, Science and Commerce Shivajinagar (Autonomous), Pune 411005 Department of Mathematics S.Y.B.Sc. Ordinary Differential Equations QUESTION BANK Subject Teacher: Prof. Pooja M. Paratane

Question: Attempt the following: (2 Marks Questions)

1. Test the linear independence of the following sets of functions

(a) $1+x, 1+2x, x^2$ (b) $x^2-1, x^2-x+1, 3x^2-x-1$ (c) $e^x, e^{-x}, \sin ax$ (d) $\sin x, \cos x, \sin 2x$

- 2. Prove that $\sin 2x$ and $\cos 2x$ are solutions of differential equation y'' + 4y = 0 and these solutions are linearly independent.
- 3. Find the general solution of differential equation $\frac{d^3y}{dx^3} 3\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 0$
- 4. Let $f(D) = 3D^2 2D + 1$. Calculate $f(D)(e^{2x})$
- 5. Show that $x = 2e^{4t}$, $y = 3e^{4t}$ and $x = e^{-t}$, $y = -e^{-t}$ are solutions of the homogeneous system $\frac{dx}{dt} = x + 2y$, $\frac{dy}{dt} = 3x + 2y$.
- 6. Find the general solution of y'' + y = 0.
- 7. Show that $x = e^{3t}$, $y = e^{3t}$ and $x = e^{2t}$, $y = 2e^{2t}$ are solutions of the homogeneous system $\frac{dx}{dt} = 4x y$, $\frac{dy}{dt} = 2x + y$.
- 8. If f(D) = D + 2 and g(D) = 3D 1 are differential operators, then find the differential operator g(D)f(D).
- 9. Determine the singular points of the differential equation $(1 x^2)y'' 6xy' 4y = 0$.
- 10. Locate and classify singular points of $x^2y'' + (2-x)y' = 0$.
- 11. Find the Wronskian of $f_1(x) = x^2$ and $f_2(x) = x^3$ for all $x \in \mathbb{R}$.
- 12. Determine the intervals in \mathbb{R} in which the differential equation $\tan x \frac{d^2 y}{dx^2} + y = 0$ is normal.
- 13. Locate and classify singular points of $2x^2y'' + x(2x+1)y' y = 0$.
- 14. Convert the differential equation y'' + y' = 0 into a system of first order differential equations.
- 15. Determine the intervals in \mathbb{R} in which the differential equation $(1-x^2)\frac{dy}{dx} + \sin x \ y = \cos x$ is normal.

Ordinary Differential Equations

1

By Prof. P. M. Paratane, Modern College, Pune 5

- 16. Verify that origin is a regular singular point of the differential equation $2x^2y'' + 2y' + y = 0$.
- 17. Verify that $y_1 = x$ is a solution of $(1 x^2)y'' 2xy' + 2y = 0$.
- 18. Find the particular solution of the differential equation $(D-2)^2 y = e^{2x}$.
- 19. Convert the differential equation $y'' + 2y' y = e^x$ into a system of first order differential equations.
- 20. Convert the differential equation y''' y = 0 into a system of first order differential equations.
- 21. Show that $f_1(x) = e^x$ and $f_2(x) = e^{-x}$ are linearly independent on [-1, 1].
- 22. Verify that $y = x^2$ is one solution of $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} 4y = 0$
- 23. Show that $f_1(x) = \sin x$ and $f_2(x) = \cos x$ are linearly independent on $[0, \pi]$.
- 24. Determine the intervals in \mathbb{R} in which the differential equation $x^2 \frac{d^2 y}{dx^2} + e^x y = \log x$ is normal.

Question: Attempt the following: (5 Marks Questions)

- 1. Solve the linear differential equation $x \frac{dy}{dx} + y = x^4$.
- 2. Solve $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = 2e^x$ using the method of reduction of order.
- 3. Find the power series solution of the differential equation $y\hat{a}\check{A}\check{s} + y = 0$.
- 4. Find the power series solution of the differential equation $y\hat{a}\check{A}\check{s}' + y = 0$.
- 5. Solve the following system of first order differential equations $\frac{dx}{dt} = 3x + 3y$, $\frac{dy}{dt} = -x y$.
- 6. Solve the linear differential equation $(D^2 2D + 1)y = xe^x + 7x 2$.
- 7. Solve the differential equation $(D^2 + 5D + 6)y = e^{-2x}\sec^2 x(1 + 2\tan x)$.
- 8. Solve $\frac{d^2y}{dx^2} y = \frac{2}{1 + e^x}$ using the method of variation of parameters.
- 9. Find power series solution of the differential equation y' + 4y = 0.
- 10. Solve the differential equation $(D^2 3D + 2)y = e^{2x} + 5$.
- 11. Find the general solution of $(D^2 + 4)y = \sin 3x \cos x$.
- 12. Solve the differential equation $xy'' y' = 3x^2$ by using method of reduction of order.
- 13. Solve $\frac{d^2y}{dx^2} + y = cosecx$ using the method of variation of parameters.
- 14. Find power series solution of the differential equation y'' 4y = 0.
- 15. Solve the differential equations by method of variation of parameters $x^2 \frac{d^2y}{dx^2} 2x \frac{dy}{dx} + 2y = \frac{1}{x^2}$

Ordinary Differential Equations

 $\mathbf{2}$

By Prof. P. M. Paratane, Modern College, Pune 5

- 16. Find the general solution of $(D^2 + 3D + 2)y = e^x \cos 2x$.
- 17. Find the general solution of $(D^4 1)y = \cos x$.
- 18. Solve the differential equation $(D^2 2D + 1)y = x^2e^{2x}$.
- 19. Solve $(D^2 + 4)y = x \sin 2x$.
- 20. Solve the differential equation $\frac{d^2y}{dx^2} (1+x)\frac{dy}{dx} + xy = x$ by using method of reduction of order.
- 21. Solve the differential equation $(D^5 D^3)y = 1$.
- 22. Solve the differential equations by method of variation of parameters $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} y = x^2 e^x$.
- 23. Find power series solution of the differential equation y'' y = 0.
- 24. Solve the differential equation $(D^2 + 2D + 1)y = \frac{1}{(e^x 1)^2}$ by using method of reduction of order.
- 25. Solve $(D^2 + 1)y = 2$ by using variation of parameters method.
- 26. Find the power series solution of the differential equation y' + 9y = 0.
- 27. Verify that $y_1 = x^2$ is one solution of $x^2y'' + xy' 4y = 0$, then find y_2 and the general solution.
- 28. Solve the differential equation $x^2y'' + y' (1 + x^2)y = e^{-x}$ by using method of reduction of order.
- 29. Solve the differential equation $(D^2 + 9)y = \cos 3x$

Question: Attempt the following: (10 Marks Questions)

- 1. Solve the following system of first order differential equations x' = 4x + y; y' = -4x + 8y
- 2. Find the power series solution of the differential equation y'' y' + xy = 0.
- 3. Solve the following system of first order differential equations x' = 2x 5y; y' = 2x 4y
- 4. Find the power series solution of the differential equation y'' xy = 0.
- 5. Find the general solution of $(D^2 2D + 1)y = xe^x \sin x$.
- 6. Solve the system of differential equations $\frac{dx}{dt} = 4x + 5y$, $\frac{dy}{dt} = -4x + 4y$.
- 7. Find the power series solution of the differential equation $y'' + x^2 y = 0$.
- 8. Solve the system of differential equations $\frac{dx}{dt} = x + y$, $\frac{dy}{dt} = 4x 2y$.
- 9. Find the power series solution of the differential equation $(1-x^2)y''-6xy'-4y=0$ at the ordinary point x=0.
- 10. Solve the system of differential equations $\frac{dx}{dt} + 2x + 4y = 1 + 4t$, $\frac{dy}{dt} 3x + 2y = \frac{3t^2}{2}$.
- 11. Find power series solution of the differential equation $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$

Ordinary Differential Equations

3

By Prof. P. M. Paratane, Modern College, Pune 5

- 12. Solve the system of differential equations $4\frac{dx}{dt} \frac{dy}{dt} + 3x = \sin t, \frac{dx}{dt} + y = \cos t.$
- 13. Show that x = 0 is an ordinary point of differential equation $(x^2 + 1)\frac{d^2y}{dx^2} + x\frac{dy}{dx} xy = 0$. Hence, find the power series solution of it.
- 14. Find the power series solution of the differential equation $(x^2 1)\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + xy = 0$ near x = 0.
- 15. Solve the system of differential equations $\frac{dx}{dt} \frac{dy}{dt} y = -e^t$, $\frac{dy}{dt} + x y = e^{2t}$.

Ordinary Differential Equations

4

By Prof. P. M. Paratane, Modern College, Pune 5

Practice Examples: Ordinary Differential Equations by Prof. Pooja Paratane, Department of Mathematics, P. E. Society's Modern College, Shivajinagar, Pune 411005 is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.