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Preface

The theory of ordered sets is today a burgeoning branch of mathe-

matics. It both draws upon and applies to several other branches of

mathematics, including algebra, set theory, and combinatorics. The

theory itself boasts an impressive body of fundamental and deep re-

sults as well as a variety of challenging problems, some of traditional

heritage and some of fairly recent origin (see [16] to [19], [21] to [24],

[27] to [31], [54], [55] and [58]).

Ordered sets have their roots in two trends of nineteenth century math-

ematics. On the one hand, ordered sets have entered into the study of

those algebraic systems which originally arose from axiomatic schemes

aimed at formalizing the “laws of thought”; Boole, Peirce, Schröder,

and Huntington were among the earliest leaders of this trend. On the

other hand, ordered sets were essential ingredients to the theory of sets,

from its inception. It is not surprising that these two trends have in-

fluenced the subject in different ways.

The ordered sets of most interest to general algebra are lattices. It is

lattice theory, however, that has stimulated the study of ordered sets as

vi
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abstract systems. The theory of lattices is bracketed under Universal

Algebra, one of the major branches of Algebra.

Orders are everywhere in mathematics and related fields like computer

science. Partial order and lattice theory have applications in distributed

computing, programming language semantics and data mining.

Much of the combinatorial interest in ordered sets is inextricably linked

to the combinatorial features of the diagrams associated with them. O.

Ore[20] raised an open problem, namely, “Characterize those graphs

which are orientable”. It is also well known that a graph G is the

comparability graph of an ordered set if and only if each odd cycle of

G has a triangular chord (see [51] and [52]). In contrast little is known

about this question (see [20]) : when is a graph the covering graph of

an ordered set? Also, it is NP-complete to test whether a graph is a

cover graph (see [57] and [60]). See also [12], [25], [39] to [43], [46], [47],

[53] and [56] for the work done in this field.

Before 1940, G. Birkhoff[2] posed the following open problems.

(1) Compute for small n all non-isomorphic lattices/posets on a set of

n elements.

(2) Find asymptotic estimates and bounds for the rate of growth of the

number of non-isomorphic lattices/posets with n elements.

(3) Enumerate all finite lattices/posets which are uniquely determined

(up to isomorphism) by their diagrams, considered purely as graphs.

It is known that these problems are NP-complete. Recently, Brinkmann
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and McKay[14] obtained the number of non-isomorphic posets and lat-

tices with at most 18 elements. The work of enumerating all non-

isomorphic posets is still in progress. Thakare, Pawar and Waphare[13]

enumerated the non-isomorphic lattices containing n elements and up

to n+1 edges. See also [3], [5] to [9], [15], [32] to [36] for the work done

in this field.

The work included in the Thesis is a contribution towards partial solu-

tions to the above mentioned open problems. We will restrict ourselves

to finite discrete structures such as posets, lattices and graphs.

The Thesis contains five chapters along with an appendix.

In the first chapter, we state the basic concepts, definitions and nota-

tions related to discrete structures such as posets, lattices and graphs.

We deal with the origin and recent developments regarding the above

mentioned open problems posed by G. Birkhoff. We also discuss the

origin and recent developments in the theory of dismantlable lattices.

In the second chapter, we introduce and study posets dismantlable by

doubly irreducibles. We obtain the structure theorem for posets dis-

mantlable by doubly irreducibles. The motivation behind this study is

due to Kelly and Rival[4], I. Rival[27] and Larose and Zadori[26].

We introduce the concept of the nullity of a poset/lattice and obtain

some properties of nullity of lattices.

We introduce the concept of adjunct of ears and characterize the graphs

which are orientable as posets dismantlable by doubly irreducibles.

We also prove, Whitney [44] type characterization of graphs, namely,
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“a finite loopless graph is connected if and only if it has an ear decom-

position starting with a maximal path or a cycle”. See also [45] and

[48] to [50] in this regard.

In the third chapter, we introduce and study the concept of a basic

block associated to a poset and the concept of a fundamental basic

block associated to a dismantlable lattice. Using these concepts we

enumerate certain classes of non-isomorphic lattices on n elements in

the subsequent chapters.

In the fourth chapter, we obtain the recursive formulae for obtaining the

number of fundamental basic blocks. We also enumerate the class of all

non-isomorphic lattices on n elements in which the reducible elements

are all comparable.

In the fifth chapter, we count the number of all non-isomorphic lattices

of nullity up to three.

At the end, we provide an appendix in which we depict all the non-

isomorphic basic blocks of nullity three.

All definitions, lemmas, theorems etc. are serially numbered sectionwise

in each chapter. The figures are serially numbered. The Thesis ends

with the sufficient number of relevant references (bibliography).
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Chapter 1

Preliminaries

In this chapter, we provide some basic definitions, concepts and nota-

tions which are used in the Thesis.

1.1 Basic concepts

We begin with the definition of a poset.

Definition 1.1.1. Let P be a nonempty set. If a binary relation “ ≤ ”

is reflexive, anti-symmetric and transitive on P then≤ is called a partial

order relation on P .

The structure (P,≤) is called a partially ordered set or a poset.

Definition 1.1.2. Let (P,≤) be a finite poset. An element b in P

covers an element a (or a is covered by b) in P if a < b and there is no

element c in P such that a < c < b.

If b covers a then it is denoted by a ≺ b.
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If a ≺ b then we say that < a, b > is a covering or an edge; see Thakare,

Pawar and Waphare [13].

The set of coverings in P is denoted by E(P ).

The diagram or Hasse diagram of a poset P represents the elements

with small circles; the circles representing two elements x, y are con-

nected by a straight line if and only if one covers the other; if x covers

y, then the circle representing x is higher than the circle representing y.

In a diagram the intersection of two lines does not indicate an element.

Hasse diagrams are named after Helmut Hasse (1898− 1979).

A diagram is planar if no two lines intersect. A diagram which is not

planar is called non-planar.

An indegree of an element x in a poset P is |{y ∈ P : y ≺ x}|. Simi-

larly, an outdegree of an element x in a poset P is |{z ∈ P : x ≺ z}|.

The sum of indegree and outdegree of an element x ∈ P is the degree

of x in P . A chain x1 < x2 < · · · < xn in P is said to be saturated

if xi ≺ xi+1 for each i. The number of coverings in a chain is called

length of the chain. A chain C in P is called maximal if there is no

other chain in P which contains C. For a < b, the interval [a, b] is the

set [a, b] = {x ∈ P : a ≤ x ≤ b} and [a, b) = {x ∈ P : a ≤ x < b};

similarly (a, b) and (a, b] can also be defined. The width of a poset P is

a natural number n if there is an antichain in P containing n elements

and all antichains in P have ≤ n elements.

An element x in a lattice L is join-reducible (meet-reducible) in L if there

exist y, z ∈ L both distinct from x, such that y ∨ z = x (y ∧ z = x);
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x is join-irreducible (meet-irreducible) if it is not join-reducible (meet-

reducible); x is doubly irreducible if it is join-irreducible and meet-

irreducible. Therefore, an element x is doubly irreducible in a lattice L

if and only if x has at most one lower cover and x has at most one upper

cover. The set of all meet-irreducible (join-irreducible) elements in L is

denoted by M(L) (J(L)). The set of all doubly irreducible elements in

L is denoted by Irr(L) and its complement in L is denoted by Red(L).

Thus, if x ∈ Red(L) then x is either join reducible or meet reducible. A

subposet Q of a poset P is a subset Q of P together with the restriction

of the order relation on P to Q.

Definition 1.1.3. Let P and Q be posets. A map ϕ : P → Q is said

to be (i) order-preserving if x ≤ y in P implies ϕ(x) ≤ ϕ(y) in Q; (ii)

an order-embedding if x ≤ y in P if and only if ϕ(x) ≤ ϕ(y) in Q; (iii)

an order-isomorphism if it is an order-embedding mapping P onto Q.

When there exists an order isomorphism from P to Q, we say that P

and Q are order-isomorphic and write P ∼= Q. If two posets are not

order-isomorphic then we say that they are non-isomorphic.

Remark 1.1.1. (a) If ϕ : P → Q is an order-embedding then ϕ(P ) ∼=
P . (b) An order-embedding is automatically a one-to-one map. There-

fore an order-isomorphism is bijective.

Definition 1.1.4. An order-preserving map g : P → Q is a retraction

of poset P onto subposet Q provided that g(x) = x for all x ∈ Q. If

there is a retraction of P onto Q, then Q is a retract of P .

Now we will see some definitions and terminologies of graph theory; see

[41] for more details.
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Definition 1.1.5. A graph G is a triple consisting of a vertex set V (G),

an edge set E(G), and a relation that associates with each edge two

vertices (not necessarily distinct) called its endpoints.

A loop is an edge whose endpoints are equal. Multiple edges are edges

having the same pair of endpoints. A vertex of a graph which is not an

end of any edge is called isolated. A simple graph is a graph having no

loops or multiple edges. Two vertices u and v are adjacent if they are

endpoints of an edge e. We write e = uv if u and v are endpoints of an

edge e. If vertex v is an endpoint of edge e, then v and e are incident.

The degree of a vertex v in a (loopless) graph G, written dG(v) or d(v),

is the number of edges incident to v. A leaf (or a pendant vertex)

is a vertex of degree 1. A path is a simple graph whose vertices can

be ordered so that two vertices are adjacent if and only if they are

consecutive in the list. A cycle is a graph with an equal number of

vertices and edges whose vertices can be placed around a circle so that

two vertices are adjacent if and only if they appear consecutively along

the circle. A graph with no cycle is called acyclic.

Definition 1.1.6. A subgraph of a graph G is a graph H such that

V (H) ⊆ V (G) and E(H) ⊆ E(G) and the assignment of endpoints to

edges in H is the same as in G. We then write H ⊆ G and say that “G

contains H”.

Definition 1.1.7. A graph G is connected if each pair of vertices in G

belongs to a path; otherwise, G is disconnected.

The components of a graph G are its maximal connected subgraphs.
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An induced subgraph is a subgraph obtained by deleting a set of ver-

tices. The nullity (or cyclomatic number or circuit rank or the first betti

number) of a graph G is given by m − n + c, where m is the number

of edges in G, n is the number of vertices in G and c is the number of

connected components of G. Note that, the nullity of a subgraph of a

graph is less than or equal to the nullity of the graph.

Definition 1.1.8. Let G be a loopless connected graph. An ear of a

graph G is an induced subgraph of G such that it is a maximal path in

which all internal vertices are of degree 2 in G or it is a cycle in which

all but one vertex have degree 2 in G. If G is a cycle (or path) itself

then that cycle (or path) is the only ear of G. An ear of a graph G is

called an open ear if the two endpoints do not coincide in G.

An ear which does not contain any internal vertex is called a trivial

ear. Therefore a trivial ear is just an edge in G. An ear which is not an

edge is called non-trivial ear in G. An ear E : a−x1−x2− · · ·−xr− b

is said to be an ear associated to the pair (a, b) of length r+ 1. Also for

each i, we say xi is associated to the pair (a, b).

Hereafter by a path (or an ear) in a poset/lattice, we mean the path (or

an ear) in the cover graph of that poset/lattice. As a simple observation,

we have the following.

Proposition 1.1.1. If an ear is a trivial ear in a poset P associated

to a pair (a, b) then it is the only ear associated to (a, b) in P .

A cut-vertex of a graph is a vertex whose deletion increases the number

of components. We write G− v or G−S for the subgraph obtained by
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deleting a vertex v or set of vertices S respectively. A graph is said to

be k-connected (or k-vertex connected) if there does not exist a set of

k − 1 vertices whose removal disconnects the graph.

Definition 1.1.9. A tree is a connected acyclic graph.

Note that, a tree on n vertices has n − 1 edges. Also, a connected

graph containing n vertices and n − 1 edges is a tree. It is clear that

the nullity of a tree is zero.

Definition 1.1.10. A block of a graph G is a maximal connected sub-

graph of G that has no cut-vertex. If G itself is connected and has no

cut-vertex then G is a block.

Remark 1.1.2. 1. An edge is a block if and only if it is a cut edge.

2. If a block has more than two vertices then it is 2-connected.

3. The blocks of a loopless graph are its isolated vertices, its cut edges

and its maximal 2-connected subgraphs.

4. Two blocks in a graph share at most one vertex.

Definition 1.1.11. The block cutpoint graph of a graph G is a bipartite

graph H in which one partite set consists of the cut-vertices of G and

the other has a vertex bi, for each block Bi of G and {v, bi} is an edge

of H if and only if v ∈ Bi. When G is connected, its block cutpoint

graph is a tree whose leaves are blocks of G.

Note that, a graph G that is not a single block has at least two blocks

(called leaf blocks or pendant blocks) that each contain exactly one cut-

vertex of G. Blocks of a graph can be found using a technique for
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searching graphs, viz., Depth First Search or Breadth First Search al-

gorithms.

Definition 1.1.12. An isomorphism from a simple graph G to a simple

graph H is a bijection f : V (G) → V (H) such that uv ∈ E(G) if and

only if f(u)f(v) ∈ E(H). We say “G is isomorphic to H”, written as

G ∼= H, if there is an isomorphism from G to H.

Definition 1.1.13. The covering relation of a partially ordered set P

is the binary relation which holds between comparable elements that

are immediate neighbours. The graph on P with edges as covering

relations is called cover graph, denoted by C(P ).

Definition 1.1.14. For even n ≥ 4, a subset C = {c1, c2, . . . , cn} of

P is a crown provided that c1 < cn, and c1 < c2, c2 > c3, . . . , cn−2 >

cn−1, cn−1 < cn are the only (strict) comparability relations that hold

in C and, in the case n = 4, there is no a ∈ P such that c1 < a < c2

and c3 < a < c4.

b b b b
bbb b p p pc2

Fig.1

c4 cn−2 cn

c1 c3 c5 cn−1

We recall the concept of linear sum of posets; see Stanley[11]. If P and

Q are two disjoint posets, the linear sum (also known as ordinal sum

or direct sum) P ⊕ Q is defined by taking the following order relation

on P ∪Q: x ≤ y if and only if x, y ∈ P and x ≤ y in P , or x, y ∈ Q and



8 Preliminaries

x ≤ y in Q or x ∈ P , y ∈ Q. If P and Q are finite posets, then a Hasse-

diagram of P ⊕Q is obtained by placing a diagram of P directly below

a diagram of Q and then adding a line segment from each maximal

element of P to each minimal element of Q. Further, if P and Q are

lattices then |E(P ⊕Q)| = |E(P )|+ |E(Q)|+ 1.

1.2 Background and motivation

In this Thesis, we shall be concerned with the long standing open prob-

lem of enumerating some classes of lattices in the sense that given n,

a positive integer, how many non-isomorphic lattices are possible with

n vertices. It stems from the “Birkhoff’s Open Problems” which are

repeated in variant forms by several authors such as Stanley[11], Quack-

enbush[9] and others.

1.2.1 Birkhoff’s open problems

1. Compute for small n all non-isomorphic posets/lattices on a set of

n elements.

2. Find asymptotic estimates and bounds for the rate of growth of

the number of non-isomorphic posets/lattices with n elements.

3. Enumerate all finite posets/lattices which are uniquely determined

(up to isomorphism) by their diagrams, considered purely as graphs.

It is known that these problems are NP-complete. There were attempts

to solve these problems by many authors. Today the number of all
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non-isomorphic posets on up to 16 elements is known. Chaunier and

Legeros[3] (Order, 1992) enumerated all non-isomorphic posets with 13

elements. Lygeros and Zimmermann[7] enumerated all non-isomorphic

posets with 14 elements and Brinkmann and Mckay[14] (Order, 2002)

enumerated all non-isomorphic posets with 15 and 16 elements. The

work of enumeration of all non-isomorphic (unlabelled) posets is still

in progress for n ≥ 17.

Nonetheless, we shall allude to the work of Kyuno[6] who gave an algo-

rithm for finite lattices wherein he could obtain lattices of order ≤ 9.

Independently, Kolhe[5] in his M.Phil. dissertation uses a rather inge-

nious algorithm so as to obtain the total number of all non-isomorphic

lattices with 8 and 9 elements. According to Kolhe[5], the number of

all non-isomorphic lattices with 9 elements is 1082, which however does

not match with the number 1078 given in [15] for the same.

The following Theorem 1.2.1 gives the bounds for L(n), the number of

non-isomorphic lattices on n+ 2 (labelled) elements.

Theorem 1.2.1. If L(n) is the number of non-isomorphic lattices on

n+ 2 (labelled) elements then

αn
1.5+O(n1.5) < L(n) < βn

1.5+O(n1.5),

where α = 2
√
2/4 ≈ 1.2777 and β ≈ 6.11343.

In Theorem 1.2.1, the lower bound is due to W. Klotz and L. Lucht[35]

and the upper bound is due to D. Kleitman and K. Winston[36].
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1.2.2 Recent developments

The number of non-isomorphic (unlabelled) lattices on n = 1 to 18 ele-

ments are respectively 1, 1, 1, 2, 5, 15, 53, 222, 1078, 5994, 37622, 262776,

2018305, 16873364, 152233518, 1471613387, 15150569446, 165269824761

(see Heitzig and Reinhold[15]). The number of distinct (labelled) posets

(see Table 2) and distinct (labelled) lattices (see [15]) on n ≤ 18 ele-

ments is also known.

Remark 1.2.1. The number P (n) of all non-isomorphic unlabelled

posets (equivalently, T0 topologies) with n elements for n ≤ 16 is given

as follows (see Table 1). The P (n) values for n = 0, 1, 2, 3, 4, 5, 6 are re-

spectively 1, 1, 2, 5, 16, 63, 318 given by I. Rose and R. T. Sasaki, before

1940. (See page 4 of [2] and [14]).

n P(n) Year Researcher/s

7 2,045 1972 J. Write

8 16,999 1977 S. K. Das

9 183,231 1984 R. H. Mohring

10 2,567,284 1990 J. C. Culberson and G. J. E. Rawlins

11 46,749,427 1990 J. C. Culberson and G. J. E. Rawlins

12 1,104,891,746 1991 C. Chaunier and N. Lygeros

13 33,823,827,452 1992 C. Chaunier and N. Lygeros

14 1,338,193,159,771 2000 N. Lygeros and P. Zimmermann

15 68,275,077,901,156 2002 G. Brinkmann and B. D. McKay

16 4,483,130,665,195,087 2002 G. Brinkmann and B. D. McKay
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Table 1

Remark 1.2.2. The number of all non-isomorphic labelled posets (equiv-

alently, T0 topologies) with n elements for n ≤ 18 is given in Table 2

(see [14]). This number is also the number of different partial order

relations on a set containing n elements.

n Labelled posets with n elements

1 1

2 3

3 19

4 219

5 4231

6 130023

7 6129859

8 431723379

9 44511042511

10 6611065248783

11 1396281677105899

12 414864951055853499

13 171850728381587059351

14 98484324257128207032183

15 77567171020440688353049939

16 83480529785490157813844256579

17 1221525412502955322862941281269151

18 241939392597201176602897820148085023

Table 2
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1.3 Dismantlable lattices

Definition 1.3.1. A finite lattice L of order n is called dismantlable if

there exists a chain L1 ⊂ L2 ⊂ · · · ⊂ Ln(= L) of sublattices of L such

that |Li| = i, for all i.

Dismantlable lattices are introduced by Rival [10].

The following results can be found in Rival [10], Kelly and Rival [4].

Proposition 1.3.1. [10]. Let L be a lattice, A ⊆ Irr(L) then L−A is

a sublattice of L.

Proposition 1.3.2. [10]. If L is a dismantlable lattice then for any

sublattice S ⊆ L, Irr(S) 6= φ.

Proposition 1.3.3. [10]. A sublattice of a dismantlable lattice is dis-

mantlable.

Proposition 1.3.4. [4]. A finite dismantlable lattice which is not a

chain, contains at least two incomparable doubly-irreducible elements.

Theorem 1.3.5. [4]. A finite lattice is dismantlable lattice if and only

if it contains no crown.

The concept of adjunct operation of lattices was firstly introduced by

Thakare, Pawar and Waphare[13] to achieve a constructive character-

ization of dismantlable lattices. If L1 and L2 are two disjoint lattices

and (a, b) are a pair of elements in L1 such that a < b and a 6≺ b,

define the partial order ≤ on L = L1∪L2 with respect to the pair (a, b)

as follows: x ≤ y in L if x, y ∈ L1 and x ≤ y in L1, or x, y ∈ L2 and
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x ≤ y in L2, or x ∈ L1, y ∈ L2 and x ≤ a in L1, or x ∈ L2, y ∈ L1 and

b ≤ y in L1.

It is easy to see that L is a lattice containing L1 and L2 as sublattices.

The procedure for obtaining L in this way is called adjunct operation (or

adjunct sum) of L1 with L2. The pair (a, b) is called as an adjunct pair

and L as adjunct of L1 with L2 with respect to the adjunct pair (a, b)

and write L = L1]
b
aL2. A diagram of L is obtained by placing a diagram

of L1 and a diagram of L2 side by side in such a way that the largest

element 1 of L2 is at the lower position than b and the least element 0

of L2 is at the higher position than a and then by adding the coverings

< 1, b > and < a, 0 >. This clearly gives |E(L)| = |E(L1)|+|E(L2)|+2.

This also implies that the adjunct operation preserves all the covering

relations of the individual lattices L1 and L2.aaaabba
aa b

a

L1

babbb b
\\

L2

bbaaabb babab a
ab

L1 ]ba L2

Fig.2

A lattice L is called adjunct of lattices L1, L2, . . . , Lk, if it is of the form

L = (. . . ((L1]
b1
a1
L2)]

b2
a2
L3)]

b3
a3
. . .)]

bk−1
ak−1Lk. Hereafter, we write this repre-

sentation as L = L1]
b1
a1
L2]

b2
a2
L3]

b3
a3
. . .]

bk−1
ak−1Lk or L = L1]α1

L2]α2
L3]α3

. . .]αk−1Lk,

where αi = (ai, bi), ∀ i, 1 ≤ i ≤ k − 1.

Note that, if L is adjunct of k chains then L contains k − 1 adjunct

pairs (including repetition, if any).

Following is the characterization obtained by Thakare, Pawar and
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Waphare[13].

Theorem 1.3.6. [13]. A finite lattice is dismantlable if and only if it

is an adjunct of chains.

The above characterization is similar to a structure theorem for planar

lattices; see. Baker, Fishburn and Roberts[1]. Note that, a represen-

tation of a dismantlable lattice as an adjunct of chains is not unique.

However, the number of chains in any adjunct representation of a dis-

mantlable lattice remains the same. More explicitly,

Lemma 1.3.7. [13]. If L is a dismantlable lattice then the number of

chains in every adjunct representation of L is the same.

Corollary 1.3.8. [13]. A dismantlable lattice with n elements has n+

r − 2 coverings if and only if it is an adjunct of r chains.

Corollary 1.3.9. [13]. If L is a dismantlable lattice with n elements

(n ≥ 3) then n− 1 ≤ |E(L)| ≤ 2n− 4.

Lemma 1.3.10. [13]. Let L be a dismantlable lattice with an adjunct

representation L = C1]
b1
a1
C2]

b2
a2
C3]

b3
a3
. . .]

bk−1
ak−1Ck. Then

(i) M(L) = L− {a1, a2, . . . , ak−1} and

(ii) J(L) = L− {b1, b2, . . . , bk−1}.

Interestingly, in each adjunct representation of a lattice L, an adjunct

pair (a, b) occurs in the same number of times.

Theorem 1.3.11. [13]. An adjunct pair (a, b) occurs r times in an

adjunct representation of a dismantlable lattice L if and only if there

exist exactly r + 1 maximal chains C0, C1, C2, . . . , Cr in [a, b] such that
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x ∧ y = a and x ∨ y = b for any x ∈ Ci − {a, b}, y ∈ Cj − {a, b} and

i 6= j.

Corollary 1.3.12. [13]. Let L be a dismantlable lattice and

L = C1]
b1
a1
C2]

b2
a2
. . .]bk−1ak−1

Ck = C ′1]
q1
p1
C ′2]

q2
p2
. . .]qk−1pk−1

C ′k

be any two adjunct representations of L. Then there is a permutation

π of 1, 2, . . . , k − 1 such that (ai, bi) = (pπ(i), qπ(i)), for all i.

Theorem 1.3.13. [13]. If L is a dismantlable lattice with n elements

and n+ k coverings then n− 2k − 2 ≤ |Irr(L)| ≤ n− 2.

Lemma 1.3.14. [13]. Every lattice with n elements and n+r coverings

with −1 ≤ r ≤ 3 is dismantlable.

The concept of a block(of a lattice) is introduced by Thakare, Pawar

and Waphare[13]. Let L be a finite lattice which is not a chain. Then

L contains a unique maximal sublattice which is a block, denoted by

B. The lattice L has the form C1 ⊕B or B ⊕ C2 or L = C1 ⊕B ⊕ C2,

where C1, C2 are chains, hence |E(L)| − |L| = |E(B)| − |B|. Thus, a

lattice is a block if 0 and 1 are reducible elements in it.

In the next Chapter, we extend some of the above mentioned results to

posets that are dismantlable by doubly irreducibles.



Chapter 2

Dismantlable posets

In this Chapter, we introduce and study posets dismantlable by dou-

bly irreducibles. We also study some graph theoretical aspects such

as cover graphs, orientability and an ear decomposition. I. Rival [10]

introduced the concept of a dismantlable lattice. I. Rival [27] intro-

duced the concept of a poset dismantlable by irreducibles. In the first

section, we introduce the concept of a poset dismantlable by doubly

irreducibles. We also introduce the operations, ‘1-sum’ and ‘2-sum’ of

posets. Using these operations, we obtain the structure theorem for

posets dismantlable by doubly irreducibles. Further, we try to give the

inter-connections among these three concepts. In the second section,

we study the concept of nullity of lattices and obtain various proper-

ties of the nullity of lattices. This concept is extensively used in the

subsequent chapters. In the third section, we introduce the concept

of adjunct of ears and characterize the graphs which are orientable as

posets dismantlable by doubly irreducibles, thereby we try to give a

0The paper based on partial content of this Chapter has been presented in the 77th National
Conference of Indian Mathematical Society held at the Department of Mathematics, S.R.T.M. Uni-
versity, Nanded during 27th to 30th December, 2011.
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partial solution to the open problem, “Characterize those graphs which

are orientable”, raised by O. Ore[20]. In the last section, we prove

Whitney type characterizations of graphs (see [44]), namely, “a loop-

less graph is connected if and only if it has an ear decomposition”. We

begin with a simple well known characterization of a doubly irreducible

element in a lattice.

Proposition 2.0.15. An element other than 0 and 1 is doubly irre-

ducible in a lattice L if and only if it has exactly one upper cover and

exactly one lower cover in L.

Proof. Suppose an element a in a lattice L is doubly irreducible, where

a 6= 0 and a 6= 1. Therefore a is neither meet reducible nor join

reducible. If a has at least two upper covers say b and c then b∧ c = a,

a contradiction. Similarly if a has at least two lower covers say e and

f then e∨ f = a, a contradiction. Also we get a contradiction, if a has

no upper or no lower cover in L, since 0 ≤ a ≤ 1. Hence a has exactly

one upper cover and exactly one lower cover in L.

Conversely, suppose a has exactly one upper cover and exactly one

lower cover in L. Then a is neither meet reducible nor join reducible.

Hence a is doubly irreducible in L.

Brucker and Gely[37] characterized dismantlable lattices as follows.

Theorem 2.0.16. [37]. A lattice L is dismantlable lattice if and only

if there exists a chain of lattices L1 ⊂ L2 ⊂ · · · ⊂ Ln = L such that L1

is a singleton and Li−1 = Li \{x} where x is doubly irreducible element

of Li.
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The following definition is due to Duffus and Rival[25].

Definition 2.0.2. An element a of a poset P is irreducible in P if a is

an isolated element or a has precisely one upper cover or precisely one

lower cover in P .

Let I(P ) denote the set of all elements irreducible in a poset P .

Definition 2.0.3. An n-element poset P is dismantlable by irreducibles

if the elements of P can be labelled a1, a2, . . . , an so that ai ∈ I(P −

{a1, a2, . . . , ai−1}) for each i = 1, 2, . . . , n− 1.

Equivalently, a finite poset P is dismantlable by irreducibles if P is one

element or P = {x1, x2, . . . , xn} such that for all i = 1, 2, . . . , n−1, xi is

an irreducible element in the subposet of P induced by {xi, xi+1, . . . , xn}.

That means, an n-element poset P is dismantlable by irreducibles if

there exists a chain P1 ⊂ P2 · · · ⊂ Pn(= P ) of subposets of P such that

P1 is one element and Pi−1 = Pi\{x}, where x is an irreducible element

in Pi, for all i.

Proposition 2.0.17. [25]. Let P be a finite connected poset. If P

contains no crown then P is dismantlable by irreducibles.

The converse of Proposition 2.0.17 is not true. For example, a cube (or

a Boolean lattice 23) is dismantlable by irreducibles. Using Proposition

2.0.17, we get the following.

Corollary 2.0.18. Every dismantlable lattice is dismantlable by irre-

ducibles.

In fact, we have the following result.
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Theorem 2.0.19. Every finite ordered set with a smallest element is

dismantlable by irreducibles.

Proof. Let P be a finite ordered set with a smallest element 0. We

prove the result by induction on n = |P | ≥ 1. Clearly, if n = 1 or

2 then we are done. Suppose n > 2 and the result is true for all the

posets of order r < n. Let a be an atom of P . Let P ′ = P −{a}. Then

P ′ is a poset with the same smallest element 0 and |P ′| = n− 1. Hence

by induction hypothesis, P ′ is dismantlable by irreducibles. Now a is

irreducible in P , since it has exactly one lower cover, which is 0. As

P ′ = P \ {a}, P is dismantlable by irreducibles.

2.1 Posets dismantlable by doubly irreducibles

2.1.1 Introduction

The theories of dismantlable lattices (see [10]) and posets dismantlable

by irreducibles (see [25], [26] and [27]) motivate us to define the follow-

ing.

Definition 2.1.1. An element a of a poset P is doubly irreducible in P

if a has at the most one upper cover and at the most one lower cover

in P .

For example, any element in a chain is a doubly irreducible element

and no element in the cube 23 is doubly irreducible.

Let DI(P ) denotes the set of all doubly irreducible elements in a poset

P . Now we introduce the posets dismantlable by doubly irreducibles.
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Definition 2.1.2. An n-element poset P is said to be a poset dismant-

lable by doubly irreducibles if there exists a chain P1 ⊂ P2 · · · ⊂ Pn(= P )

of subposets of P such that P1 has one element and Pi−1 = Pi \ {x},

where x is a doubly irreducible element in Pi, for all i.

Equivalently, a finite poset P is dismantlable by doubly irreducibles

if P has one element or P = {x1, x2, . . . , xn} such that for all i =

1, 2, . . . , n− 1, xi is a doubly irreducible element in the subposet of P

induced by {xi, xi+1, . . . , xn}.

That means, an n-element poset P is dismantlable by doubly irre-

ducibles if the elements of P can be labelled a1, a2, . . . , an so that

ai ∈ DI(P − {a1, a2, . . . , ai−1}) for each i = 1, 2, . . . , n− 1.

For example, a chain and an antichain are dismantlable posets by dou-

bly irreducibles. A crown is not a poset dismantlable by doubly irre-

ducibles, since it does not contain a doubly irreducible element.

We say a poset P is connected if C(P ) is connected. Therefore, a

component of a poset P is a maximal connected subposet of P . Using

the definition of a poset dismantlable by doubly irreducibles, it is clear

that, a poset P is dismantlable by doubly irreducibles if and only if all

the components of P are dismantlable by doubly irreducibles.

Remark 2.1.1. A lattice dismantlable by irreducibles need not be

dismantlable by doubly irreducibles. For example, a cube 23. Note that,

a cube 23 contains a crown. Therefore, by Proposition ??, a finite lattice

need not be a lattice dismantlable by doubly irreducibles. However, by

Theorem 2.0.16 and by Proposition 2.0.15, every dismantlable lattice

is dismantlable by doubly irreducibles.
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Using the definitions of a doubly irreducible element and an irreducible

element, we have the following result.

Lemma 2.1.1. Every doubly irreducible element in a poset is an irre-

ducible element.

As a consequence of the above Lemma 2.1.1, we get the following result.

Corollary 2.1.2. If a poset is dismantlable by doubly irreducibles then

it is dismantlable by irreducibles.

Recall that, Thakare, Pawar and Waphare [13] introduced the concept

of an adjunct operation for lattices. We extend this concept to posets

by introducing “adjunct of posets”. For this, we introduce the concepts

of “1-sum” and “2-sum” for posets.

2.1.2 1-sum and 2-sum of posets

Definition 2.1.3. Let P1 and P2 be two disjoint posets. Let a ∈ P1.

Define a partial order on P = P1 ∪ P2 with respect to a as follows.

For x, y ∈ P , we say that x ≤ y in P if x, y ∈ P1 and x ≤ y in P1 or

x, y ∈ P2 and x ≤ y in P2 or x ∈ P1, y ∈ P2 and x ≤ a in P1.

It is easy to see that P is a poset containing P1 and P2 as subposets.

The procedure for obtaining P in this way is called an up 1-sum of P1

with P2 with respect to a and write P = P1]aP2.

A diagram of P is obtained by placing a diagram of P1 and a diagram

of P2 side by side in such a way that the minimal elements of P2 are

at higher positions than a and then by adding the coverings < a, x >

for all x ∈ S, the set of all minimal elements of P2. This clearly gives
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|E(P )| = |E(P1)|+ |E(P2)|+ |S|.

Dually, one can define a down 1-sum of posets. If P is a down 1-sum

of P1 with P2 with respect to a in P1 then write P = P1]
aP2.

We call the element a as an adjunct element of the 1-sum.

We say that P is a 1-sum of posets P1 and P2 with respect to an element

a ∈ P1 if P is either an up 1-sum or a down 1-sum of P1 and P2 with

respect to a.

A 1-sum P1]aP2 or P1]
aP2 is called a trivial 1-sum if P2 is a chain and

a is respectively maximal or minimal element of P1; otherwise, we say

that the 1-sum is non-trivial.

Definition 2.1.4. A 2-sum of the posets P1 and P2 with respect to a

pair (a, b) with a < b but a 6≺ b in P1, is the poset P = P1 ∪ P2 with

a partial order defined on P , which is the union of the partial orders

in P1]aP2 and P1]
bP2. The pair (a, b) is called an adjunct pair of the

2-sum. We denote the 2-sum of the posets P1 and P2 with respect to a

pair (a, b) by P1]
b
aP2.

The figure(Fig.2) shows the 2-sum of the two posets L1 and L2.

If a poset P is obtained by either 1-sum or 2-sum of the posets P1, P2,

. . . , Pk then we say that P is an adjunct of the posets P1, P2, . . . , Pk and

we write P = (· · · ((P1]α1
P2)]α2

)P3 · · · ]αk−1)Pk or P = P1]α1
P2]α2

P3 · · ·

]αk−1Pk, where for each i, αi is either an adjunct element or an adjunct

pair. If for some i, αi is an adjunct element a correspond to an up

1-sum (or a down 1-sum) then the notation ]αi
is considered as ]a(or ]a)

and if it is an adjunct pair (a, b) then the notation ]αi
is considered as

]ba.
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Note that, the operation 1-sum or 2-sum of posets preserves the existing

coverings of the posets.

Lemma 2.1.3. Let L1 and L2 be lattices and let L = L1]aL2, where a

is an adjunct element. Then L is a lattice if and only if a is 1 of L1.

Further, L = L1 ⊕ L2.

Proof. Suppose L = L1]aL2 is a lattice. Let b be 1 of L1. Let c be 1 of

L2. If a 6= b then b ∨ c does not exist in L, a contradiction. Therefore

a = b and hence a must be 1 of L1. Conversely, if a is 1 of L1 then

L = L1 ⊕ L2. Thus L is a lattice.

Dually, it follows from Lemma 2.1.3 that, if L1 and L2 are lattices and

L = L1]
aL2. Then L is a lattice if and only if a is 0 of L1. Further,

L = L2 ⊕ L1. Thus in such a situation, the 1-sum coincides with a

linear sum.

Theorem 2.1.4. Let L be a lattice. Then the following statements are

equivalent.

1. L is dismantlable.

2. L is dismantlable by doubly irreducibles.

3. L is obtained by 2-sum of chains.

Proof. (1) implies (2) follows from Theorem 2.0.16 and Proposition

2.0.15. To prove (2) implies (1), suppose L is dismantlable by dou-

bly irreducibles. Therefore, there is a doubly irreducible element say x

in L. As L is a lattice, L′ = L − {x} is again a lattice dismantlable

by doubly irreducibles. Applying the same arguments to L′ as applied

to L and continuing in this way, we can have a chain of sublattices
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L0 ⊂ L1 ⊂ · · · ⊂ Ln(= L) of L with Li−1 = Li \ {x} for each i and

L0 is empty, where x is doubly irreducible element of Li. Therefore,

by Theorem 2.0.16, L is dismantlable. Hence, L is dismantlable if and

only if L is dismantlable by doubly irreducibles.

Now, (1) if and only if (3) follows from the Theorem 1.3.6.

Hence, we have (2) if and only if (3).

Lemma 2.1.5. [38]. Let P and Q be dismantlable (by irreducibles)

ordered sets. Then P ×Q is dismantlable (by irreducibles).

The above Lemma 2.1.5 is not true for lattices dismantlable by doubly

irreducibles. Since, a boolean lattice 23 is not a lattice dismantlable by

doubly irreducibles, whereas M2 (see Fig.5) and the 2-chain are lattices

dismantlable by doubly irreducibles.

2.1.3 Structure theorem

We now prove a structure theorem for posets dismantlable by doubly

irreducibles.

Theorem 2.1.6. A connected poset P is dismantlable by doubly irre-

ducibles if and only if P is obtained by (non-trivial) 1-sum or 2-sum of

chains.

Proof. Suppose P is a poset dismantlable by doubly irreducibles. There-

fore there exists a chain P1 ⊂ P2 · · · ⊂ Pn(= P ) of subposets of P such

that P1 is one element and Pi−1 = Pi\{x}, where x is doubly irreducible

element in Pi, for all i.

Using induction on n = |P | ≥ 1.
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If n = 1 then P is the 1-chain and we are done. Now suppose n > 1

and the result is true for all posets of order < n.

If P is a chain then we are done. Therefore, suppose P is not a chain.

As P is dismantlable by doubly irreducibles, there is at least one doubly

irreducible element in P . Let x0 be a doubly irreducible element in P

and π be a maximal path in C(P ) containing x0, consisting of doubly

irreducible elements in P . Suppose π : x1−x2−· · ·−xm. If x1 or xm is

pendant in C(P ) then denote it by x (Note that, both x1 and xm can

not be pendant as P is connected but not a chain); otherwise, denote

x1 by x.

Let Pn−1 = Pn \ {x}. Now Pn−1 is a poset dismantlable by doubly irre-

ducibles. Also, |Pn−1| = n−1 < n. Therefore, by induction hypothesis,

Pn−1 is obtained by (non-trivial) 1-sum or 2-sum of chains. Suppose

Pn−1 has an adjunct representation

Pn−1 = C0]α1
C1]α2

C2 · · · ]αk
Ck, (∗)

where for each i, Ci is a chain and αi is either an adjunct element or

an adjunct pair.

If x is a pendant vertex in C(P ) then P = C0]α1
C1]α2

C2 · · · ]αj
C ′j · · · ]αk

Ck,

where C ′j = Cj ∪ {x} with x ≺ x2 whenever x = x1 and x2 ∈ Cj, and

xm−1 ≺ x whenever x = xm and xm−1 ∈ Cj.

Now, suppose x is not pendant in C(P ), y ≺ x and xm ≺ z in P .

Case : 1. Suppose y 6≺ z in Pn−1. If π : x (that is, m = 1) then

P = Pn−1]
z
y{x}; Otherwise, P = C0]α1

C1]α2
C2 · · · ]αj

C ′j · · · ]αk
Ck, where

C ′j = Cj ∪ {x} with x ≺ x2 whenever x2 ∈ Cj.

Case : 2. Suppose y ≺ z in Pn−1 (that is, m = 1 and there is no another
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path from y to z in P ). Let y ∈ Ci and z ∈ Cj.

If i ≤ j then P = C0]α1
C1]α2

C2 · · · ]αi
Ci · · · ]αj

C ′j · · · ]αk
Ck,

where C ′j = Cj ∪ {x} with x ≺ z.

If i > j then P = C0]α1
C1]α2

C2 · · · ]αj
Cj · · · ]αi

C ′i · · · ]αk
Ck,

where C ′i = Ci ∪ {x} with y ≺ x.

Thus P is obtained by (non-trivial) 1-sum or 2-sum of chains.

Conversely, suppose P is obtained by (non-trivial) 1-sum or 2-sum of

chains. Let P = C0]α1
C1]α2

C2 · · · ]αk
Ck where for each i, αi is either an

adjunct element or an adjunct pair and Ci is a chain.

Again, using induction on n = |P | ≥ 1. If n = 1 then P is 1-chain and

we are done. Now suppose n > 1 and the result is true for all posets of

order < n.

Let x ∈ Ck. Clearly x is doubly irreducible in the chain Ck and hence

in P . Let P ′ = P \ {x}. Now P ′ is connected and |P ′| = n− 1 < n and

P ′ = C0]α1
C1]α2

C2 · · · ]αk−1Ck−1, if Ck = {x} and

P ′ = C0]α1
C1]α2

C2 · · · ]αk−1Ck−1]αk
C ′k, if |Ck| > 1, where C ′k = Ck − {x}.

Thus P ′ is obtained by (non-trivial) 1-sum or 2-sum of chains. There-

fore, by induction hypothesis P ′ is dismantlable by doubly irreducibles.

Now P ′ = P \ {x}, where x is doubly irreducible in P . Therefore P is

dismantlable by doubly irreducibles.

Theorem 2.1.7. If P is a poset dismantlable by doubly irreducibles and

C is any maximal chain in P then we get chains C1, C2, . . . , Ck in P

such that P = C]C1]C2 · · · ]Ck.

Proof. We prove the result using induction on |P | ≥ 1. If |P | = 1 then

we are done. Now suppose |P | > 1 and the result is true for all posets
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Q with |Q| < |P |. Let C be a maximal chain in P . Let x be a doubly

irreducible element in P . Let P ′ = P \ {x}.

Case 1 : Suppose x ∈ C and C−{x} is a maximal chain in P ′. Now P ′

is a poset dismantlable by doubly irreducibles. Therefore, by induction

hypothesis, we get chains C1, C2, . . . , Ck in P ′ such that P ′ = (C −

{x})]C1]C2 · · · ]Ck. Hence P = C]C1]C2 · · · ]Ck as required.

Case 2 : Suppose x ∈ C and C − {x} is not a maximal chain in P ′.

Then there exist a, b ∈ C such that a ≺ x ≺ b and a maximal chain

C0 in [a, b] such that x /∈ C0. But then C ′ = (C ∩ (a]) ∪ C0 ∪ (C ∩ [b))

is a maximal chain in P ′. Therefore, by induction hypothesis, we get

chains C ′1, C
′
2, . . . , C

′
k in P ′ such that P ′ = C ′]C ′1]C

′
2 · · · ]C ′k. But then

it is easy to see that, P = C]baC0]C
′
1]C

′
2 · · · ]C ′k as required.

Case 3 : Suppose x /∈ C. Then C remains a maximal chain in P ′.

Therefore, by induction hypothesis, we get chains C ′′1 , C
′′
2 , . . . , C

′′
k in P ′

such that P ′ = C]C ′′1 ]C ′′2 · · · ]C ′′k . Consider an ear E in P containing x.

If E 6= {x} and y ∈ E with y 6= x then change C ′′i to C ′′′i = C ′′i ∪ {x},

where y ∈ C ′′i , we get P = C]C ′′1 ]C ′′2 · · · ]C ′′′i · · · ]C ′′k .

If E = {x} then P = C]C ′′1 ]C ′′2 · · · ]C ′′k ]{x} whenever x is pendant or

there is an element z 6= x such that a ≺ z ≺ b, where a and b are the

elements of P such that a ≺ x ≺ b. If there is no z in P such that

z 6= x and a ≺ z ≺ b then we must have C ′′i containing both a and b.

Replace C ′′i by C ′′′i = C ′′i ∪ {x}, we get the required result.

By Theorem 2.1.6, if a poset P is dismantlable by doubly irreducibles

then P is obtained by (non-trivial) 1-sum or 2-sum of chains. That

is, P = C0]α1
C1]α2

C2 · · · ]αk
Ck, where for each i, αi is either an adjunct
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element or an adjunct pair and Ci is a chain. Henceforth, we call such

a representation of P as an “adjunct representation” of P into chains.

It is obvious that there may be different adjunct representations to

a poset dismantlable by doubly irreducibles. However, the number

of chains in each adjunct representation is the same. Moreover, the

adjunct elements and the adjunct pairs are also the same, having the

same multiplicity. More precisely, we have the following.

Theorem 2.1.8. Let P be a poset dismantlable by doubly irreducibles.

Then an element x ∈ P occurs k times as a base of up 1-sum(i.e., as

an adjunct subscript) in an adjunct representation of P if and only if

k = 0 whenever x is a maximal element of P , and

k = |{B : B is a block in C(P ) containing x such that x is not the

largest element of B}| − 1. (∗)

Proof. Suppose x occurs k times as a base of up 1-sum in an adjunct

representation with corresponding chains C1, C2, . . . , Ck and C is the

chain in the representation containing x. It is clear that, if x is a max-

imal element of the poset P then x can not become a base of any up

1-sum, since otherwise we get a contradiction to the maximality of x.

Hence k = 0. Now, suppose x is not a maximal element of P , that

means, there is a block in C(P ) containing x as an element other than

the largest element of the block. Note that, if the chain C corresponds

to an up 1-sum and x is the largest element of C then k = 0, as the

1-sums in the representation are non-trivial, but then x becomes a max-

imal element of P , a contradiction. Hence, we can select an element

y such that x ≺ y, y /∈ Ci, for all i, 1 ≤ i ≤ k, and y appears before
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joining any of Ci’s in the representation. Let xi be the smallest element

of Ci, for all i, 1 ≤ i ≤ k. Let B be the block containing x and y. Let

Bi be the block containing x and xi, for all i, 1 ≤ i ≤ k.

Now, we claim that, all these blocks B,Bi’s are distinct and these are

the only blocks containing x as a non-largest element.

As y appears in the representation before xi, for all i, and the chains in

the representation are pairwise disjoint, it is easy to see that B 6= Bi,

for all i and Bi 6= Bj, for all i 6= j. Now, suppose B′ is a block con-

taining x, B′ 6= B, B′ 6= Bi, for all i, and x is not the largest element

of B′. Note that, any block other than B and having the common ver-

tex x must correspond to an up 1-sum at x; it means that, the 1-sum

corresponding to B′ is, or can be exchanged with, one of the 1-sums

used in the representation. In any case, the block B′ = Bi for some i.

Thus, k = |{B : B is a block in C(P ) containing x such that x is not

the largest element of B}| − 1.

Conversely, we prove using induction on |P | = n that, for a poset P

dismantlable by doubly irreducibles, if k is the number satisfying (∗)

for an element x then x occurs k times as a base of up 1-sum in any

adjunct representation of P .

If n = 1 or 2 then we are done. Suppose n > 2. Let x ∈ P be an element

and k be the number satisfying (∗). Let R = C0]α1
C1]α2

C2 · · · ]αm
Cm be

an adjunct representation of P .

If |Cm| > 1 then replacing Cm by Cm \ {y} in R, where y ∈ Cm and

y 6= x, we get a poset P ′ with representation R′ such that |P ′| < n,

x ∈ P ′ and the number k satisfies (∗) for x in P ′. By induction, x
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occurs k times as a base of up 1-sum in R′ and hence in R as required.

Now, suppose |Cm| = 1, say Cm = {y}. Note that, if x = y then

k = 0 and clearly the result is true. Let x 6= y and consider the poset

P ′ = P \ {y}. Note that, if x is a maximal element of P then x is also

a maximal element of P ′ and it follows by induction that, there is no

up 1-sum in R with base x.

Now assume that x is not a maximal element of P .

Case 1 : Suppose Cm is used for 1-sum in R. If Cm corresponds to a

down 1-sum then same k satisfies (∗) for x in P ′ and we get that x

occurs k times as a base of up 1-sum in R′ and hence in R. Similarly,

we get the required result by induction whenever the 1-sum is up 1-sum

at the base other than x.

Suppose Cm corresponds to up 1-sum with base x. Then k− 1 satisfies

(∗) for x in P ′. Hence by induction x occurs k − 1 times as a base of

up 1-sum in R′ and hence x occurs k times as a base of up 1-sum in R,

as required.

Case 2 : Suppose Cm is used for 2-sum in R, say (a, b) is the correspond-

ing adjunct pair. Let B be a block containing the interval [a, b] in P .

Clearly, if x /∈ B then the same k satisfies (∗) for x in P ′ and the result

follows by induction. Finally, if x ∈ B and x is not a largest element of

B then in P ′, there is a unique block B1 in P ′ which is contained in B

such that x ∈ B1 and x is not the largest element of B1. Hence, in this

situation also the same k satisfies (∗) for x in P ′ and the result follows

by induction.

Dually, an element x ∈ P occurs k times as a base of down 1-sum(i.e.,
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as an adjunct superscript) in an adjunct representation of P if and only

if k = 0 whenever x is a minimal element of P , and k = |{B : B is a

block in C(P ) containing x such that x is not the smallest element of

B}| − 1. Thus, using Theorem 2.1.8, we have the following.

Corollary 2.1.9. Let P be a poset dismantlable by doubly irreducibles.

Let a ∈ P . Then the number of times a occurs as an adjunct subscript

in any adjunct representation of P is the same. The same holds for

adjunct superscripts.

It is known that, if L is a dismantlable lattice then the number of

chains in every adjunct representation of L is the same (see [13]). In

Theorem 2.1.10, we prove that the number of the chains in any adjunct

representation of P remains same.

Theorem 2.1.10. If P is a poset dismantlable by doubly irreducibles

then the number of chains in any adjunct representation of P remains

same.

Proof. Let P be a poset dismantlable by doubly irreducibles. With-

out loss, we assume that P is connected. By Theorem 2.1.6, P =

C0]α1
C1]α2

C2 · · · ]αk
Ck, where for each i, αi is an adjunct element or an

adjunct pair and Ci is a chain. If r1 is the number of adjunct elements

and r2 is the number of adjunct pairs in P then k = r1 + r2. Suppose

P can also written as C ′0]β1C
′
1]β2C

′
2 · · · ]βlC ′l , where for each j, βj is an

adjunct element or an adjunct pair and C ′j is a chain. If s1 is the num-

ber of adjunct elements and s2 is the number of adjunct pairs in this

representation of P then l = s1 + s2.
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Now |E(P )| =
k∑
i=0

|E(Ci)|+r1+2r2 =
l∑

j=0

|E(C ′i)|+s1+2s2. Therefore

we have |P | − (k+ 1) + r1 + 2r2 = |P | − (l+ 1) + s1 + 2s2 which implies

that k− r1 = l− s1. But by the above Corollary 2.1.9, r1 = s1. There-

fore k = l. Thus, the number of chains in both the representations of

P is same.

In order to prove the Theorem 2.1.12, we first prove the following.

Theorem 2.1.11. Let P be a poset having a maximum of k internally

disjoint maximal chains from a to b. Then for any chain C, the poset

P ]baC has a maximum of k+ 1 internally disjoint maximal chains from

a to b.

Further, for any 1-sum with C or 2-sum with C at a pair other than

(a, b) to P produces a poset in which the maximum number of internally

disjoint maximal chains from a to b is k.

Proof. The first part follows from the definition of 2-sum. Now we

prove the second part. It is clear that any 1-sum of P with C produces

a poset in which the maximum number of internally disjoint maximal

chains from a to b is k, since this 1-sum does not produce a chain from a

to b. Let P ′ = P ]dcC, where (c, d) 6= (a, b) in P . If either c or d but not

both belong to the interval [a, b] then we are done. Therefore, suppose

both c, d ∈ [a, b]. Let k be the maximum number of internally disjoint

maximal chains, say C1, C2, . . . Ck from a to b in P . Now c, d ∈ [a, b]

implies that either c, d ∈ Ci for some i, or c ∈ Ci (or d ∈ Ci) for some

i, or c, d /∈ Ci for any i.

Case 1 : Suppose c, d ∈ Ci for some i.
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If |(c, d) ∩ Ci| ≥ |C| then we are done; otherwise, replace Ci by the

chain C ′i = ([a, c] ∩ Ci)⊕ C ⊕ ([d, b] ∩ Ci).

Case 2 : Suppose c ∈ Ci for some i.

Let d ∈ C ′, where C ′ : x1 ≺ x2 ≺ · · ·xr−1 ≺ xr is a maximal chain

such that e, f ∈ Ci, e ≺ x1, xr ≺ f and Ci ∩ C ′ = ∅, since those k

chains are internally disjoint maximal chains. It is clear that c ≤ e. If

|(c, f) ∩ Ci| ≥ |C ⊕ ([d, f) ∩ C ′)| then we are done; otherwise, replace

Ci by the chain C ′i = ([a, c] ∩ Ci)⊕ C ⊕ ([d, f) ∩ C ′)⊕ ([f, b] ∩ Ci).

Case 3 : Suppose d ∈ Ci for some i.

This case is similar to Case 2 above.

Case 4 : Suppose c, d /∈ Ci for any i.

Let c, d ∈ C ′′, where C ′′ : y1 ≺ y2 ≺ · · · ys−1 ≺ ys is a maximal chain

such that g, h ∈ Ci, g ≺ y1, ys ≺ h and Ci∩C ′′ = ∅ for some i, since those

k chains are internally disjoint maximal chains. Again, if |(g, h)∩Ci| ≥

|((g, c]∩C ′′)⊕C⊕ ([d, h)∩C ′′)| then we are done; otherwise, replace Ci

by the chain C ′i = ([a, g]∩Ci)⊕((g, c]∩C ′′)⊕C⊕([d, h)∩C ′′)⊕([h, b]∩Ci).

In any case, we get k internally disjoint maximal chains from a to b.

Hence the proof is complete.

Theorem 2.1.12. Let P be a poset dismantlable by doubly irreducibles.

A pair (a, b) of elements a, b ∈ P with a < b and a 6≺ b in P occurs

r times in an adjunct representation of P if and only if the maximum

number of internally disjoint maximal chains from a to b in P is r+ 1.

Proof. Let R = C0]α1
C1]α2

C2 · · · ]αm
Cm be an adjunct representation for

P , and the pair α = αi1 = αi2 · · · = αir occurs r times in the adjunct

representationR. Consider the subposet P ′ = C0]α1
C1]α2

C2 · · · ]αi1−1
Ci1−1.
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Now, the elements a, b satisfy a, b ∈ P ′, a < b and a 6≺ b in P ′. As the

pair (a, b) is not used in the representation of P ′, and noting that any

1-sum or 2-sum does not disturb the existing covering relation, there

are no two internally disjoint maximal chains from a to b in P ′. Select

a maximal chain C ′0 in P ′ from a to b. The chain C ′0 together with the

chains C ′s = Cis ∪{a, b} for s = 1, 2, . . . , r form r+ 1 internally disjoint

maximal chains from a to b in P . Now, the fact that there is no set

of r + 2 internally disjoint maximal chains from a to b in P follows by

Theorem 2.1.11. Therefore C ′0, C
′
1, . . . , C

′
r are the required chains.

To prove the converse, we use induction on n = |P | ≥ 1. If n ≤ 4 then

the result holds obviously. Now, suppose n > 4 and assume that the

result is true for all posets dismantlable by doubly irreducibles having

less than n elements. Let (a, b) be a pair of elements a, b ∈ P with

a < b and a 6≺ b in P . Suppose the maximum number of internally

disjoint maximal chains from a to b in P is r + 1.

Using Theorem 2.1.6, we have P = C0]α1
C1]α2

C2 · · · ]αk
Ck, where for

each i, αi is either an adjunct element or an adjunct pair and Ci is a

chain. Then Q = P − Ck = C0]α1
C1]α2

C2 · · · ]αk−1Ck−1 is a subposet of

P . Moreover, by Theorem 2.1.6, Q is a poset dismantlable by doubly

irreducibles with |Q| < n.

If αk is an adjunct pair (a, b) then the maximum number of internally

disjoint maximal chains from a to b in Q is r. Therefore, by induction

hypothesis, the pair (a, b) occurs r− 1 times in some adjunct represen-

tation R of Q and hence r times in the adjunct representation R]baCk

of P . If αk is not an adjunct pair (a, b) then the proof follows from
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Lemma 2.1.11.

The following Corollary 2.1.13 immediately follows from Theorem 2.1.12

(Note that, the Corollary 2.1.13 also follows from Corollary 2.1.9 and

Theorem 2.1.10).

Corollary 2.1.13. Let P be a poset dismantlable by doubly irreducibles.

Let a, b ∈ P be such that a < b but a 6≺ b. Then the number of times

(a, b) occurs as an adjunct pair in any adjunct representation of P

remains the same.

The following Corollary 2.1.14 follows from Theorem 2.1.10, Corollary

2.1.9 and Corollary 2.1.13.

Corollary 2.1.14. Let P be a poset dismantlable by doubly irreducibles.

Let C0]α1
C1]α2

C2 · · · ]αk
Ck and C ′0]β1C

′
1]β2C

′
2 · · · ]βkC ′k be any two adjunct

representations of P . Then there is a permutation π of {1, 2, . . . , k}

such that αi = βπ(i) for all i, 1 ≤ i ≤ k.

In order to prove Theorem 2.1.16, we need the following.

Lemma 2.1.15. Let P be a poset dismantlable by doubly irreducibles

and let B be a pendant block in C(P ) with cut-vertex x. Then P−{B−

{x}} is also a poset dismantlable by doubly irreducibles.

Proof. Suppose P is a poset dismantlable by doubly irreducibles and

B is a pendant block in C(P ) with cut-vertex x. By Theorem 2.1.6,

P = C0]α1
C1]α2

C2 · · · ]αk
Ck, where for each i, αi is either an adjunct

element or an adjunct pair and Ci is a chain. We use induction on

n = |P |. If n ≤ 3 then we are done. Now, suppose n ≥ 4 and the result
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is true for all posets containing < n elements. Let P ′ = P − Ck. Then

|P ′| < n and P ′ is also a poset dismantlable by doubly irreducibles.

Case 1 : Suppose B ∩Ck = ∅. Now B is a pendant block in C(P ) with

cut-vertex x. Therefore, x /∈ Ck and if αk is an adjunct element then

αk /∈ B. Also, if αk = (a, b) is an adjunct pair then a, b /∈ B, since

otherwise, Ck ⊂ B, which is not possible. Hence B remains a pendant

block in P ′. Therefore, by induction hypothesis, Q = P ′−{B−{x}} is

a poset dismantlable by doubly irreducibles. Therefore using Theorem

2.1.6, P = Q]αk
Ck is also a poset dismantlable by doubly irreducibles.

Case 2 : Suppose B∩Ck 6= ∅. Then Ck ⊂ B. Consider B′ = B−Ck. If

B′ is a block itself then it is a pendant block in C(P ′) with cut-vertex

x. Therefore, by induction hypothesis, Q′ = P ′−{B′−{x}} is a poset

dismantlable by doubly irreducibles. Therefore using Theorem 2.1.6,

P = Q′]αk
Ck is also a poset dismantlable by doubly irreducibles.

Suppose B′ is not a block itself. Suppose there are t ≥ 2 blocks in

C(B′). If B1 is a pendant block in C(B′) with cut-vertex x1 then B1

is also a pendant block in C(P ′) with cut-vertex x1. Therefore, by

induction hypothesis, P ′1 = P ′ − {B1 − {x1}} is a poset dismantlable

by doubly irreducibles.

Now, suppose B2 is a pendant block in C(B′1), where B′1 = B′ − (B1 −

{x1}) with cut-vertex x2 then B2 is also a pendant block in C(P ′1) (⊂

C(P ′)) with cut-vertex x2. Therefore, by induction hypothesis, P ′2 =

P ′1 − {B2 − {x2}} is a poset dismantlable by doubly irreducibles.

Continuing in this way, suppose Bt is a pendant block in C(B′t−1),

where B′t−1 = B′t−2− (Bt−1−{xt−1}) with cut-vertex xt then Bt is also
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a pendant block in C(P ′t−1) (⊂ C(P ′)) with cut-vertex xt. Therefore, by

induction hypothesis, P ′t = P ′t−1 − {Bt − {xt}} is a poset dismantlable

by doubly irreducibles. Note that P ′t = Q. Hence the proof is complete.

We now prove one more characterization of a poset dismantlable by

doubly irreducibles.

Theorem 2.1.16. Let P be a connected poset. Then P is dismantlable

by doubly irreducibles if and only if every block in C(P ) is a poset

dismantlable by doubly irreducibles.

Proof. Suppose P is a connected poset dismantlable by doubly irre-

ducibles. Let B be a block in C(P ). If B = P then we are done;

Otherwise, C(P ) contains at least two pendant blocks. We use induc-

tion on n = |P |. If n ≤ 3 then we are done. Now, suppose n ≥ 4 and

the result is true for all posets containing < n elements. Let B′ and B′′

be pendant blocks in C(P ).

If B 6= B′ then consider P ′ = P − {B′ − {x}}, where x is a cut-vertex

of B′ (Note that, if B = B′ then one can consider P ′ = P −{B′′−{y}},

where y is a cut-vertex of B′′). By Lemma 2.1.15, P ′ is a poset disman-

tlable by doubly irreducibles. Also P ′ is connected. Now |P ′| < n and

B is a block in C(P ′). Therefore by induction hypothesis, every block

in C(P ′) is a poset dismantlable by doubly irreducibles. Hence B is a

poset dismantlable by doubly irreducibles.

Conversely, suppose every block in C(P ) is a poset dismantlable by

doubly irreducibles. If there is only one block then we are done. Again,
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we use induction on n = |P |. If n ≤ 3 then we are done. Now, suppose

n ≥ 4 and the result is true for all posets containing < n elements. Let

B be a pendant block in C(P ) with cut-vertex x.

Case 1 : Suppose B is an edge {x, y}. Let P ′ = P −{y}. Then P ′ con-

tains all the blocks of P except B. Now P ′ is connected and |P ′| < n.

Therefore by induction hypothesis, P ′ is a poset dismantlable by doubly

irreducibles. By Theorem 2.1.6, suppose P ′ = C0]α1
C1]α2

C2 · · · ]αk
Ck,

where for each i, αi is either an adjunct element or an adjunct pair and

Ci is a chain. If x is doubly irreducible in P then

P = C0]α1
C1]α2

C2 · · · ]αj
C ′j · · · ]αk

Ck, where C ′j = Cj ∪ {y} with x ∈ Cj;

Otherwise, P = P ′]x{y} or P = P ′]x{y}. Therefore by Theorem 2.1.6,

P is a poset dismantlable by doubly irreducibles.

Case 2 : Suppose B is not an edge. Now B is a poset dismantlable by

doubly irreducibles. By Theorem 2.1.6, let B = C ′0]β1C
′
1]β2C

′
2 · · · ]βlC ′l ,

where for each i, βi is an adjunct element or an adjunct pair and C ′i is

a chain. Now βl is not an adjunct element, since otherwise, we get a

contradiction to the fact that B is a pendant block. As B − C ′l is also

a (connected) poset dismantlable by doubly irreducibles, every block

in C(B − C ′l) is also a poset dismantlable by doubly irreducibles. Let

P ′′ = P − C ′l . Note that it can be assumed that x /∈ C ′l . Now except

B all the blocks in C(P ) are also the blocks in C(P ′′). Also, all the

blocks in C(B − C ′l) are also the blocks in C(P ′′).

Now, all the blocks in C(P ′′) are posets dismantlable by doubly ir-

reducibles and P ′′ is connected with |P ′′| < n. Therefore by induc-

tion hypothesis, P ′′ is a poset dismantlable by doubly irreducibles. As
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P = P ′′]βlC
′
l , using Theorem 2.1.6, P is a poset dismantlable by doubly

irreducibles.

Theorem 2.1.17. If a poset P is dismantlable by doubly irreducibles

then for all a, b ∈ P having an upper bound, the supremum a∨ b exists.

Proof. Suppose P is a poset dismantlable by doubly irreducibles. By

Theorem 2.1.6, let P = C0]α1
C1]α2

C2 · · · ]αk
Ck where for each i, αi is an

adjunct element or an adjunct pair and Ci is a chain.

We prove the result using induction on n = |P | ≥ 1. If n ≤ 2 then we

are done. Suppose n > 2 and the result is true for all posets of order

< n. Let Q = P − Ck. Then Q is a poset dismantlable by doubly

irreducibles with |Q| < n. Therefore, for all a, b ∈ Q having an upper

bound in Q, the supremum a ∨ b exists. Let a, b ∈ P be such that a

and b have an upper bound in P . Let Ck : x1 ≺ x2 ≺ · · · ≺ xr.

Case 1 : Suppose a, b ∈ Q. By induction hypothesis, if a and b have

an upper bound in Q then supremum exists in Q. Therefore, if a and

b have no upper bound in Ck then we are done; Otherwise, Ck either

corresponds to an up 1-sum or 2-sum. If c ∈ P is such that c ≺ x1

then c is also an upper bound of both a and b in Q. Hence supremum

of a and b, say d exists in Q. If Ck corresponds to an up 1-sum then d

remains as supremum of a and b in P . Now, if Ck corresponds to 2-sum

and αk = (x, y) then x, y are also upper bounds for both a and b in Q.

In this case, d remains the supremum of a and b in P , since d ≤ x.

Case 2 : If a, b ∈ Ck then we are done.

Case 3 : Without loss, suppose a ∈ Q and b ∈ Ck. Suppose a and b

have an upper bound in P .
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Subcase i : If Ck corresponds to down 1-sum then xr ≺ αk. Now

a, αk ∈ Q and have an upper bound in Q. Therefore by induction

hypothesis, a∨αk exists in Q. Now a∨ b = a∨αk, since b ≤ αk. Hence

a ∨ b exists in P .

Subcase ii : If Ck corresponds to up 1-sum then αk ≺ x1 and hence

αk < b. Also a ≤ αk. For if, suppose a > αk or a||αk then a||b and a

and b can not have an upper bound in P , a contradiction. Therefore

a < b and hence a ∨ b = b exists in P .

Subcase iii : If Ck corresponds to 2-sum and αk = (x, y) then b < y and

hence a ∨ b = a ∨ y. Note that by induction hypothesis, a ∨ y exists in

Q. Thus for all a, b ∈ P having an upper bound, a ∨ b exists in P .

Dually, if a connected poset P is dismantlable by doubly irreducibles

then for all a, b ∈ P having a lower bound, the infimum a ∧ b exists.

The converse of Theorem 2.1.17 is not true, since in a crown, for any

two elements having an upper bound, supremum exists but it is not a

poset dismantlable by doubly irreducibles.

Theorem 2.1.18. If a poset P is dismantlable by doubly irreducibles

then any subposet Q of P which is a lattice is dismantlable by doubly

irreducibles.

Proof. Suppose P is a poset dismantlable by doubly irreducibles. There-

fore by Theorem 2.1.6, P = C0]α1
C1]α2

C2 · · · ]αk
Ck, where for each i, αi

is either an adjunct element or an adjunct pair and Ci is a chain. Let

Q be a subposet of P which is a lattice. We use induction on n = |P |.

If n ≤ 4 then we are done. Now, suppose n ≥ 5 and the result is true
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for all posets containing < n elements.

If there exists x ∈ Ck such that x /∈ Q then Q is a subposet of

P ′ = P − {x} which is a lattice. Also, P ′ is a poset dismantlable

by doubly irreducibles with |P ′| < n. Therefore by induction hypothe-

sis, Q is a poset dismantlable by doubly irreducibles.

Now, suppose Ck ⊆ Q. Let P ′′ = P − {y}, where y ∈ Ck. Then

Q′ = Q − {y} is a subposet of P ′′ which is also a lattice, since y ∈

Irr(P ). Now |P ′′| < n. Therefore by induction hypothesis, Q′ is a

poset dismantlable by doubly irreducibles. As Q′ = Q \ {y} and y is a

doubly irreducible element in Q, Q is a poset dismantlable by doubly

irreducibles. Hence the proof.

The converse of Theorem 2.1.18 is not true, since in a crown, any sub-

poset which is a lattice is dismantlable by doubly irreducibles but crown

is not a poset dismantlable by doubly irreducibles.

The following Lemma 2.1.19 follows from the fact that 1-sum and 2-sum

operations preserve the existing coverings of the posets.

Lemma 2.1.19. Let P0, P1 and P2 be posets. If P = (P0]α1
P1)]α2

P2,

where α1, α2 are adjunct pairs lying in P0 then P = (P0]α2
P2)]α1

P1.

Corollary 2.1.20. Let P = C0]α1
C1]α2

C2 · · · ]αi
Ci · · · ]αj

Cj · · · ]αk
Ck, where

C0 is a maximal chain containing all the reducible elements of P . Then

for any i 6= j, P = C0]α1
C1]α2

C2 · · · ]αj
Cj · · · ]αi

Ci · · · ]αk
Ck.

Proof. The proof clearly follows by Lemma 2.1.19. Since, in particular,

if P = (P0]α1
C1)]α2

C2, where α1, α2 are adjunct pairs lying in poset P0

and C1, C2 are chains then P = (P0]α2
C2)]α1

C1.
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Lemma 2.1.21. If a lattice contains at most eight pairs of incomparable

reducible elements then L is dismantlable.

Proof. If L is not dismantlable then by Theorem 1.3.5, it contains a

crown. But a crown contains at least nine pairs of incomparable re-

ducible elements. Therefore this is not possible by hypothesis. Hence

L is dismantlable.

By Lemma 2.1.21, the following Corollary 2.1.22 follows immediately.

Corollary 2.1.22. A lattice in which all the reducible elements are

comparable is dismantlable.

2.1.4 Nullity of a poset

Recall that, the nullity of a graph G is given by m− n+ c, where m is

the number of edges in G, n is the number of vertices in G and c is the

number of connected components of G.

We define nullity of a poset as the nullity of its cover graph.

We now obtain some properties of nullity of posets.

Theorem 2.1.23. Let P be a poset. Let x ∈ Irr(P ). Then nullity(P −

{x}) = nullity(P ) if and only if (i) There are no y, z ∈ Red(P ) such

that y ≺ x ≺ z or (ii) There are y, z ∈ Red(P ) such that y ≺ x ≺ z

and there is no other (directed) path from y to z.

Proof. Let P ′ = P − {x}. Suppose x ∈ Irr(P ) and nullity(P ′) =

nullity(P ). If x satisfies the condition (i) then we are done. If not, then

there are y, z ∈ Red(P ) such that y ≺ x ≺ z. Suppose there is another
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path from y to z then nullity(P ′) = |E(P ′)| − |P ′| + 1 = (|E(P )| −

2) − (|P | − 1) + 1 = |E(P )| − |P | = nullity(P ) − 1, a contradiction.

Therefore x must satisfy condition (ii).

Conversely, suppose x ∈ Irr(P ) and the condition (i) or the condition

(ii) holds. Suppose the condition (i) is true. If y ≺ x ≺ z in P

then either y ∈ Irr(P ) or z ∈ Irr(P ). In any case, nullity(P ′) =

|E(P ′)| − |P ′|+ 1 = (|E(P )| − 1)− (|P | − 1) + 1 = |E(P )| − |P |+ 1 =

nullity(P ). Now suppose condition (ii) is true. But then also nullity(P ′)

= nullity(P ), since y ≺ z in P ′.

Theorem 2.1.24. A connected poset P dismantlable by doubly irre-

ducibles is of nullity k if and only if the number of adjunct pairs in P

counted with multiplicity is k.

In particular, if there is no adjunct pair in P then C(P ) is a tree.

Proof. Suppose the poset P is dismantlable by doubly irreducibles.

Then by Theorem 2.1.6, P is obtained by (non-trivial) 1-sum or 2-

sum of chains. That is, P = C0]α1
C1]α2

C2 · · · ]αl
Cl, where for each i, αi

is either an adjunct element or an adjunct pair and Ci is a chain. Let

r be the number of adjunct elements (counted with multiplicity) and

s be the number of adjunct pairs (counted with multiplicity) in the

above adjunct representation of P . Then l = r + s. We know that,

the number of edges (or coverings) in a chain is one less than the num-

ber of elements in it. Also, 1-sum by a chain increases the number of

coverings by one and 2-sum by a chain increases the number of cov-

erings by two. Therefore, if m is the number of coverings in P then

m = (|P | − (l+ 1)) + r+ 2s. As P is connected and the nullity of P is
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k, k = m− |P |+ 1. Therefore k = s.

Conversely, suppose the number of adjunct pairs in P counted with

multiplicity is k. Then s = k and l = r + k. As P is connected,

the nullity of P is m − |P | + 1. But m = (|P | − (l + 1)) + r + 2s =

(|P | − (r + k + 1)) + r + 2k = |P |+ k − 1. Hence the nullity of P is k.

In particular, if there is no adjunct pair in P then s = 0 and hence the

nullity of P is 0. Therefore C(P ) is a tree.

Theorem 2.1.25. A poset P is obtained by (non-trivial) 1-sum of

chains if and only if C(P ), the covering graph of P is a tree.

Proof. Suppose a poset P is obtained by (non-trivial) 1-sum of chains.

Therefore by Theorem 2.1.6, P is a poset dismantlable by doubly irre-

ducibles and there is no adjunct pair in P . Hence by Theorem 2.1.24,

the nullity of P is 0. Thus C(P ) is a tree.

Conversely, suppose P is a poset for which C(P ) is a tree. Let x be

a pendant vertex of C(P ). Then C(P ) − {x} is also a tree. Now x is

a pendant vertex of C(P ) if and only if x must have either one lower

cover say a, but no upper cover in P or one upper cover say b, but no

lower cover in P . (Note that, if x has at least one lower cover and at

least one upper cover then the degree of x in C(P ) would be at least

two. Also, if x has no lower cover and no upper cover in P then x

would be isolated and hence C(P ) would not be connected.) Therefore

C(P ) − {x} = C(P − {x}). Now we use induction on n = |P | ≥ 1. If

n = 1 then we are done. If n > 1 and suppose the result is true for

all posets of order < n. Let Q = P − {x}. Then |Q| = n − 1 < n.

Also C(Q) = C(P ) − {x} which is a tree. Therefore by induction
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hypothesis, Q is obtained by (non-trivial) 1-sum of chains. Suppose

Q = C0]α1
C1]α2

C2 · · · ]αl
Cl, (∗)

where for each i, αi is an adjunct element and Ci is a chain.

Then P = C0]α1
C1]α2

C2 · · · ]αi
C ′i · · · ]αl

Cl, where C ′i = Ci ∪ {x} with

a ≺ x whenever a ∈ Ci in (∗) and x ≺ b whenever b ∈ Ci in (∗). Thus

P is also obtained as (non-trivial) 1-sum of chains. Hence the proof is

complete.

Using Theorem 2.1.24 and Theorem 2.1.6, we get the following.

Corollary 2.1.26. If P is a poset such that C(P ) is a tree then P is

dismantlable by doubly irreducibles.

2.2 Nullity of a lattice

Recall that, nullity of a poset is the nullity of its cover graph. Therefore,

in particular, the nullity of a lattice L is given by |E(L)| − |L|+ 1.

Note that, a lattice is always connected.

We now obtain some properties of lattices with respect to nullity.

Theorem 2.2.1. Let L be a lattice. Let x ∈ L. Then L′ = L− {x} is

a sublattice of L, maintaining the nullity if and only if the element x is

doubly irreducible satisfying

(i) There are no y, z ∈ Red(L) such that y ≺ x ≺ z or

(ii) There are y, z ∈ Red(L) such that y ≺ x ≺ z and there is no other

(directed) path from y to z.

Proof. Suppose L′ = L − {x} is a sublattice of L and nullity(L′) =

nullity(L). If x is meet reducible in L then there are a, b ∈ L with
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a ∧ b = x. But then L′ = L − {x} will not be sublattice of L, since

a∧ b will not be maintained in L′, which is a contradiction. Hence x is

not meet reducible in L. Similarly, it can be proved that x is not join

reducible in L. Hence x ∈ Irr(L).

The remaining proof follows from Theorem 2.1.23.

Conversely, suppose x is doubly irreducible element satisfying the con-

dition (i) or the condition (ii). As x ∈ Irr(L), by Proposition 1.3.1,

L′ = L − {x} is a sublattice of L. The remaining proof follows from

Theorem 2.1.23.

Let P be a poset and x ∈ P . We denote an element y by x− if y ≺ x

and by x+ if x ≺ y. Recall that, the indegree of an element x in a poset

P is |{y ∈ P : y ≺ x}| and the outdegree of an element x in a poset P

is |{z ∈ P : x ≺ z}|.

Theorem 2.2.2. Let L be a block. Let x ∈ Irr(L). Then indegree and

outdegree of any reducible element in L and L − {x} are the same if

and only if either there are no y, z ∈ Red(L) with y ≺ x ≺ z or there

are y, z ∈ Red(L) with y ≺ x ≺ z and there is no other (directed) path

from y to z.

Proof. Suppose indegree and outdegree of any reducible element in L

and L− {x} are the same. As L is a block, let y ≺ x ≺ z. Now either

at least one of y and z belongs to Irr(L) or y, z ∈ Red(L). If at least

one of y and z belongs to Irr(L) then x satisfies the first condition.

If y, z ∈ Red(L) then either there is another path from y to z in L or

there is no other path from y to z in L. If there is another path from y
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to z in L then outdegree of y and indegree of z decrease by one if x is

removed from L, since x ∈ Irr(L), which is not possible by assumption.

Thus there are y, z ∈ Red(L) with y ≺ x ≺ z and there is no other

path from y to z.

Conversely, suppose either there are no y, z ∈ Red(L) with y ≺ x ≺ z

or there are y, z ∈ Red(L) with y ≺ x ≺ z and there is no other path

from y to z. Let a ∈ Red(L). Let m and n be the indegree and the

outdegree of a in L respectively.

Case : 1. Suppose a ≺ x.

Let x ≺ b. If b ∈ Red(L) then x must satisfy the second condition.

Therefore there is no other path from a to b in L. Hence a ≺ b in

L − {x}. Also if b /∈ Red(L) then x satisfies the first condition. But

then b ∈ Irr(L). As x ∈ Irr(L) and a ≺ x ≺ b, a ≺ b in L− {x}.

Thus removal of x from L does not change the values of m and n.

Case : 2. Suppose x ≺ a.

Proof in this case is similar to Case 1 above.

Case : 3. Suppose neither a ≺ x nor x ≺ a.

Let x− ≺ x ≺ x+. Clearly a 6= x− as well as a 6= x+. Therefore x− ≺ x+

in L− {x}. Thus, the removal of x from L does not change the values

of m and n. Hence the proof is complete.

In Chapter 5, we enumerate the number of non-isomorphic lattices of

nullity up to three. In this regard, we prove the following result.

Theorem 2.2.3. Any lattice of nullity at most four is dismantlable.

Proof. By Lemma 1.3.14, every lattice with n elements and n+ r cov-

erings (or edges) with −1 ≤ r ≤ 3 is dismantlable. If L is a lattice on n
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elements, containing m edges and having nullity k then k = m−n+ 1.

If m = n+ r and −1 ≤ r ≤ 3 then k = r+ 1 and 0 ≤ k ≤ 4. Hence the

proof is complete.

Theorem 2.2.4. A dismantlable lattice L containing n elements is of

nullity k if and only if L is adjunct of k + 1 chains.

Proof. Suppose a dismantlable lattice L containing n elements is of

nullity k. If L contains m edges then the nullity k = m − n + 1 and

hence m = n + k − 1. Therefore by Corollary 1.3.8, L is adjunct of

k + 1 chains. Conversely, suppose L is adjunct of k + 1 chains. Again

by Corollary 1.3.8, the number of edges in L is m = n + k − 1. Thus

k = m− n+ 1 and hence the nullity of L is k.

Definition 2.2.1. Let L (n, k) be the the class of all non-isomorphic

dismantlable lattices on n elements such that each lattice in it is of nul-

lity k. Let L ′(n, k) be the subclass of L (n, k) such that the reducible

elements in each lattice in it are all comparable.

The purpose behind studying the class L (n, k) is to find the cardinality

of this class. Recall that, a chain is the only lattice of nullity 0. There-

fore L (n, 0) consists of the chain on n elements. Thakare, Pawar and

Waphare [13] enumerated the classes L (n, 1) and L (n, 2). In Chapter

5, we enumerate the class L (n, 3). In Chapter 4, in the last section,

we enumerate the class L ′(n, k).

It is clear that the reducible elements in a lattice of nullity one are

comparable. We now prove that the reducible elements in a lattice of

nullity two are also comparable.
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Theorem 2.2.5. Let L ∈ L (n, 2). Then the reducible elements in L

are all comparable.

Proof. As L ∈ L (n, 2), L is a dismantlable lattice of nullity 2. There-

fore by Theorem 2.2.4, L = (C0]
b1
a1
C1)]

b2
a2
C2, where C0, C1 and C2 are

chains and a1, b1, a2, b2 are the only reducible elements (which may not

all be distinct) of L. Clearly a1, b1 ∈ C0. As far as the positions of a2

and b2 are concerned we have the following four cases.

Case (1): If a2, b2 ∈ C0 then we are done.

Case (2): If a2, b2 ∈ C1 then choose C ′0 = [0, a1] ⊕ C1 ⊕ [b1, 1] and

C ′1 = C0 ∩ (a1, b1). Let L′ = (C ′0]
b1
a1
C ′1)]

b2
a2
C2. Then L = L′ with C ′0

containing all reducible elements.

Case (3): If a2 ∈ C0 and b2 ∈ C1 then a2 ≤ a1. For if, suppose a2 > a1.

But then we get either a2||b2 or a2 > b2, whenever a2 ∈ C0 ∩ (a1, b1)

or a2 ∈ C0 ∩ [b1, 1] respectively. This is not possible. Again, if we

choose C ′0 = [0, a1]⊕ C1 ⊕ [b1, 1] and C ′1 = C0 ∩ (a1, b1) then L = L′ =

(C ′0]
b1
a1
C ′1)]

b2
a2
C2 with C ′0 containing all reducible elements.

Case (4): If a2 ∈ C1 and b2 ∈ C0 then b1 ≤ b2 and the remaining proof

is similar to that is given in Case (3). Hence the proof is complete.

In the following result, we obtain the bounds on the number of reducible

elements of a dismantlable lattice depending on the nullity.

Lemma 2.2.6. For k ≥ 1, if L ∈ L (n, k) then 2 ≤ |Red(L)| ≤ 2k.

Proof. Let L be a lattice in L (n, k) containing r reducible elements.

Now the nullity of L is k ≥ 1. Therefore by Theorem 2.2.4, L is adjunct

sum of k + 1 chains. Therefore adjunct representation of L consists of
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k adjunct pairs, say αi = (ai, bi), 1 ≤ i ≤ k. By Lemma 1.3.10,

Red(L) = {ai, bi|1 ≤ i ≤ k}. Now these reducible elements may not all

be distinct. Therefore 2 ≤ |Red(L)| ≤ 2k.

Definition 2.2.2. Let L (n, k, r) = {L ∈ L (n, k) : |Red(L)| = r}. Let

L ′(n, k, r) = {L ∈ L ′(n, k) : |Red(L)| = r}.

By Lemma 2.2.6, it follows that, for given k ≥ 1, {L (n, k, r) : 2 ≤ r ≤

2k} forms a partition of the class L (n, k).

It is clear that L (n, k, r) = ∅ if and only if r = 1 and n < k + r.

Therefore, if L (n, k, r) 6= ∅ then n ≥ k + r.

We now obtain a lower bound for the nullity of a dismantlable lattice

depending on the number of reducible elements.

Proposition 2.2.7. For any lattice in L (n, k, r), k ≥ [r+1
2 ].

Proof. Let L ∈ L (n, k, r). We have r ≥ 0 but r 6= 1. If r = 0, that

is, if L is a chain then its nullity is 0 and we are done. Now suppose

r ≥ 2. By Lemma 2.2.6, r ≤ 2k. That is, r
2 ≤ k. Therefore k ≥ r

2 , if r

is even and k ≥ r+1
2 , if r is odd.

In the following Proposition 2.2.8, we see for which k and r, the class

L (n, k, r) coincides with the class L ′(n, k, r).

Proposition 2.2.8. If k ≤ 2 or r ≤ 3 then L (n, k, r) = L ′(n, k, r)

for all n ≥ k + r. Moreover for r ≥ 4, the classes need not be equal.

Proof. For k = 0 or 1 the proof is obvious. For k = 2, the proof

follows from Theorem 2.2.5. Now suppose k ≥ 3. By Lemma 2.2.6,

2 ≤ r ≤ 2k. Also, using Proposition 1.3.4, a lattice which is not a
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chain contains at least two comparable reducible elements (one of them

is a meet reducible element, say p and the other is a join reducible

element, say q with p < q). Therefore for r = 2, the proof is obvious.

Suppose r = 3 and let x, y, z be the reducible elements in a lattice

L ∈ L (n, k, r). Suppose x is a meet reducible and y > x is a join

reducible element. If z is comparable with x and y then we are done.

If z||x then z∨x = y, since otherwise z∨x is a reducible element other

than x, y, z, which is not possible. Now z ∧ x is a reducible element

other than x, y, z, which is not possible. Similarly if z||y then z∧ y = x

and z∨y is a reducible element other than x, y, z, which is not possible.

If r = 4 then for k ≥ 3, Dk ∈ L (k + 5, k, r) but Dk /∈ L ′(k + 5, k, r)

(see Fig.3).

d
d c

c
cc c d dd1 d2 d3 dk. . .

Fig.3 (Dk)

If r ≥ 5 then Ek = (Cr−4⊕Dk−(r−4))]
1
x1
{dk−r+3} . . .]1xr−4{dk} is the basic

block of nullity k ≥ 4, where Cr−4 is a chain x1 ≺ x2 ≺ . . . ≺ xr−4.

Clearly for k ≥ 4, Ek ∈ L (k+r+5, k, r) but Ek /∈ L ′(k+r+5, k, r).

Let L ∈ L ′(n, k, r). Let (a1, b1), (a2, b2), . . . , (al, bl) be the distinct

adjunct pairs in the adjunct representation of L, containing C as a
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chain containing all the r reducible elements of L. By Corollary 2.1.20,

without loss, we can assume that (a1, b1) < (a2, b2) < . . . < (al, bl)

with respect to the dictionary order defined on C × C. Let ni be the

multiplicity of an adjunct pair (ai, bi). Let Tl = (n1, n2, . . . , nl). By

Theorem 2.2.4, it is clear that k =
l∑

i=1

ni. Now L is the adjunct sum of

k + 1 chains and hence contains k adjunct pairs (repetition is allowed,

if any). Let L ′(n, k, r, Tl) ⊆ L ′(n, k, r) be the class of lattices wherein

Tl represents a fixed l−tuple as described above.

In the following Proposition 2.2.9, we prove that, if all the adjunct pairs

in the adjunct representation of a lattice, in which all the r reducible

elements are comparable, are distinct then the nullity of that lattice

can not exceed
(
r
2

)
.

Proposition 2.2.9. Let Tl = 1l = (1, 1, . . . , 1). Then for any lattice

L ∈ L ′(n, k, r, Tl), [r+1
2 ] ≤ k = l ≤

(
r
2

)
.

Proof. By Proposition 2.2.7, [r+1
2 ] ≤ k. Also, if Tl = (n1, n2, . . . , nl)

then by Theorem 2.2.4, k =
l∑

i=1

ni. Therefore for Tl = 1l = (1, 1, . . . , 1),

k = l. Now let L ∈ L ′(n, k, r, 1l). Then the multiplicity of each adjunct

pair in an adjunct representation of L is one. Therefore the number of

adjunct pairs is l. But L contains r reducible elements and one adjunct

pair corresponds to two reducible elements. Therefore l ≤
(
r
2

)
. Thus

[r+1
2 ] ≤ k = l ≤

(
r
2

)
.

Thus, it follows that, if L ∈ L ′(n, k, r) and all the adjunct pairs in the

adjunct representation of L are distinct then [r+1
2 ] ≤ k = l ≤

(
r
2

)
.
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2.3 Orientability of a graph

2.3.1 Introduction

Much of the combinatorial interest in finite ordered sets is linked to the

properties of two types of undirected graphs commonly used to repre-

sent them : the comparability graph and the covering graph. Note that,

a pair {a, b} of elements of a poset P is an edge of the comparability

graph of P if a < b in P .

Definition 2.3.1. A graph G is said to be orientable as an ordered set

P if G and C(P ) are isomorphic as graphs.

The following open problem is posed by O. Ore [20].

Ore’s Open Problem.

Characterize graphs which are cover graphs. That is, characterize those

graphs which are orientable as an ordered set.

The problem is still open.

Orientability of graphs is already studied (see [47]) in terms of the girth

and the chromatic number of a graph.

Definition 2.3.2. The girth g(G) of a graph G with a cycle is the

length of its shortest cycle. A graph with no cycle has infinite girth.

The chromatic number of a graph G is the smallest number of colors

χ(G) needed to color the vertices of G so that no two adjacent vertices

share the same color.

Theorem 2.3.1. [47]. If χ(G) < g(G) then the graph G is orientable.
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It is known that there are graphs of arbitrarily large girth that are not

covering graphs (see [47]). This was the conjucture of Bollobas proved

by Nešetřil and Rödl (see [56] and [57]) using probabilistic methods.

It is also well known that a graph G is the comparability graph of an

ordered set if and only if each odd cycle of G has a triangular chord (see

Ghouila-Houri [51] and Gilmore and Hoffman [52]). In contrast little

is known about this question (see [20]) : when is a graph the covering

graph of an ordered set? Also, it is NP-complete to test whether a

graph is a cover graph (see [57] and [60]). This question is already

solved for finite distributive lattices. We settle this question for posets

dismantlable by doubly irreducibles in this section.

Theorem 2.3.2. [42]. A finite graph G is the covering graph of a

distributive lattice of length n if and only if G is a retract of C(Qn) and

diam(G) = n.

Similar types of characterizations are obtained for Modular Lattices

(see J.Jakubik [43]) and Geometric Lattices (see Duffus and Rival [40]).

H. Grötzsch [46] has shown that triangle-free planar graphs are 3-

chromatic; consequently, they are orientable.

We give a partial solution to the open problem of orientability by char-

acterizing covering graphs of posets dismantlable by doubly irreducibles

and dismantlable lattices. For this, we introduce the concept of an ad-

junct of ears in graphs in the next subsection.

2.3.2 Adjunct of ears

We introduce here the concept of an adjunct of ears in graphs.
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Definition 2.3.3. Let G be any directed graph and P be any directed

path (ear) from c to d with V (G) ∩ V (P ) = ∅. Let a be a vertex of G.

We define the u-adjunct of P to G at a to be a directed graph, denoted

by G]aP , having vertex set V (G) ∪ V (P ) and arc set A(G) ∪ A(P ) ∪

{(a, c)}.

We define the d-adjunct of P to G at a to be a directed graph, denoted

by G]aP , having vertex set V (G) ∪ V (P ) and arc set A(G) ∪ A(P ) ∪

{(d, a)}.

We define the ud-adjunct of P to G at (a, b), where (a, b) is a pair of

vertices in G such that there is a directed path from a to b in G of length

at least 2, to be a directed graph, denoted by G]baP , having vertex set

V (G) ∪ V (P ) and arc set A(G) ∪ A(P ) ∪ {(a, c), (d, b)}.

We say that a directed graph G is adjunct of directed ears if it can be

obtained by u-adjunction or d-adjunction or ud-adjunction of directed

ears starting with a directed path.

An underlying graph of a directed graph which is adjunct of directed

ears is called simply adjunct of ears.

The u-adjunct (or d-adjunct) of P to G at a is trivial if a is pendant;

otherwise, it is non-trivial. We say adjunct of ears is non-trivial if all

u-adjunct and d-adjunct are non-trivial.
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Fig.4 The ud-adjunct of an ear P to a graph G at (a, b)

Note that, the ud-adjunct of P to G at (a, b) is nothing but the u-

adjunct of P to G at a and the d-adjunct of P to G at b, simultaneously.

2.3.3 A partial solution to Ore’s open problem

As a consequence of the structure theorem (Theorem 2.1.6), we give a

partial solution to Ore’s open problem in the following Theorem 2.3.3.

Theorem 2.3.3. A graph is orientable as a poset dismantlable by dou-

bly irreducibles if and only if it is (non-trivial) adjunct of ears.

Proof. Suppose a graph G is orientable as a poset P dismantlable by

doubly irreducibles. Therefore G ∼= C(P ). By the structure theorem

(see Theorem 2.1.6), P can be written as (non-trivial) 1-sum or 2-sum

of chains. Suppose P = C0]α1
C1]α2

C2 · · · ]αk
Ck, where for each i, αi is an

adjunct element or an adjunct pair and Ci is a chain. Choose E0 = C0.

For 1 ≤ i ≤ k, let Ci be a chain xi1 ≺ xi2 ≺ · · · ≺ ximi
.

Case I : Suppose αi is an adjunct element.

If αi corresponds to up 1-sum then choose Ei as an ear αi − xi1 − xi2 −

· · · − ximi
. And if αi corresponds to down 1-sum then choose Ei as an
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ear xi1 − xi2 − · · · − ximi
− αi.

Case II : Suppose αi is an adjunct pair, say (a, b). Then choose Ei as

an ear a− xi1 − xi2 − · · · − ximi
− b.

Let G′ = E0]α1
E1]α2

E2 · · · ]αk
Ek. Then G′ is a (non-trivial) adjunct of

ears, E0, E1, . . . , Ek. Note that, there is a directed path from a to b in

G of length at least 2, since in P , a < b but a 6≺ b. But then C(P ) ∼= G′

under identity vertex map. Hence G ∼= G′. Thus G is a (non-trivial)

adjunct of ears.

Conversely, suppose a graph G is a (non-trivial) adjunct of ears. Let

D be a directed graph whose underlying graph is G. Therefore D is

adjunct of directed ears, say F0, F1, . . . , Fl. For each j, 0 ≤ j ≤ l, let

Fj be the directed ear yj1 − y
j
2 − · · · − yjnj .

Let C0 be the chain y01 ≺ y02 ≺ · · · ≺ y0n0. For 1 ≤ j ≤ l,

Case I : If Fj corresponds to u-adjunct of ear then choose βj = yj1 and

Cj as the chain yj2 ≺ yj3 ≺ · · · ≺ yjnj .

Case II : If Fj corresponds to d-adjunct of ear then choose βj = yjnj and

Cj as the chain yj1 ≺ yj2 ≺ · · · ≺ yjnj−1.

Case III : If Fj corresponds to ud-adjunct of ear then choose βj =

(yj1, y
j
nj

) and Cj as the chain yj2 ≺ yj3 ≺ · · · ≺ yjnj−1.

Let Q = C0]β1C1]β2C2 · · · ]βlCl. In Case I and Case II, βj becomes an

adjunct element and in Case III, βj becomes an adjunct pair, since

there is a path in the subgraph F0∪F1∪ · · · ∪Fj−1 of D, joining yj1 and

yjnj whose length is at least two.

As u-adjunct and d-adjunct are non-trivial, 1-sums in Q are also non-

trivial. Thus, Q is obtained by (non-trivial) 1-sum or 2-sum of chains.
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By Theorem 2.1.6, Q is a poset dismantlable by doubly irreducibles.

Claim : (c, d) is an arc in D if and only if (c, d) is an edge in Q.

Now (c, d) is an arc in D if and only if (c, d) is an arc in Fj, for some

0 ≤ j ≤ l if and only if either (c, d) is an edge in Cj, for some 0 ≤ j ≤ l

or c = yj1 and d = yj2 for some 1 ≤ j ≤ l or c = yjnj−1 and d = yjnj for

some 1 ≤ j ≤ l if and only if either (c, d) is an edge in Cj, for some

0 ≤ j ≤ l or c (but not d) is an adjunct element in Q or d (but not c)

is an adjunct element in Q if and only if (c, d) is an edge in Q.

Therefore G ∼= C(Q). Thus, G is orientable as an ordered set Q.

As a consequence of Theorem 1.3.6, we have the following result.

Corollary 2.3.4. A graph is orientable as a dismantlable lattice if and

only if it is ud-adjunct of ears.

Proof. Dismantlable lattice is dismantlable poset by doubly irreducibles.

Also, by Theorem 1.3.6, it can be written as (only) 2-sum of chains.

Hence the result follows by Theorem 2.3.3.

Theorem 2.3.5. If a graph G is orientable as a lattice in which all the

reducible elements are comparable then G is connected and contains a

chordless path passing through all the higher degree (≥ 3) vertices.

Proof. Let L be a lattice in which all the reducible elements are com-

parable. By Corollary 2.1.22, L is dismantlable. Let G be a graph

such that G ∼= C(L). That is, G is orientable as lattice L. Clearly G

is connected, since C(L) is connected as L is connected. By Theorem

2.1.7, if C0 is a maximal chain containing all the reducible elements

of L then L = C0]α1
C1]α2

C2 · · · ]αk
Ck where C1, C2, . . . , Ck are chains.
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Let P be a path in G isomorphic to C0 in C(L). Then P is chordless

path passing through all the higher degree (≥ 3) vertices, since C0 is

chordless path in C(L) as L is an adjunct of chains.

However, the converse of Theorem 2.3.5 is not true, as it can be easily

seen in the following figure.

cd
dd
d

dd
d

2.4 An ear decomposition of a graph

2.4.1 Introduction

Ear decompositions have a number of uses, in particular in computing

the connectivity of a graph. For instance, Theorem 2.4.1 is well known.

The following problems (of finding algorithms) are posed by Y Maon,

B. Schieber and U. Vishkin (see [48]).

The ear decomposition problem :

Find an ear decomposition starting with E0.

The open ear decomposition problem :

Find an open ear decomposition starting with E0.

Ear decomposition has the flavor of a general search technique in graphs.

It arranges the vertices of the graph by partitioning them into paths.

This enables further exploration of the graph in an “orderly” manner.

Such a search technique is called an Ear-Decomposition Search (EDS).
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It is known that Depth-First Search (DFS) and Breadth-First Search

(BFS) are main techniques for searching graphs.

Recall that, an ear of a loopless connected graph G is a subgraph of

G such that it is a maximal path in which all internal vertices are of

degree 2 in G or it is a cycle in which all but one vertex have degree

2 in G. If G is a cycle (or path) itself then that cycle (or path) is the

only ear of G.

Definition 2.4.1. An ear of a graph G is called an open ear if the two

end points do not coincide in G.

Let G be a connected loopless graph and E be an ear in G. By G−E

we mean a subgraph of G obtained from G by removing all the internal

edges of E and then all the isolated vertices. We now define an ear

decomposition of a graph in the following.

Definition 2.4.2. Let G be a loopless, connected graph. An ear de-

composition of G is a partition of its set of edges into a sequence of ears

E0, E1, E2, · · · , Ek, such that (i) for each i, Ei is a cycle or a path of

G and (ii) E0 ∪ E1 ∪ · · · ∪ Ei is connected and having Ei as an ear of

E0 ∪ E1 ∪ · · · ∪ Ei, for all i = 1, 2, . . . , k.

If Ei is a cycle then it is attached to E0 ∪ E1 ∪ · · · ∪ Ei−1 by exactly

one vertex. If Ei is a path then it is attached to E0 ∪ E1 ∪ · · · ∪ Ei−1

by at least one end vertex. Clearly G =
k⋃
i=0

Ei.

An open ear decomposition of a loopless, connected graph G is an ear

decomposition of G in which all the ears (except the first) are open.

In the Appendix, we have depicted in all 75 (cover) graphs. It can be
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easily observed that each one of them has an (open) ear decomposition

starting with a maximal path or a cycle.

There are also some other kinds of ear decompositions, viz, nested

ear decomposition (see Eppstein[50]) and tree ear decomposition (see

Khuller[49]). Borse and Waphare[45] studied the critically 2-connected

graphs using nested ear decomposition. It can be observed that every

Hamiltonian graph has an ear decomposition starting with a Hamilto-

nian cycle. Thus by Tutte’s theorem, every planar 4-connected graph

(being Hamiltonian) has an ear decomposition.

Ear decompositions have a number of uses, in particular in computing

the connectivity of a graph.

For instance, the following Theorem 2.4.1 is well known.

Theorem 2.4.1. (H. Whitney[44])

A graph is biconnected (2-vertex connected) if and only if it has an open

ear decomposition starting with a cycle.

2.4.2 Whitney type characterization

Lemma 2.4.2. Let G be a tree. Let P be a maximal path in G. Then

G has an ear decomposition E0, E1, . . . , Ek such that E0 = P and G =

E0 ∪ E1 ∪ · · · ∪ Ek.

Proof. Suppose G is a tree and P is a maximal path in G. Using

induction on n = |E(G)| ≥ 1. If n ≤ 3 then we are done. Now suppose

n > 3 and the result is true for all graphs containing the number of

edges strictly less than n. If G = P then we are done. Otherwise,

G contains at least one vertex of degree at least 3. That means, G
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contains at least three pendant vertices. Let x /∈ P be a pendant

vertex of G. Consider an ear E = x1 − x2 − · · · − xt = x such that

the degree of x1 is at least three in G. Let G′ = G − E. Then G′

is also a tree containing P with |E(G′)| ≤ n − 1 < n. Therefore, by

induction hypothesis, G′ has an ear decomposition E0, E1, . . . , El such

that E0 = P and G′ = E0 ∪ E1 ∪ · · · ∪ El. Now degree of x1 in G′

is at least two. As one end x1 of E is attached to G′, E is an ear

of G = E0 ∪ E1 ∪ · · · ∪ El ∪ E. Hence G has an ear decomposition

E0, E1, . . . , El, E such that E0 = P and G = E0∪E1∪ · · · ∪El ∪E.

Lemma 2.4.3. Let G be a connected loopless graph containing a cycle

C. Then G has an ear decomposition E0, E1, . . . , Ek such that E0 = C

and G = E0 ∪ E1 ∪ · · · ∪ Ek.

Proof. Suppose a loopless graph G is connected and contains a cycle C.

Using induction on n = |E(G)| ≥ 2. If n = 2 then G is a cycle of length

two and we are done. Now suppose n > 2 and the result is true for all

graphs containing the number of edges strictly less than n. If G is a

block itself then it is 2-connected and the proof follows from Theorem

2.4.1. If G is not a block then it has at least two pendant blocks.

Without loss, suppose B is a pendant block in G not containing C.

Note that B shares exactly one vetrex(cut-vertex), say a with G−(B−

{a}). As G is connected, B is either an edge(cut-edge) or a maximal

2-connected subgraph of G.

Case I : If B is an edge E = {a, b} then consider an ear E ′ = x1 −

x2 − · · · − a − xt = b such that the degree of x1 is at least three in G.

Let G′ = G− E ′. Then G′ is a connected loopless graph containing C
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and |E(G′)| ≤ n − 1 < n. Therefore by induction hypothesis, G′ has

an ear decomposition E0, E1, . . . , Em such that E0 = C and G′ = E0 ∪

E1 ∪ · · · ∪Em. Now E ′ shares exactly one vetrex x1 with G′. Therefore

G =

(
m⋃
i=0

Ei

)
∪ E ′ and hence G has the required ear decomposition.

Case II : Suppose B is a maximal 2-connected subgraph of G. Let C ′

be a cycle containing a in B. Then by Theorem 2.4.1, B has an ear

decomposition E ′0, E
′
1, . . . , E

′
s such that E ′0 = C ′ and B = E ′0∪E ′1∪· · ·∪

E ′s. Now G′′ = G− (B −{a}) is a connected loopless graph containing

a cycle C and |E(G′)| ≤ n− 2 < n. Therefore by induction hypothesis,

G′′ has an ear decomposition E ′′0 , E
′′
1 , . . . , E

′′
t such that E ′′0 = C and

G′′ = E ′′0 ∪ E ′′1 ∪ · · · ∪ E ′′t . Now B shares exactly one vetrex a with G′′

and a ∈ E ′0. Therefore E ′0 is an ear of G′′. Therefore G has an ear

decomposition E ′′0 , E
′′
1 , . . . , E

′′
t , E

′
0, E

′
1, . . . , E

′
s such that E ′′0 = C and

G = E ′′0 ∪ E ′′1 ∪ · · · ∪ E ′′t ∪ E ′0 ∪ E ′1 ∪ · · · ∪ E ′s. Hence the proof.

As a consequence of Lemma 2.4.2 and Lemma 2.4.3 and using definition

of an ear decomposition of a graph we get a Whitney type theorem as

given below.

Theorem 2.4.4. Let G be a loopless graph. Then G is connected if

and only if it has an ear decomposition starting with a maximal path or

a cycle.

Corollary 2.4.5. If P is a connected poset dismantlable by doubly ir-

reducibles then C(P ) has an ear decomposition starting with a maximal

path or a cycle.
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Proof. By Theorem 2.1.6, P is obtained by (non-trivial) 1-sum or 2-

sum of chains. Therefore C(P ) is simple. Now C(P ) is connected.

Hence by Theorem 2.4.4, C(P ) has an ear decomposition starting with

a maximal path or a cycle.

However, the converse is not true. For example, the covering graph

of a crown is a cycle but it is not a poset dismantlable by doubly

irreducibles.

In fact, as a consequence of Theorem 2.1.7, it follows that, if P is a

connected poset dismantlable by doubly irreducibles then C(P ) has an

open ear decomposition starting with a maximal path.



Chapter 3

Basic blocks

In this Chapter, we study basic blocks associated to posets/lattices.

In the first section, we introduce the concept of a basic block (which

depends on the concept of nullity) for posets. The second section deals

with various properties of basic blocks associated to the posets/lattices.

We prove that, a basic block associated to a poset is a retract of that

poset. We also obtain a characterization of a basic block in which all

the reducible elements are comparable. In the third section, we prove

the result, namely, if two basic blocks are non-isomorphic then the

posets associated by these basic blocks are also non-isomorphic. As

a consequence, we obtain the result, namely, there is a unique basic

block associated to any poset. In the last section, we introduce the

concept of a fundamental basic block and obtain various properties of

fundamental basic blocks associated to dismantlable lattices. Using

these two concepts, we enumerate certain classes of non-isomorphic

lattices on n elements in the subsequent chapters.

0The paper based on partial content of this Chapter has been presented at the 3rd International
Conference on Discrete Mathematics (ICDM-2013) held at Karnataka University, Dharwad (India)
during 10th to 14th June, 2013.
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Recall that, the nullity of a poset P is the nullity of its cover graph

C(P ). Therefore, the nullity of a poset P is given by |E(P )| − |P |+ c,

where c is the number of components of C(P ). Note that, if P is a

lattice then c = 1. We now introduce the concept of a basic block.

Definition 3.0.3. A poset P is a basic block if it is one element or

Irr(P ) = ∅ or removal of any doubly irreducible element reduces nullity

by one.

For example, a cube 23 is a basic block. Note that, by Proposition

1.3.2, if P is a dismantlable lattice then Irr(P ) 6= ∅. Therefore, a

dismantlable lattice L is a basic block if it is one element or removal

of any doubly irreducible element reduces nullity by one. For example,

M2 (see Fig.5) is a basic block.

Fig.5 (M2)

c
d

dc

3.1 Basic block associated to posets

In sequel, we introduce the concept of a basic block associated to a

poset.

Definition 3.1.1. Let P be a poset. Consider a (Hasse) diagram of P .

If Irr(P ) = ∅ then we say that P is a basic block associated to itself. If

Irr(P ) 6= ∅ and P is chain then replace it by the smallest element in it
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and call that element a basic block associated to that chain; otherwise,

if C : x1 ≺ x2 ≺ · · · ≺ xr is any maximal chain of doubly irreducible

elements of P then

1. remove C from P if either x1 has no lower cover or xr has no upper

cover or there is no other directed path from a to b in P whenever

a ≺ x1, xr ≺ b, a, b ∈ Red(P ) and

2. remove C except x1 from P if a ≺ x1, xr ≺ b, a, b ∈ Red(P ) and

there is another directed path from a to b in P .

Perform the operation of deletion till there does not remain any chain

of type C in P . The resultant subgraph of this directed graph (diagram

of P ) is a subposet of P , called a basic block associated to P .

If B is a basic block associated to a poset P then we also say that P is

associated by B.

For example, a crown (see Fig.1) is a basic block associated to itself.

M2 (see Fig.5) is (the) basic block associated to any lattice of nullity

one (see Fig.7). In Fig.6, we have depicted all the basic blocks (see

Proposition 3.2.5) associated to lattices of nullity two.

3.2 Properties of basic blocks

In the following, we give some properties of basic blocks associated to

posets.

Theorem 3.2.1. Let B be a basic block associated to a poset P . Then

(i) B is a sublattice of P whenever P is a lattice.

(ii) nullity(B) = nullity(P ).



68 Basic blocks

(iii) Red(B) ⊆ Red(P ). Further, an equality holds if P is a lattice.

(iv) Irr(B) ⊆ Irr(P ).

(v) If an ear is trivial (i.e., of length 1) in B associated to a pair (a, b)

then there is no other path from a to b in P and hence there is a unique

ear associated to (a, b) in P . Conversely, if there is no other path from

a to b in P then there is no non-trivial ear associated to (a, b) in B.

(vi) If x ∈ Irr(B) and x is associated to a pair (a, b) in B then x is

associated to the pair (a, b) in P also. Moreover, every ear in B is

either of length 1 or 2.

(vii) If x ∈ Irr(B) and x− ≺ x ≺ x+ in B then x−, x+ /∈ Irr(B); that

is, x−, x+ ∈ Red(B). Moreover, nullity(B − {x}) = nullity(B)− 1.

(viii) The number of trivial ears in B is greater than or equal to that

in P .

(ix) A non-trivial ear in P associated to (a, b) if it exists, becomes a

trivial ear in B if and only if there is no other path from a to b in P .

(x) If there is a non-trivial ear associated to (a, b) in B then the number

of non-trivial ears (or the number of doubly irreducibles) associated to

(a, b) in B is equal to the number of non-trivial ears associated to (a, b)

in P .

(xi) The number of ears associated to (a, b) in B is equal to the number

of ears associated to (a, b) in P .

Proof. (i) By definition of a basic block associated to a poset and by

Proposition 1.3.1, B is clearly a sublattice of P whenever P is a lattice.

(ii) By definition of a basic block associated to a poset and by repeated

use of Theorem 2.1.23, nullity(B) = nullity(P ).
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(iii) As B is a subposet of P obtained by removal of some doubly

irreducible elements, it is clear that Red(B) ⊆ Red(P ). Now, if P is a

lattice then by the definition of a basic block associated to a poset and

by the repeated use of Theorem 2.2.2, it is clear that Red(P ) ⊆ Red(B).

Thus, Red(B) = Red(P ).

(iv) Follows from the definition of a basic block associated to a poset.

(v) Let E : a ≺ b be a trivial ear in B associated to the pair (a, b).

Let E ′ be the ear associated to (a, b) in P containing E. If E ′ = E

then clearly there is no other path from a to b in P . If E ′ 6= E then

E ′ is non-trivial ear. If there is another path from a to b in P then

there is an element say x of E ′ such that x ∈ B and x is associated to

(a, b) in B. This is not possible, since E : a ≺ b is a trivial ear in B

associated to the pair (a, b). Therefore, there is no another path from

a to b in P . Hence E ′ is a unique ear associated to the pair (a, b) in P .

The converse follows from the definition of a basic block associated to

a poset.

(vi) First part is obvious. Now, suppose there is an ear E associated

to (a, b) in B of length at least three. Let x ≺ y be the elements of E.

Then nullity(B − {x}) = nullity(B), a contradiction. Therefore, every

ear in B is of length at most two.

(vii) Suppose x ∈ Irr(B). Let E be the ear containing x. If either x−

or x+ or both are in Irr(B) then as x− ≺ x ≺ x+ in B, the length of

E is at least three, a contradiction by (vi). Hence x−, x+ ∈ Red(B).

Now, the ear E : x− ≺ x ≺ x+ is non-trivial in B. Therefore, using

the converse part of (v), there is an another path from x− to x+ in B.
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Hence, nullity(B − {x}) = |E(B − {x})| − |B − {x}| + 1 = (|E(B)| −

2)− (|B| − 1) + 1 = |E(B)| − |B| = nullity(B)− 1.

(viii) Note that, if an ear associated to a pair (a, b) is trivial in P then

it is also trivial in B and the proof follows from the definition of a basic

block associated to a poset.

(ix) Let E : a ≺ x1 ≺ x2 ≺ · · · ≺ xr ≺ b be a non-trivial ear associated

to the pair (a, b) in P . Using contrapositive method, suppose there is

another path from a to b in P . Then by the definition of a basic block

associated to a poset, a ≺ x1 ≺ b is a non-trivial ear associated to (a, b)

in B.

The converse follows from the definition of a basic block, as there is no

another path from a to b in L then we can remove each xi from E to

obtain B and hence E becomes a trivial ear associated to (a, b) in B.

(x) Suppose an ear E associated to (a, b) is non-trivial in B. Let m ≥ 1

be the number of non-trivial ears associated to (a, b) in B. Let n be

the number of non-trivial ears associated to (a, b) in P . From the first

part of (vi), it is clear that m ≤ n. Now, as there is a non-trivial ear E

associated to (a, b) in B, by the converse part of (v), there is another

path from a to b in P . Therefore by (ix), there are n non-trivial ears

associated to (a, b) in B. Therefore n ≤ m. Thus m = n.

(xi) Suppose there is a trivial ear in B associated to (a, b). Since there

can not be more than one trivial ear in B associated to (a, b), by (v),

there is a unique ear associated to (a, b) in P . Now suppose there is

a non-trivial ear in B associated to (a, b). But then the proof follows

from (x).
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In the following Proposition 3.2.2, we obtain a partition of Irr(B) for

a basic block B. Let S = {(a, b) | there is a doubly irreducible element

associated to (a, b) in B, where a, b ∈ Red(B)}. For (a, b) ∈ S, let

SB(a, b) denote the set of all doubly irreducible elements associated

to (a, b) in B. It clearly follows from (vi) of Theorem 3.2.1 that, if

(a, b) ∈ S and E is an ear associated to (a, b) in a basic block B then

l(E) = 2 and hence E is non-trivial.

Proposition 3.2.2. Let B be a basic block. Then

1. For each (a, b) ∈ S, SB(a, b) 6= ∅.

2. For all (a, b), (c, d) ∈ S with (a, b) 6= (c, d), SB(a, b) ∩ SB(c, d) = ∅.

3. Irr(B) =
⋃

(a,b)∈S

SB(a, b).

4. {SB(a, b)|(a, b) ∈ S} forms a partition of Irr(B).

Proof. Let (a, b) ∈ S. If E is an ear associated to (a, b) in B then it is

non-trivial. Therefore SB(a, b) 6= ∅.

Claim 1 : For all (a, b), (c, d) ∈ S with (a, b) 6= (c, d),

SB(a, b) ∩ SB(c, d) = ∅.

For if, suppose SB(a, b) ∩ SB(c, d) 6= ∅. Let x ∈ SB(a, b) ∩ SB(c, d).

Therefore x ∈ SB(a, b) and x ∈ SB(c, d). Therefore x is a doubly

irreducible element associated to (a, b) as well as (c, d) in B. Therefore

a ≺ x ≺ b and c ≺ x ≺ d.

Therefore a = c and b = d, since x ∈ Irr(B). Thus, (a, b) = (c, d), a

contradiction.

Claim 2 : Irr(B) =
⋃

(a,b)∈S

SB(a, b).

Clearly for each (a, b) ∈ S, SB(a, b) ⊆ Irr(B).
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Therefore
⋃

(a,b)∈S

SB(a, b) ⊆ Irr(B).

Now by (vi) of Theorem 3.2.1, if x ∈ Irr(B) and x− ≺ x ≺ x+ in B then

x−, x+ ∈ Red(B) and therefore x is associated to (x−, x+) in B, that is,

x ∈ SB(x−, x+) and (x−, x+) ∈ S. Therefore, Irr(B) ⊆
⋃

(a,b)∈S

SB(a, b).

Hence Irr(B) =
⋃

(a,b)∈S

SB(a, b).

Thus {SB(a, b)|(a, b) ∈ S} forms a partition of Irr(B).

In the following Theorem 3.2.3, we prove that, a basic block associated

to a lattice is a retract of that lattice.

Theorem 3.2.3. If B is a basic block associated to a lattice L then B

is a retract of L.

Proof. Consider the diagram of a lattice L as a digraph. Suppose B is

a basic block associated to L. Let C : x1 ≺ x2 ≺ · · · ≺ xr be a maximal

chain in L, where xi ∈ Irr(L), for all i.

Define a map φ : L→ B as follows.

If L = C then define φ(x) = x1, for all x ∈ C.

If L 6= C then

1. For all x ∈ Red(L), define φ(x) = x.

2. If a, b ∈ Red(L) are such that a ≺ x1 and xr ≺ b and there is no

other directed path from a to b then define φ(x) = a, for all x ∈ C.

3. If a, b ∈ Red(L) are such that a ≺ x1 and xr ≺ b and there is another

directed path from a to b then define φ(x) = x1, for all x ∈ C.

4. If x1 has no lower cover but xr has an upper cover, say y (in fact,

y ∈ Red(L)), then define φ(x) = y, for all x ∈ C.
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5. If xr has no upper cover but x1 has a lower cover, say z (in fact,

z ∈ Red(L)), then define φ(x) = z, for all x ∈ C.

It is clear from the definition of a basic block associated to a lattice

and the definition of φ (see 1, 2 and 3) that φ is the identity map on

B.

Claim : φ is an order-preserving map.

Let x ≤ y in L. Then we have the following four cases.

Case : 1. If x, y ∈ Red(L) then clearly φ(x) ≤ φ(y), since φ is the

identity map on Red(L).

Case : 2. If x, y ∈ Irr(L) then we have the following two subcases.

i) If x, y ∈ C, a maximal chain such that C ⊆ Irr(L) then φ(x) = φ(y).

ii) If x ∈ C1 and y ∈ C2, where C1, C2 are some maximal chains such

that C1 ⊆ Irr(L) and C2 ⊆ Irr(L) then there exists at least one

z ∈ Red(L) such that x < z < y. Therefore, by the definition of φ,

φ(x) ≤ φ(y).

3. If x ∈ Red(L) and y ∈ Irr(L) then φ(x) = x and if y ∈ C, a

maximal chain such that C ⊆ Irr(L) then either φ(y) = x or x < φ(y),

that is, x ≤ φ(y), that is, φ(x) ≤ φ(y).

4. If x ∈ Irr(L) and y ∈ Red(L) then φ(y) = y and if x ∈ C, a maximal

chain such that C ⊆ Irr(L) then either φ(x) = y or φ(x) < y, that is,

φ(x) ≤ y. Therefore, φ(x) ≤ φ(y).

Thus φ preserves the order. Hence φ is a retraction map.

Now, it follows from the definition of a basic block associated to a

lattice and the definition of φ, that φ is onto, since for all y ∈ B,

1. if y ∈ Red(B) then by (iii) of Theorem 3.2.1, y ∈ Red(L) and hence
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φ(y) = y, and

2. if y ∈ Irr(B) then by Proposition 3.2.2, suppose y is associated

to (a, b) in B. By (vi) of Theorem 3.2.1, y is associated to (a, b) in

L. Also, by the converse part of (v) of Theorem 3.2.1, there must be

another path from a to b in L. Hence, by the definition of φ (see 3),

φ(x) = y for all x ∈ E, the ear (containing y) associated to (a, b) in L.

Thus φ is onto. Hence B is a retract of L.

Definition 3.2.1. A dismantlable lattice which is a block is said to

be a dismantlable block. Let B(n, k) be the class of all non-isomorphic

dismantlable blocks on n elements such that each block in it has nullity

k. Let B′(n, k) be the subclass of B(n, k) such that the reducible

elements in each block in it are all comparable.

By (vii) of Theorem 3.2.1, it follows that, if B is a basic block in B(n, k)

and x ∈ Irr(B) then B − {x} ∈ L (n− 1, k − 1).

In the following, we give the characterization of basic blocks in which

the reducible elements are all comparable.

Theorem 3.2.4. A block B ∈ B′(n, k) is a basic block if and only if

B = C0]
b1
a1
C1]

b2
a2
C2 · · · ]bkakCk with ai, bi ∈ C0, satisfying (i) |Ci| = 1, for

all i, 1 ≤ i ≤ k, (ii) |C0| = |Red(B)| + m, where m is the number

of distinct adjunct pairs (ai, bi) such that the interval (ai, bi) ⊆ Irr(B)

and (iii) n = |C0|+ k.

Proof. Suppose a block B ∈ B′(n, k) is a basic block. Therefore

by Theorem 2.2.4, it is adjunct of k + 1 chains. Now all the re-

ducible elements in B are comparable. Therefore by Theorem 2.1.7,
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B = C0]
b1
a1
C1]

b2
a2
C2 · · · ]bkakCk, where C0 is a maximal chain with ai, bi ∈ C0,

for all i, 1 ≤ i ≤ k.

Suppose for some i, 1 ≤ i ≤ k, that |Ci| > 1. Then there ex-

ist x, y ∈ Ci ∩ Irr(B), since Red(B) ⊆ C1. But then B − {x} ∈

L ′(n − 1, k), a contradiction, since B is a basic block. Therefore

|Ci| = 1 for all i, 1 ≤ i ≤ k. Therefore n = |B| = |C0| + k. Sup-

pose (ai1, bi1), (ai2, bi2), · · · , (aim, bim) are the adjunct pairs such that for

each j, 1 ≤ j ≤ m, the interval (aij , bij) ⊆ Irr(B). Therefore for each

j, 1 ≤ j ≤ m, |(aij , bij)∩C0| = 1, since B is a basic block. Also, there is

no x such that x ∈ C0∩ Irr(B) but x /∈ (ai, bi) for all i, 1 ≤ i ≤ k. For

if, suppose there is x ∈ C0 ∩ Irr(B) but x /∈ (ai, bi) for all i, 1 ≤ i ≤ k,

then B − {x} ∈ L ′(n− 1, k), a contradiction, since B is a basic block.

Therefore |Irr(B)| = k + m, since |Ci| = 1 and Ci ⊆ Irr(B) for all

i, 1 ≤ i ≤ k. Also |B| = |Red(B)| + |Irr(B)|. But |B| = |C0| + k im-

plies that |C0|+ k = |Red(B)|+ |Irr(B)|. Hence |C0| = |Red(B)|+m,

since |Irr(B)| = k +m.

Conversely, suppose B = C0]
b1
a1
C1]

b2
a2
C2 · · · ]bkakCk is a block with ai, bi ∈

C0, satisfying (i) |Ci| = 1, for all i, 1 ≤ i ≤ k, (ii) |C0| = |Red(B)|+m,

where m is the number of distinct adjunct pairs (ai, bi) such that the

interval (ai, bi) ⊆ Irr(B) and (iii) n = |C0| + k. Now, by Theorem

2.2.4, the nullity of B is k. Therefore by assumption B ∈ B′(n, k). Let

Ci = {yi}, for all i, 1 ≤ i ≤ k. Let |Red(B)| = l and C0 be the chain

x1 ≤ x2 · · · ≤ xl+m. Suppose Red(B) = {xij |1 ≤ j ≤ l}. Now if for

some r, 1 ≤ r ≤ k, (ar, br) ⊆ Irr(B) then |(ar, br) ∩ C0| = 1, since

otherwise |C0| − |Red(B)| > m. Therefore let (ar, br) ∩ C0 = {xij}, for
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some j, l + 1 ≤ j ≤ l + m. But then ar = xij−1 and br = xij+1.

Now Irr(B) = {y1, · · · , yk, xil+1
, · · · , xil+m

}. For any z ∈ Irr(B),

B − {z} ∈ L ′(n − 1, k − 1), where n = |C0| + k. Thus, removal of

doubly irreducible element from B decreases its nullity by one. There-

fore B is a basic block.

Remark 3.2.1. By (i) and (ii) of Theorem 3.2.1, a minimal sublattice

B is a basic block associated to a lattice L, if the repeated application

of the operation of deleting doubly irreducible elements, whose removal

causes the nullity unaltered, ends up with B.

Note that, if B is a basic block associated to a dismantlable lattice L

then by Proposition 1.3.3, B is dismantlable. Therefore, by Theorem

2.2.3, a basic block associated to any lattice of nullity at most four is

dismantlable.
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b bb
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bbb b
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bb
bbb b

3
bb
bb b

b
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b b bbb
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c bb
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Fig.6

Proposition 3.2.5. There are exactly seven non-isomorphic basic blocks

(given in Fig.6) associated to lattices of nullity two.

Proof. Let B be a basic block associated to a lattice L of nullity two. By

(ii) of Theorem 3.2.1, B is also of nullity two. By Theorem 2.2.4, B must

be an adjunct of three chains. By Lemma 2.2.6, 2 ≤ |Red(B)| ≤ 4. If
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|Red(B)| = 2 then B is given by Fig.6(1). If |Red(B)| = 3 and suppose

the reducible elements in B are 0 < a < 1 then B is given by Fig.6(2)

whenever a is join reducible, B is given by Fig.6(3) whenever a is meet

reducible and B is given by Fig.6(6) whenever a is join as well as meet

reducible. If |Red(B)| = 4 and suppose the reducible elements in B are

0 < a 6= b < 1 then a and b must be comparable, since otherwise, B

would be an adjunct of at least four chains, a contradiction. Without

loss, say a < b. If both a and b are meet (or join) reducible elements

then again B would be an adjunct of at least four chains, again a

contradiction. If a is meet reducible and b is join reducible then B is

either given by Fig.6(4) or given by Fig.6(5); otherwise, B is given by

Fig.6(7).

3.3 Uniqueness of a basic block

In the following Theorem 3.3.1, we prove that, if two basic blocks are

non-isomorphic then the posets associated by these basic blocks are

also non-isomorphic.

Theorem 3.3.1. If B1, B2 are basic blocks associated to the posets

P1, P2 respectively and P1
∼= P2 then B1

∼= B2.

Proof. We give the proof using induction on n = |P1| = |P2| ≥ 1. If

n ≤ 4 then we are done. Now suppose n ≥ 5 and the result is true for

any two isomorphic posets containing < n elements.

If P1 contains no doubly irreducible element x such that P1 and P1\{x}

have same nullity then P1 itself is a basic block associated to it and we
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get that B1 = P1
∼= P2 = B2.

Now, suppose there is a doubly irreducible element x ∈ P1 such that

the nullity of P1 is same as the nullity of P1 \ {x}.

Let φ : P1 → P2 be an isomorphism.

If x /∈ B1 and φ(x) /∈ B2 then B1 and B2 are also basic blocks associated

to P1 \ {x} and P2 \ {φ(x)} respectively.

Now |P1 \{x}| = |P2 \{φ(x)}| = n−1 < n. Therefore by the induction

hypothesis B1
∼= B2.

Without loss, assume that x ∈ B1. It follows that the ear E containing

x in P1 contains one more element, say y, since B1 is a basic block

and the nullity of P1 is same as the nullity of P1 \ {x}. If there is an

element z ∈ E such that z /∈ B1 and φ(z) /∈ B2 then B1 and B2 are

also basic blocks associated to P1 \ {z} and P2 \ {φ(z)} respectively.

Now |P1 \ {z}| = |P2 \ {φ(z)}| = n− 1 < n. Therefore by the induction

hypothesis B1
∼= B2.

Hence assume that E = {x, y} and φ(y) ∈ B2.

Define a map ψ : P1 \ {x} → P2 \ {φ(y)} as

ψ(z) = φ(z), if z 6= y and ψ(z) = φ(x), if z = y.

We prove that ψ is an isomorphism.

(I) We prove ψ is injective. Let a, b ∈ P1 \ {x}.

Case 1 : If a 6= y and b 6= y then ψ(a) = φ(a) and ψ(b) = φ(b).

Therefore ψ(a) = ψ(b) implies that φ(a) = φ(b) and hence a = b, since

φ is injective.

Case 2 : If without loss, a 6= y and b = y then ψ(a) = φ(a) and

ψ(b) = φ(x). If φ(a) = φ(x) then a = x, since φ is injective. This is
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not possible. Therefore φ(a) 6= φ(x) and hence ψ(a) 6= ψ(b).

(II) We prove ψ is surjective.

Let w ∈ P2\{φ(y)}. Therefore w 6= φ(y). As w ∈ P2, w = φ(c) for some

c ∈ P1, since φ is surjective. Clearly, c 6= y. Therefore ψ(c) = φ(c). If

c = x then φ(c) = φ(x) and hence ψ(c) = ψ(y). As ψ is injective, we

get c = y, a contradiction. Thus, for any w ∈ P2 \ {φ(y)}, there exists

c ∈ P1 \ {x} such that ψ(c) = w.

(III) We prove ψ is order-embedding.

Now a ≺ b in P1 \ {x} if and only if a ≺ b in P1 or a ≺ x and x ≺ b in

P1 if and only if φ(a) ≺ φ(b) in P2 or φ(a) ≺ φ(x) and φ(x) ≺ φ(b) in

P2 if and only if ψ(a) ≺ ψ(b) in P2 or ψ(a) ≺ ψ(y) and ψ(y) ≺ ψ(b) in

P2 if and only if ψ(a) ≺ ψ(b) in P2 \ {ψ(y)}.

Therefore P1 \ {x} ∼= P2 \ {φ(y)}, since P2 \ {ψ(y)} = P2 \ {φ(x)} =

P2 \ {φ(y)}, as φ(E) = {φ(x), φ(y)}.

Now |P1\{x}| = |P2\{φ(y)}| = n−1 < n. Therefore, by the induction

hypothesis, the basic blocks associated to P1 \ {x} and P2 \ {φ(y)} are

isomorphic.

Note that, (B1 \ {x})∪{y} and (B2 \ {φ(y)})∪{φ(x)} are basic blocks

associated to P1 \ {x} and P2 \ {φ(y)} respectively. Therefore by the

induction hypothesis, (B1 \ {x}) ∪ {y} ∼= (B2 \ {φ(y)}) ∪ {φ(x)}. As

B1
∼= (B1\{x})∪{y} and B2

∼= (B2\{φ(y)})∪{φ(x)}, we have B1
∼= B2.

Hence the proof is complete.

However, the converse of the above Theorem 3.3.1 is not true. Since

the posets given in the following figure (Fig.7) are not isomorphic to

each other but the basic blocks associated to them are isomorphic (In
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fact, those basic blocks are each isomorphic to M2 (see Fig.5)).

ee
e
e

e
ee
e ee

Fig.7

In the following, we prove that, there is a unique basic block associated

to any poset.

Corollary 3.3.2. If B1 and B2 are basic blocks associated to a poset P

then B1
∼= B2.

Proof. Consider an identity map ψ : P → P . Then ψ is an isomor-

phism. Therefore using the above Theorem 3.3.1, B1
∼= B2.

3.4 Fundamental basic blocks

In the previous section, we have studied the concept of a basic block

associated to a poset. Also, it can be observed that a basic block is the

minimal form of a poset with respect to the nullity. In the following,

we introduce the concept of a fundamental basic block associated to

a dismantlable lattice. Using fundamental basic blocks, it is possible

to enumerate the number of non-isomorphic dismantlable lattices with

the help of partition theory of numbers.

Definition 3.4.1. A dismantlable lattice B is said to be a fundamental

basic block if it is a basic block and all the adjunct pairs in the adjunct

representation of B are distinct.
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For example, M2 (see Fig.5) is fundamental basic block, whereas M3

(see Fig.6 (1)) is not a fundamental basic block. In fact, using the

above Proposition 3.2.5, we get by observation the following.

Corollary 3.4.1. There are exactly six non-isomorphic fundamental

basic blocks (see Fig.6) of nullity two.

Proposition 3.4.2. Let L ∈ L ′(n, k, r), where k = [r+1
2 ]. Then the

multiplicity of each adjunct pair in an adjunct representation of L is

one.

Proof. As L in a lattice of nullity k, by Theorem 2.2.4, L is adjunct

of k + 1 chains. Now the reducible elements in L are all comparable.

Therefore by Theorem 2.1.7, L = C0]α1
C1]α2

C2 · · · ]αk
Ck, where C0 is a

maximal chain containing all the r reducible elements and for each i,

Ci is a chain and αi is an adjunct pair. Suppose for some i, the adjunct

pair αi has multiplicity more than one. Then by Corollary 2.1.20,

L = C0]α1
C1]α2

C2 · · · ]αi−1Ci−1]αk
Ck]αi+1

Ci+1 · · · ]αk−1Ck−1]αi
Ci.

But then by Proposition 1.3.1, L − Ci is a sublattice of P . Moreover,

L − Ci contains r reducible elements. Also by Theorem 2.2.4, nullity

of L− Ci is k − 1. Thus, L− Ci ∈ L ′(n− |Ci|, k − 1, r). Therefore by

Proposition 2.2.7, k − 1 ≥ [r+1
2 ], a contradiction, since k = [r+1

2 ].

Using the above Proposition 3.4.2 and using the definition of a funda-

mental basic block, we have the following.

Corollary 3.4.3. If k = [r+1
2 ] then every basic block associated to a

lattice in L ′(n, k, r) is a fundamental basic block.



82 Basic blocks

Proposition 3.4.4. For any fundamental basic block of nullity k con-

taining r reducible elements which are all comparable, [r+1
2 ] ≤ k ≤

(
r
2

)
.

Proof. By Proposition 2.2.7, [r+1
2 ] ≤ k. By the definition of a funda-

mental basic block, all the adjunct pairs in an adjunct representation

of it are distinct. That is, the multiplicity of each adjunct pair in an

adjunct representation of a fundamental basic block is one. As the nul-

lity of a fundamental basic block is k, by Theorem 2.2.4, it is adjunct

of k+1 chains and hence the number of distinct adjunct pairs in its ad-

junct representation is also k. But one adjunct pair correspond to two

reducible elements. Therefore k ≤
(
r
2

)
. Thus [r+1

2 ] ≤ k = l ≤
(
r
2

)
.

The above Proposition 3.4.4 can also be proved using Proposition 2.2.9

and using the definition of a fundamental basic block.

Definition 3.4.2. Let L be a dismantlable lattice. Let B be a basic

block associated to L. If B itself is a fundamental basic block then we

say that B is a fundamental basic block associated to itself. Let (a, b)

be an adjunct pair in an adjunct representation of B. If the interval

(a, b) ⊆ Irr(B) then remove all but two (non-trivial) ears associated

to (a, b) in B; otherwise, remove all but one (non-trivial) ear (if any)

associated to (a, b) in B.

Perform the operation of removal of (non-trivial) ears associated to

(a, b), for each adjunct pair (a, b) in an adjunct representation of B. The

resultant sublattice of B is called a fundamental basic block associated

to L.

For example, M2 (see Fig.5) is a fundamental basic block associated
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to M3 (see Fig.6 (1)). Observe that, if F is a fundamental basic block

associated to a dismantlable lattice L then Red(B) = Red(L). Also

it can be observed that, the fundamental basic block associated to a

dismantlable lattice is having a smaller diagram as compared to the

basic block associated to that lattice.

As a consequence of the Theorem 3.3.1, we have the following result.

Theorem 3.4.5. If F1 and F2 are fundamental basic blocks associated

to the dismantlable lattices L1 and L2 respectively and L1
∼= L2 then

F1
∼= F2.

Proof. Let B1 and B2 be basic blocks associated to the dismantlable

lattices L1 and L2 respectively. As L1
∼= L2, by Theorem 3.3.1, B1

∼=
B2. If B1 itself is a fundamental basic block then we are done. Suppose

B1 is not a fundamental basic block. Let F1 and F2 be fundamental

basic blocks associated to L1 and L2 respectively. Then F1 and F2 are

also fundamental basic blocks associated to B1 and B2 respectively.

Let x ∈ S = Irr(B1) \ Irr(F1). Suppose a ≺ x ≺ b in B1. Then

a, b ∈ Red(B1) = Red(F1) and (a, b) is an adjunct pair in an adjunct

representation of B1. Let φ : B1 → B2 be an order-isomorphism. Then

φ(a) ≺ φ(x) ≺ φ(b) in B2 and (φ(a), φ(b)) is an adjunct pair in an

adjunct representation of B2. Moreover, B1 \ {x} ∼= B2 \ {φ(x)}. Thus

F1 = B1 \ S ∼= B2 \ {φ(S)} = F2.

Thus it follows that, if two fundamental basic blocks are non-isomorphic

then the lattices associated by these fundamental basic blocks are also

non-isomorphic. As a consequence of the Theorem 3.4.5, we prove in
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the following that there is a unique fundamental basic block associated

to any dismantlable lattice.

Corollary 3.4.6. If F1 and F2 are basic blocks associated to a disman-

tlable lattice L then F1
∼= F2.

Proof. Consider an identity map ψ : L → L. Clearly ψ is an isomor-

phism. Therefore using the above Theorem 3.4.5, F1
∼= F2.



Chapter 4

Enumeration of lattices

In this Chapter, we mainly deal with the enumeration of the class of

all non-isomorphic lattices in which all the reducible elements are com-

parable. In the first section, we give recursive formulae for obtaining

the number of all non-isomorphic fundamental basic blocks containing

reducible elements which are all comparable. In the second section, we

obtain three sequences. The first is the sequence of fundamental basic

blocks containing r ≥ 0 reducible elements which are all comparable.

The second is the sequence of fundamental basic blocks of nullity l ≥ 0

in which all the reducible elements are comparable. The third is the

sequence of basic blocks of nullity l ≥ 0 in which all the reducible ele-

ments are comparable. In the last section, we enumerate the class of all

non-isomorphic lattices on n elements in which the reducible elements

are all comparable.
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4.1 Counting fundamental basic blocks

Definition 4.1.1. Let FB(r) be the class of all non-isomorphic funda-

mental basic blocks such that each one of them has r reducible elements.

Let FB′(r) be the subclass of FB(r) such that all the r reducible ele-

ments in each fundamental basic block in it are comparable.

Note that, if the nullity of a fundamental basic block in FB(r) is l then

by Theorem 2.2.4, it is adjunct of l + 1 chains and hence the number

of distinct adjunct pairs in its adjunct representation is also l.

Also, if the nullity of a fundamental basic block in FB′(r) is l then by

Proposition 3.4.4, [r+1
2 ] ≤ l ≤

(
r
2

)
.

Let ar = |FB′(r)|, for all r ≥ 0. Then

a0 = 1, since FB′(0) consists of a chain only.

a1 = 0, since FB′(1) is an empty class.

a2 = 1, since FB′(2) consists of M2 (see Fig.5) only.

We now obtain a recursive formula which produces ar in the following.

Theorem 4.1.1. For r ≥ 0, ar+1 =

(
r∑
j=0

(
r
j

)
2jaj

)
− ar with a0 = 1.

Proof. Let B ∈ FB′(r + 1). Consider the poset PB obtained from B

by deleting 1. Then the basic block B′ associated to PB is in FB′(j)

for some j = 0, 1, 2, . . . , r, since all the reducible elements of B are

comparable. Clearly Red(B′) ⊂ Red(B). Therefore every element of

FB′(r + 1) can be obtained from a member B′ of FB′(j) by a lin-

ear sum with a chain of at most two elements and then using at least
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m = max{r − j, 1} 2-sums, where all the corresponding adjunct pairs

are distinct and of the type (a, 1), where 1 is the largest element of

the linear sum and a /∈ Red(B′) for exactly r − j 2-sums. Further, by

Theorem 3.3.1, for any B1, B2 ∈ FB′(r+ 1), if the basic blocks B′1 and

B′2 associated to PB1
= B1 − {1} and PB2

= B2 − {1} respectively are

not isomorphic then PB1
6∼= PB2

, consequently B1 6∼= B2.

We now see the procedure for obtaining fundamental basic blocks of

FB′(r + 1) from that of FB′(j).

Let B′ ∈ FB′(j), for some j = 0, 1, 2, . . . , r. Let y1, y2, . . . , yj ∈

Red(B′). Let C be a maximal chain containing all the reducible el-

ements of B′. We consider the following two cases.

Case I. Suppose j < r. Therefore r − j ≥ 1. Clearly there are j − 1

places on C which are separated by the reducible elements of B′. Con-

sider two more places, one is below C and the other is above C. Thus

the total number of places separated by all the reducible elements of B

is j+1. Insert now r−j doubly irreducible elements, say x1, x2, . . . , xr−j

in those j + 1 places. This can be done in
(
(r−j)+(j+1)−1

(j+1)−1
)

=
(
r
j

)
ways.

Let C ′ be the chain consisting of C alongwith those r − j doubly irre-

ducible elements and let L be the resultant lattice.

Let B = (L⊕C ′′)]1x1{c1}]
1
x2
{c2} · · · ]1xr−j{cr−j}, where C ′′ is a chain of at

most two elements. Then (a basic block associated to) B ∈ FB′(r+1).

Also if we choose m of the j reducible elements of B′, say yi1, yi2, . . . , yim

then (a basic block associated to)B]1yi1{di1}]
1
yi2
{di2} · · · ]1yim{dim} ∈ FB

′(r+

1). Note that 0 ≤ m ≤ j. Therefore

j∑
m=0

(
j

m

)
= 2j (non-isomorphic)

fundamental basic blocks of FB′(r + 1) can be constructed using B′ ∈
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FB′(j). Hence for fixed j, in all
(
r
j

)
×2j (non-isomorphic) fundamental

basic blocks of FB′(r + 1) can be constructed using B′ ∈ FB′(j).

Case II. Suppose j = r. In this case there is no need to insert any dou-

bly irreducible element in the chain C. Again if we choose m of the j

reducible elements of B′, say yi1, yi2, . . . , yim then (a basic block associ-

ated to) (B′⊕C ′′)]1yi1{di1}]
1
yi2
{di2} · · · ]1yim{dim} ∈ FB

′(r+ 1), where C ′′

is a chain of at most two elements. Note that 1 ≤ m ≤ j, since if m = 0

then 1 ofB′⊕C ′′ will not become reducible, consequently, we will not get

a fundamental basic block of FB′(r+ 1). Therefore

j∑
m=1

(
j

m

)
= 2j − 1

(non-isomorphic) fundamental basic blocks of FB′(r + 1) can be con-

structed using B′ ∈ FB′(j). Hence in this case, in all
(
r
j

)
× (2j − 1),

that is, 2r−1 (non-isomorphic) fundamental basic blocks of FB′(r+1)

can be constructed using B′ ∈ FB′(j).

Thus ar+1 = |FB′(r + 1)| =
r−1∑
j=0

∑
B′∈FB′(j)

(
r

j

)
2j +

∑
B′∈FB′(r)

(2r − 1) =(
r−1∑
j=0

(
r

j

)
2j|FB′(j)|

)
+ (2r − 1)|FB′(r)| =

(
r∑
j=0

(
r

j

)
2jaj

)
− ar.

In the following Theorem 4.1.2, we obtain another form of a recursive

formula for ar which is obtained in Theorem 4.1.1.

Theorem 4.1.2. For r ≥ 1, ar+1 =
r∑

k=1

k∑
j=0

(
r
j

)(
r−j
k−j
)
ar−j

with a0 = 1 and a1 = 0.

Proof. By Theorem 4.1.1, ar+1 =

(
r∑
j=0

(
r
j

)
2jaj

)
− ar

=
(
r
r

)
2rar+

(
r
r−1
)
2r−1ar−1+

(
r
r−2
)
2r−2ar−2+ · · ·+

(
r

r−(r−1)
)
2r−(r−1)ar−(r−1)

+
(
r
r−r
)
2r−rar−r − ar
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=
(
r
r

)
(2r − 1)ar +

(
r
r−1
)
2r−1ar−1 +

(
r
r−2
)
2r−2ar−2

+ · · ·+
(

r
r−(r−1)

)
2r−(r−1)ar−(r−1) +

(
r
r−r
)
2r−rar−r

=
(
r
0

)
(2r − 1)ar +

(
r
1

)
(2r−1)ar−1 +

(
r
2

)
(2r−2)ar−2

+ · · ·+
(
r
r−1
)
(2r−(r−1))ar−(r−1) +

(
r
r

)
(2r−r)ar−r

=
(
r
0

) ((
r
1

)
+
(
r
2

)
+ · · ·+

(
r
r

))
ar +

(
r
1

) ((
r−1
0

)
+
(
r−1
1

)
+ · · ·+

(
r−1
r−1
))
ar−1

+
(
r
2

) ((
r−2
0

)
+
(
r−2
1

)
+ · · ·+

(
r−2
r−2
))
ar−2 + · · ·

+
(
r
r−1
) ((

r−(r−1)
0

)
+
(
r−(r−1)

1

))
ar−(r−1) +

(
r
r

) ((
r−r
0

))
ar−r

=
((

r
0

)(
r
1

)
ar +

(
r
1

)(
r−1
0

)
ar−1

)
+
((

r
0

)(
r
2

)
ar +

(
r
1

)(
r−1
1

)
ar−1 +

(
r
2

)(
r−2
0

)
ar−2

)
+ · · ·+

((
r
0

)(
r
r

)
ar +

(
r
1

)(
r−1
r−1
)
ar−1 + · · ·+

(
r
r

)(
r−r
0

)
ar−r

)
=

 1∑
j=0

(
r

j

)(
r − j
1− j

)
ar−j

+

 2∑
j=0

(
r

j

)(
r − j
2− j

)
ar−j

+ · · ·

+

 r∑
j=0

(
r

j

)(
r − j
r − j

)
ar−j

 =
r∑

k=1

k∑
j=0

(
r

j

)(
r − j
k − j

)
ar−j .

Thus, ar+1 =
r∑

k=1

k∑
j=0

(
r
j

)(
r−j
k−j
)
ar−j.

In Corollary 4.1.5, we obtain one more formula for finding ar. For this

purpose, we define the following.

Definition 4.1.2. Let FB(l, r) be the subclass of FB(r) such that

each fundamental basic block in it is of nullity l.

Let FB′(l, r) be the subclass of FB′(r) such that each fundamental

basic block in it is of nullity l.

Let r ≥ 1. For 1 ≤ k ≤ r and for [r+2
2 ] ≤ l ≤

(
r+1
2

)
,

let C l
k = {B ∈ FB′(l, r + 1) : Indegree (d) of 1 in B is k + 1}.

Note that, FB(0, 0) consists of 1-chain only and FB(1, 2) consists of

M2 (see Fig.5) only.

Remark 4.1.1. Observe that,
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1. For r ≥ 1, FB(0, r) is an empty set.

2. If either l < [r+2
2 ] or l >

(
r+1
2

)
or r > 2l then FB′(l, r) = φ.

3. The collection {FB′(l, r+ 1) : [r+2
2 ] ≤ l ≤

(
r+1
2

)
} forms a partition

of FB′(r + 1).

4. If either k = l = r − 1 or l < k or
(
r
2

)
< l − k then C l

k = φ.

5. For fixed [r+2
2 ] ≤ l ≤

(
r+1
2

)
, the collection {C l

k : 1 ≤ k ≤ r} forms

a partition of FB′(l, r + 1).

6. If l =
(
r+1
2

)
then |C l

r| = 1 (see Fig.8(II) for r = 3).

7. |Cr
r | = 1 (see Fig.8(I) for r = 3).

c
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c
c
c
c

c c
c
c
c

c
c
c
c
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c
c
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@
@

(I) C3
3 (II) C6
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Fig.8

In the following Theorem 4.1.3, we obtain the formula for C l
k in terms

of the number of fundamental basic blocks of nullity l−k, in which the

reducible elements are all comparable.

Theorem 4.1.3. For fixed r ≥ 1, 1 ≤ k ≤ r and [r+2
2 ] ≤ l ≤

(
r+1
2

)
,

|C l
k| =

k∑
j=0

(
r
j

)(
r−j
k−j
)
|FB′(l − k, r − j)|.

Proof. Let r ≥ 1. Let B ∈ C l
k, for some 1 ≤ k ≤ r and for some

[r+2
2 ] ≤ l ≤

(
r+1
2

)
. Consider the poset PB obtained from B by deleting
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1. Then the basic block B′ associated to PB is in FB′(l − k, r − j)

for some j = 0, 1, 2, . . . , k, since all the reducible elements of B are

comparable and indegree of 1 is k + 1. Note that, removal of 1 from B

result in the removal of k chains (singletons) corresponding to k adjunct

pairs of the type (a, 1), where a 6= 1 ∈ Red(B), since B is a fundamental

basic block, and therefore, at most k out of r (other than 1) reducible

elements may become irreducible. Clearly Red(B′) ⊂ Red(B).

Therefore, every element of C l
k can be obtained from a member B′ of

FB′(l− k, r− j) by a linear sum with a chain of at most two elements

and then using at least max{j, 1} 2-sums, where all the corresponding

adjunct pairs are distinct and of the type (b, 1), where 1 is the largest

element of the linear sum and b /∈ Red(B′) for exactly j 2-sums.

Further, by Theorem 3.3.1, for any B1, B2 ∈ C l
k, if the basic blocks B′1

and B′2 associated to PB1
= B1 − {1} and PB2

= B2 − {1} respectively

are not isomorphic then PB1
6∼= PB2

, consequently B1 6∼= B2.

We now see the procedure for obtaining fundamental basic blocks of C l
k

from that of FB′(l − k, r − j).

Let B ∈ FB′(l − k, r − j) for some j = 0, 1, 2, . . . , k. Let C be a

maximal chain containing all r − j reducible elements of B. Clearly

there are r − j − 1 places on C which are separated by the reducible

elements of B. Consider two more places, one is below C and the

other is above C. Thus the total number of places separated by all the

reducible elements of B is r − j + 1. Insert now j doubly irreducible

elements, say x1, x2, . . . , xj in those r − j + 1 places. This can be done

in
(
j+(r−j+1)−1
(r−j+1)−1

)
=
(
r
r−j
)

=
(
r
j

)
ways.
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Let C ′ be the chain consisting of C alongwith those j doubly irreducible

elements and let L be the resultant lattice.

Let B′ = (L ⊕ C ′′)]1x1{c1}]
1
x2
{c2} · · · ]1xj{cj}, where C ′′ is a chain of at

most two elements. Then (a basic block associated to) B′ becomes a

fundamental basic block of nullity l−k+j containing (r−j)+j+1 = r+1

reducible elements which are all comparable. Note that indegree of 1

of B′ is j + 1.

Let y1, y2, . . . , yr−j ∈ Red(B). If we choose k − j reducible elements,

say yi1, yi2, . . . , yik−j out of r − j reducible elements of B, which can be

done in
(
r−j
k−j
)

ways, then (a basic block associated to)

B′′ = B′]1yi1{d1}]
1
yi2
{d2} · · · ]1yik−j{dk−j} ∈ C

l
k. Thus given B ∈ FB′(l −

k, r − j), we can obtain in all
(
r
j

)(
r−j
k−j
)

(non-isomorphic) fundamental

basic blocks of C l
k. Hence |C l

k| =
k∑
j=0

(
r
j

)(
r−j
k−j
)
|FB′(l − k, r − j)|.

In the following Corollary 4.1.4, we obtain the recursive formula for

the number of fundamental basic blocks of nullity l, containing r + 1

reducible elements which are all comparable.

Corollary 4.1.4. For fixed r ≥ 1 and [r+2
2 ] ≤ l ≤

(
r+1
2

)
,

|FB′(l, r + 1)| =
r∑

k=1

k∑
j=0

(
r

j

)(
r − j
k − j

)
|FB′(l − k, r − j)|.

Proof. For fixed l, {C l
k : 1 ≤ k ≤ r} forms a partition of FB′(l, r + 1).

Therefore for each [r+2
2 ] ≤ l ≤

(
r+1
2

)
, FB′(l, r + 1) =

r⋃
k=1

C l
k. Hence

|FB′(l, r + 1)| =
r∑

k=1

|C l
k|.

Therefore the proof follows from the above Theorem 4.1.3.
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In the following Corollary 4.1.5, we now obtain one more formula for

finding ar in terms of the number of fundamental basic blocks in which

the reducible elements are all comparable.

Corollary 4.1.5. For r ≥ 1,

ar+1 =

(r+1
2 )∑

l=[ r+2
2 ]

r∑
k=1

k∑
j=0

(
r
j

)(
r−j
k−j
)
|FB′(l − k, r − j)|.

Proof. As {FB′(l, r + 1) : [r+2
2 ] ≤ l ≤

(
r+1
2

)
} forms a partition of

FB′(r + 1), we have FB′(r + 1) =

(r+1
2 )⋃

l=[ r+2
2 ]

FB′(l, r + 1). Hence ar+1 =

|FB′(r + 1)| =
(r+1

2 )∑
l=[ r+2

2 ]

|FB′(l, r + 1)|.

Therefore the proof follows from the above Corollary 4.1.4.

Definition 4.1.3. For 1 ≤ k ≤ r,

let FBk(r + 1) = {B ∈ FB′(r + 1) : Indegree (d) of 1 in B is k + 1}.

It is clear that 2 ≤ d ≤ r + 1, for any B ∈ FB′(r + 1).

Also, for fixed 1 ≤ k ≤ r, the collection {C l
k : [r+2

2 ] ≤ l ≤
(
r+1
2

)
} forms

a partition of FBk(r + 1). Therefore we have the following.

Corollary 4.1.6. For fixed r ≥ 1 and for fixed 1 ≤ k ≤ r,

|FBk(r + 1)| =
(r+1

2 )∑
l=[ r+2

2 ]

k∑
j=0

(
r

j

)(
r − j
k − j

)
|FB′(l − k, r − j)|.

Proof. For fixed 1 ≤ k ≤ r, the collection {C l
k : [r+2

2 ] ≤ l ≤
(
r+1
2

)
} forms

a partition of FBk(r+ 1). Therefore for each 1 ≤ k ≤ r, FBk(r+ 1) =
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(r+1
2 )⋃

l=[ r+2
2 ]

C l
k. Hence |FBk(r+ 1)| =

(r+1
2 )∑

l=[ r+2
2 ]

|C l
k|. Therefore the proof follows

from the above Theorem 4.1.3.

The collection {FBk(r + 1) : 1 ≤ k ≤ r} also forms a partition of

FB′(r + 1). Therefore the above Corollary 4.1.5 can also be obtained

using Corollary 4.1.6.

It can be observed that, the fundamental basic block associated to a

dismantlable lattice is having a smaller (or same) diagram as compared

to the basic block associated to that lattice.

In Theorem 4.1.7, we obtain the formula for obtaining the number of

non-isomorphic basic blocks of nullity l, containing reducible elements

which are all comparable, using the number of non-isomorphic funda-

mental basic blocks of nullity m ≤ l. For this purpose, let us use the

following.

Definition 4.1.4. Let B(r) be the class of all non-isomorphic basic

blocks such that each basic block in it has r reducible elements. Let

B′(r) be the subclass of B(r) such that the reducible elements in each

basic block in it are all comparable.

Definition 4.1.5. Let B(l, r) be the subclass of B(r) such that each

basic block in it is of nullity l. Let B′(l, r) be the subclass of B′(r) such

that each basic block in it is of nullity l.

By Corollary 3.4.3, if l = m = [r+1
2 ] then B′(l, r) = FB′(m, r).

In general, if l ≥ m then |B′(l, r)| ≥ |FB′(m, r)|.
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Let prn denote the number of (weak) compositions of n into r (non-

negative) parts. Then prn is the number of non-negative integer solu-

tions to the equation n = x1 +x2 + · · ·+xr. The number of solutions is

actually the number of distinct r-tuples, (x1, x2, . . . , xr) satisfying the

equation n = x1 + x2 + · · · + xr, where for each i, xi ≥ 0. It is known

that prn =
(
n+r−1
r−1

)
.

We now obtain the formula for the number of non-isomorphic basic

blocks of nullity l containing reducible elements which are all compa-

rable.

Theorem 4.1.7. For r ≥ 2 and for [r+2
2 ] ≤ m ≤ l ≤

(
r
2

)
,

|B′(l, r)| =
l∑

m=[ r+1
2 ]

(
l − 1

m− 1

)
|FB′(m, r)|.

Proof. Let B ∈ B′(l, r) for some l. Suppose B′ is the fundamental basic

block associated to B. Clearly, Red(B) = Red(B′). If m is the nullity

of B′ then it is clear that m ≤ l. Let s = l −m.

Therefore, any B ∈ B′(l, r) can be obtained from a member B′ of

FB′(m, r) using exactly s 2-sums, where all the adjunct pairs are the

adjunct pairs of B′.

Further, note that, for any B1, B2 ∈ B′(l, r), if the corresponding fun-

damental basic blocks B′1 and B′2 are not isomorphic then B1 6∼= B2.

Also, for any isomorphism φ of B′ ∈ FB′(m, r) to itself, if (a, b) is an

adjunct pair then φ(a) = a and φ(b) = b, since the reducible elements

of B′ are all comparable.

By Theorem 2.2.4, as nullity of B′ is m, it is an adjunct of m+1 chains.

Suppose C is a maximal chain containing all the r reducible elements
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of B′. Then by Theorem 2.1.7 and using definition of a fundamen-

tal basic block, B′ = C]α1
{c1}]α2

{c2} · · · ]αm
{cm} where all the adjunct

pairs αi = (ai, bi) are distinct. By Corollary 2.1.20, without loss, we

can assume that (a1, b1) < (a2, b2) < . . . < (am, bm) with respect to the

dictionary order defined on C × C. Let ni be the multiplicity of an

adjunct pair (ai, bi) in B ∈ B′(l, r).

For each B′ ∈ FB′(m, r), let AB′ = {B ∈ B′(l, r) : B′ is the as-

sociated fundamental basic block of B}. Then there is a one-to-one

correspondence between the set AB′ and the set S = {(n1, n2, . . . , nm) :

n1 + n2 + · · ·+ nm = l, ni ≥ 1}.

Now S is equivalent to the set S ′ = {(n1, n2, . . . , nm) : n1 + n2 +

· · · + nm = s, ni ≥ 0} and |S| = pms . Therefore |AB′| = pms . But

pms =
(
s+m−1
m−1

)
=
(
l−1
m−1
)
. Hence |AB′| =

(
l−1
m−1
)
.

Thus, for fixed m, the number of basic blocks in B′(l, r) which can be

obtained from all B′ ∈ FB′(m, r) is∑
B′∈FB′(m,r)

|AB′| =
∑

B′∈FB′(m,r)

(
l − 1

m− 1

)
=

(
l − 1

m− 1

)
|FB′(m, r)|.

Hence |B′(l, r)| =
l∑

m=[ r+1
2 ]

(
l − 1

m− 1

)
|FB′(m, r)|.

In order to obtain the number of all non-isomorphic basic blocks as well

as fundamental basic blocks of given nullity, we see first the following.

Definition 4.1.6. Let FB(l) be the class of all non-isomorphic funda-

mental basic blocks of nullity l. Let FB′(l) be the subclass of FB(l)

such that the reducible elements in each fundamental basic block in it

are all comparable.
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Definition 4.1.7. Let B(l) be the class of all non-isomorphic basic

blocks of nullity l. Let B′(l) be the subclass of B(l) such that the

reducible elements in each basic block in it are all comparable.

It follows from Lemma 2.2.6 that,

|FB(l)| =
2l∑
r=2

|FB(l, r)| and |B(l)| =
2l∑
r=2

|B(l, r)|.

Hence |FB′(l)| =
2l∑
r=2

|FB′(l, r)| and |B′(l)| =
2l∑
r=2

|B′(l, r)|.

In the next section, we verify the various formulae which we have seen

in this Chapter. We also obtain the first few terms of the sequences

giving the values of ar, |FB′(l)| and |B′(l)|.

4.2 Counting basic blocks

Now we will obtain for all r ≥ 1, for all k, 1 ≤ k ≤ r and for all

l, [r+2
2 ] ≤ l ≤

(
r+1
2

)
, the cardinalities of FBk(r + 1) and FB′(l, r + 1)

using that of C l
k. Using these cardinalities, we also obtain the cardinal-

ities of B′(l, r), FB′(r), FB′(l) and B′(l).

Tables for |C l
k|

1. If r = 1 then r + 1 = 2, k = 1, l = 1. Now M2 (see Fig.5) is the only

fundamental basic block satisfying these values. Also, using Theorem

4.1.3, Corollary 4.1.4, Corollary 4.1.6 and Corollary 4.1.5, we have re-

spectively |C l
k| = 1, |FB′(l, r+ 1)| = 1, |FBk(r+ 1)| = 1 and ar+1 = 1.

On the similar lines,
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2. If r = 2 then r + 1 = 3, 1 ≤ k ≤ 2, 2 ≤ l ≤ 3 and |C l
k| is given by

the following Table 3.

k\l 2 3 |FBk(3)|

1 2 0 2

2 1 1 2

|FB′(l, 3)| 3 1 a3 = 4

Table 3

3. If r = 3 then r + 1 = 4, 1 ≤ k ≤ 3, 2 ≤ l ≤ 6 and |C l
k| is given by

the following Table 4.

k\l 2 3 4 5 6 |FBk(4)|

1 3 9 3 0 0 15

2 0 6 9 3 0 18

3 0 1 3 3 1 8

|FB′(l, 4)| 3 16 15 6 1 a4 = 41

Table 4

4. If r = 4 then r + 1 = 5, 1 ≤ k ≤ 4, 3 ≤ l ≤ 10 and |C l
k| is given by

the following Table 5.

k\l 3 4 5 6 7 8 9 10 |FBk(5)|

1 24 68 60 24 4 0 0 0 180

2 6 54 108 90 36 6 0 0 300

3 0 12 48 76 60 24 4 0 224

4 0 1 6 15 20 15 6 1 64

|FB′(l, 5)| 30 135 222 205 120 45 10 1 a5 = 768

Table 5



4.2 Counting basic blocks 99

5.
If
r

=
5

th
en

r
+

1
=

6,
1
≤
k
≤

5,
3
≤
l
≤

15
an

d
|C

l k
|i

s
gi

ve
n

b
y

th
e

fo
ll

ow
in

g
T

ab
le

6.

k
\l

3
4

5
6

7
8

9
10

11
12

13
14

15
|F
B
k
(6

)|

1
15

23
0

75
0

11
40

10
30

60
0

22
5

50
5

0
0

0
0

40
45

2
0

90
63

0
16

50
23

40
20

70
12

00
45

0
10

0
10

0
0

0
85

40

3
0

10
18

0
81

0
18

00
24

00
20

80
12

00
45

0
10

0
10

0
0

90
40

4
0

0
20

15
0

50
0

97
5

12
30

10
45

60
0

22
5

50
5

0
48

00

5
0

0
1

10
45

12
0

21
0

25
2

21
0

12
0

45
10

1
10

24

|F
B
′ (
l,

6)
|

15
33

0
15

81
37

60
57

15
61

65
49

45
29

97
13

65
45

5
10

5
15

1
a
6

=
27

44
9

T
ab

le
6



100 Enumeration of lattices

Using Corollary 4.1.4, we get the following Table 7 containing the val-

ues of |FB′(l, r)| for 0 ≤ r ≤ 10 and 0 ≤ l ≤ 5.

This table also gives the first six terms of the sequence of |FB′(l)|.

r\l 0 1 2 3 4 5

0 1 0 0 0 0 0

1 0 0 0 0 0 0

2 0 1 0 0 0 0

3 0 0 3 1 0 0

4 0 0 3 16 15 6

5 0 0 0 30 135 222

6 0 0 0 15 330 1581

7 0 0 0 0 315 4275

8 0 0 0 0 105 5880

9 0 0 0 0 0 3780

10 0 0 0 0 0 945

|FB′(l)| 1 1 6 62 900 16689

Table 7
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As |B′(l)| =
2l∑
r=2

|B′(l, r)|, by Theorem 4.1.7, we get the following Table

9 containing the values of |B′(l, r)| for 0 ≤ r ≤ 10 and 0 ≤ l ≤ 5.

This table also gives the first six terms of the sequence of |B′(l)|.

r\l 0 1 2 3 4 5

0 1 0 0 0 0 0

1 0 0 0 0 0 0

2 0 1 1 1 1 1

3 0 0 3 7 12 18

4 0 0 3 22 72 174

5 0 0 0 30 225 942

6 0 0 0 15 375 2991

7 0 0 0 0 315 5535

8 0 0 0 0 105 6300

9 0 0 0 0 0 3780

10 0 0 0 0 0 945

|B′(l)| 1 1 7 75 1105 20,686

Table 9
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Thus, we get in the end three important sequences viz., < ar >, <

FB′(l) > and < B′(l) > which are given below.

1. For r ≥ 0, ar : 1, 0, 1, 4, 41, 768, 27,449, ........

2. For l ≥ 0, FB′(l) : 1, 1, 6, 62, 900, 16,689, ...........

3. For l ≥ 0, B′(l) : 1, 1 (see Fig.5), 7 (see Fig.6), 75 (see the Appendix

for actual figures), 1105, 20,686, .......

4.3 Enumeration of lattices

in which reducible elements are comparable

In this section, we obtain the number of non-isomorphic lattices on n

elements in which the reducible elements are all comparable. For this

purpose, let us see the following.

Definition 4.3.1. Let B(n, k, r) = {B ∈ B(n, k) : |Red(B)| = r}.

Let B′(n, k, r) = {B ∈ B′(n, k) : |Red(B)| = r}.

Let B ∈ B′(n, k, s). Then n ≥ k + s and by Lemma 2.2.6, 2 ≤ s ≤

2k. Let Bb be a basic block associated to B. Then Bb ∈ B′(k, s).

By Theorem 2.1.7, suppose Bb = C0]
b1
a1
C1]

b2
a2
C2 · · · ]bkakCk where C0 is a

maximal chain with ai, bi ∈ C0, for all i, 1 ≤ i ≤ k.

By Proposition 3.2.4, |Ci| = 1, for all i, 1 ≤ i ≤ k and |C0| = s +

m, where m is the number of distinct adjunct pairs (ai, bi) such that

(ai, bi) ⊆ Irr(B). Note that m ≥ 0.

Consider a chain C : x1 ≺ x2 · · · ≺ xs of the reducible elements of

Bb. Clearly C ⊆ C0. Let M = {(xi, xi+1) | (xi, xi+1) = (aj, bj) for

some j, 1 ≤ j ≤ k}. Then m = |M | and |(xi, xi+1) ∩ C0| = 1, for
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all (xi, xi+1) ∈ M . Now Red(B) = Red(Bb) and |Irr(Bb)| = m + k.

Therefore |Bb| = s+m+ k.

Let us denote these m adjunct pairs, if they exist, in Bb by (a′j, b
′
j),

1 ≤ j ≤ m. Let mj be the multiplicity of the adjunct pair (a′j, b
′
j) in

Bb. Let p ≥ 0 be the number of ordered pairs (xi, xj), j > i + 1 such

that (xi, xj) is an adjunct pair in Bb and (xi, xj) ∩ Red(Bb) 6= φ (that

is, the interval (xi, xj) contains at least one reducible element). Let us

denote these p adjunct pairs, if they exist, in Bb by (a′′j , b
′′
j ), 1 ≤ j ≤ p.

Let pj be the multiplicity of the adjunct pair (a′′j , b
′′
j ) in Bb.

Now we have the following.

1. k =
m∑
j=1

mj +

p∑
j=1

pj.

2. Also |Irr(Bb)| = m + k. That means there are m + k doubly

irreducible elements in Bb. Therefore there are m + k chains of

doubly irreducible elements in B which correspond to those m+ k

doubly irreducible elements in Bb.

3. Now there are l = s − 1 − m edges, if they exist, on a maximal

chain containing all the reducible elements in Bb. Therefore cor-

responding to these edges there are l edges or chains of doubly

irreducible elements in B.

4. Note that m+ k = m+
m∑
j=1

mj +

p∑
j=1

pj =
m∑
j=1

(mj + 1) +

p∑
j=1

pj.

5. Now |B| = n and |Red(B)| = s. Therefore |Irr(B)| = n − s

and these n − s elements can be spread into m + p + l parts, say
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ui, 1 ≤ i ≤ m+p+ l satisfying ui ≥ mi+1, for 1 ≤ i ≤ m, ui ≥ pi,

for m+ 1 ≤ i ≤ m+ p and ui ≥ 0, for m+ p+ 1 ≤ i ≤ m+ p+ l.

6. Consider n− s = u1 + u2 + · · ·+ um+p+l, where

ui ≥ mi + 1, for 1 ≤ i ≤ m, ui ≥ pi, for m + 1 ≤ i ≤ m + p and

ui ≥ 0, for m+ p+ 1 ≤ i ≤ m+ p+ l. (∗)

Let N be the number of integer solutions to the above equation

given in (∗). Then N = P (n− s,m+ p+ l) is the number of weak

compositions of n − s into m + p + l parts satisfying the given

restrictions.

Note that, the number of weak compositions of 4 into 3 parts is
(
4+3−1
3−1

)
=(

6
2

)
= 15, viz, (1, 1, 2), (1, 2, 1), (2, 1, 1), (0, 2, 2), (2, 0, 2), (2, 2, 0), (0, 1, 3),

(1, 0, 3), (1, 3, 0), (0, 3, 1), (3, 0, 1), (3, 1, 0), (4, 0, 0), (0, 4, 0), (0, 0, 4).

Therefore the number of weak compositions of 4 into 3 parts, satisfying

the given restrictions is at most 15.

A ‘C’ program can be prepared to find P (n− s,m+ p+ l).

Let P k
n denote the number of partitions of n into k (non-zero) parts.

Using the notations as discussed above, in the following Proposition

4.3.1, we obtain the number of non-isomorphic blocks associated by

the basic block of nullity k, containing s reducible elements which are

all comparable.

Proposition 4.3.1. For any k ≥ 1, for any 2 ≤ s ≤ 2k, for any

n ≥ k + s and for Bb ∈ B′(k, s), the number N s
Bb of non-isomorphic

blocks in B′(n, k, s) which are associated by the basic block Bb is given

by N s
Bb =

∑
n−s=u1+u2+···+um+p+l

(
m∏
i=1

Pmi+1
ui

)
×

(
m+p∏
i=m+1

P pi
ui

)
,
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where ui ≥ mi + 1, for 1 ≤ i ≤ m, ui ≥ pi, for m+ 1 ≤ i ≤ m+ p and

ui ≥ 0, for m+ p+ 1 ≤ i ≤ m+ p+ l.

Proof. Let Bb ∈ B′(k, s). Let B be a block in B′(n, k, s) which is

associated by the basic block Bb. As B contains s reducible elements,

the remaining n−s irreducible elements of B can be spread in m+p+ l

parts (ui) of Bb satisfying the conditions ui ≥ mi + 1, for 1 ≤ i ≤ m,

ui ≥ pi, for m+1 ≤ i ≤ m+p and ui ≥ 0, for m+p+1 ≤ i ≤ m+p+ l.

Consider a solution of the equation n−s = u1+u2+ · · ·+um+p+l, where

ui ≥ mi + 1, for 1 ≤ i ≤ m, ui ≥ pi, for m+ 1 ≤ i ≤ m+ p and ui ≥ 0,

for m + p + 1 ≤ i ≤ m + p + l. Now the m parts satisfy ui ≥ mi + 1,

for 1 ≤ i ≤ m. Therefore for fixed i, 1 ≤ i ≤ m, ui is partitioned

into mi + 1 parts in Pmi+1
ui

ways. Further, the p parts satisfy ui ≥ pi,

for m + 1 ≤ i ≤ m + p. Therefore for fixed i, m + 1 ≤ i ≤ m + p,

ui is partitioned into pi parts in P pi
ui

ways. Furthermore, the l parts

satisfying ui ≥ 0, for m+ p+ 1 ≤ i ≤ m+ p+ l are assigned in unique

way. Thus, the total number of non isomorphic blocks in B′(n, k, s)

which are associated by the basic block Bb is given by

N s
Bb =

∑
n−s=u1+u2+···+um+p+l

(
m∏
i=1

Pmi+1
ui

)
×

(
m+p∏
i=m+1

P pi
ui

)
,

ui ≥ mi + 1, for 1 ≤ i ≤ m, ui ≥ pi, for m+ 1 ≤ i ≤ m+ p and ui ≥ 0,

for m+ p+ 1 ≤ i ≤ m+ p+ l.

In the following Proposition 4.3.2, we obtain the number of non-isomorphic

blocks of nullity k, containing s reducible elements which are all com-

parable.
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Proposition 4.3.2. For any k ≥ 1, for any 2 ≤ s ≤ 2k and for any

n ≥ k + s, |B′(n, k, s)| =
∑

Bb∈B′(k,s)

N s
Bb.

In the following Proposition 4.3.3, we obtain the number of non-isomorphic

blocks on n elements, having nullity k, in which reducible elements are

all comparable.

Proposition 4.3.3. For any k ≥ 1 and for any n ≥ k + 3,

|B′(n, k)| =
2k∑
s=2

|B′(n, k, s)|.

Proof. The proof follows from Lemma 2.2.6 and the fact that the col-

lection {B′(n, k, s) : 2 ≤ s ≤ 2k} forms a partition of B′(n, k).

In the following Theorem 4.3.4, we obtain the number of non-isomorphic

lattices on n elements, having nullity k, in which reducible elements are

all comparable.

Theorem 4.3.4. For any k ≥ 1 and for any n ≥ k + 3,

|L ′(n, k)| =
n−k−3∑
i=0

(i+ 1)|B′(n− i, k)|.

Proof. It is clear that a lattice L ∈ L ′(n, k) if and only if L = C⊕B⊕

C ′, where B ∈ B′(n − i, k) and C, C ′ are chains with |C| + |C ′| = i.

For fixed i ≥ 0, the i elements can be allocated to the chains C and C ′

in i + 1 ways. Let j = n − i. Now for any B ∈ B′(j, k), j ≥ k + 3.

Therefore i = n− j ≤ n− (k+ 3) = n− k− 3. Thus 0 ≤ i ≤ n− k− 3.

Hence the proof is complete.
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Definition 4.3.2. Let L ′(n) be the class of all non-isomorphic lat-

tices of order n such that the reducible elements in each lattice are all

comparable.

Theorem 4.3.5. For any n ≥ 1,

|L ′(n)| = 1 +
n−3∑
k=1

|L ′(n, k)|.

Proof. We know that a chain is the only lattice on n elements of nullity

0. Let L ∈ L ′(n) be any lattice of nullity k ≥ 1. Then n ≥ k + 3.

Therefore the proof follows from the Theorem 4.3.4.



Chapter 5

Lattices of nullity up to three

In this Chapter, we count the number of all non-isomorphic lattices of

nullity up to three. In the first section, we discuss the enumerations of

all non-isomorphic lattices of nullity up to two. In the second section,

we enumerate all the non-isomorphic lattices on n elements and having

nullity 3, in which at least two of the reducible elements are incompa-

rable. In regard to this, we prove that, there are in all seventeen (see

Fig.9, Fig.10 and Fig.11) non-isomorphic basic blocks (in fact, funda-

mental basic blocks) of nullity 3, in which at least two of the reducible

elements are incomparable. In the last section, we enumerate all the

non-isomorphic lattices on n elements and having nullity three.

0The paper based on partial content of this chapter has been presented in the 71st National
Conference of Indian Mathematical Society held at Indian Institute of Technology, Roorkee, during
26th to 29th December, 2005. The IMS prize, 2005 has been awarded for the best paper presentation
in Discrete Mathematics.
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5.1 Enumeration of lattices of nullity up to two

By Theorem 2.2.3, it follows that the lattices of nullity up to three

are dismantlable. Recall that, L (n, k) denotes the class of all non-

isomorphic dismantlable lattices on n elements such that each lattice

in it has nullity k. Note that, there is only one lattice, a chain, having

nullity zero. Therefore L (n, 0) consists of the chain on n elements. The

enumeration of all non-isomorphic lattices on n elements and having

nullity up to two was carried out by Thakare, Pawar and Waphare [13].

Theorem 5.1.1. [8],[13]. For any integer n ≥ 4,

|L (n, 1)| =


m(m−1)(4m+1)

6 if n = 2m+ 1

m(m−1)(4m−5)
6 if n = 2m.

Let [x] denote the integer part of real number x and let < x > denote

the nearest integer of real number x.

Theorem 5.1.2. [13]. For any integer n ≥ 5,

|L (n, 2)| =
n−5∑
i=0

(i+ 1)|B(n− i, 2)|, where

|B(j, 2)| =



〈
14k4+54k3+68k2+36k+9

12

〉
if j = 2k + 5;

[
(k+2)(7k3+27k2+31k+13)

6

]
if j = 2k + 6.

In the next section, we enumerate the class of all non-isomorphic lattices

on n elements such that each lattice in it has nullity three and at least

two of the reducible elements in each lattice in it are incomparable.



5.2 Lattices in which reducible elements are incomparable 111

5.2 Lattices in which reducible elements are in-

comparable

It is clear that the reducible elements of a lattice of nullity up to two

are all comparable and that for nullity at least three these may be

incomparable.

5.2.1 Counting fundamental basic blocks

In this subsection, we count all the non-isomorphic fundamental basic

blocks of nullity three such that at least two of the reducible elements

in each are incomparable. This counting would help us in enumerating

the lattices of nullity three. For this purpose, let us begin with the

following.

Definition 5.2.1. Let B′′(k, r) be the class of all non-isomorphic basic

blocks of nullity k such that at least two of the r reducible elements in

each of the basic blocks in it are incomparable.

For the class B′′(k, r), it follows from Proposition 2.2.8 that k ≥ 3 and

r ≥ 4. Also, by Lemma 2.2.6, if k = 3 then 2 ≤ r ≤ 6. Therefore, if a

lattice of nullity three contains r reducible elements such that at least

two of them are incomparable then 4 ≤ r ≤ 6.

In the following Proposition 5.2.1, we prove that, there are three (see

Fig.9) non-isomorphic basic blocks of nullity three, containing four re-

ducible elements such that at least two of them are incomparable.



112 Lattices of nullity up to three

c
c c

c

c
c

c
c

c
c

c
c

c
c c

c@
@

@
@

�
��
�

��
��

�
�

HH
HH

c
c

c
c

c
c

c
c

a b

a b

a

b

B1 B2 B3

Fig.9

Proposition 5.2.1. |B′′(3, 4)| = 3.

Proof. Let B ∈ B′′(3, 4). Let 0, 1, a, b be the reducible elements of

B. Now at least two of them are incomparable, therefore a||b. Also

a ∧ b = 0 and a ∨ b = 1. Clearly none of a or b is both meet as well as

join reducible, since otherwise nullity of B is greater than 3. Therefore

we have the following three cases.

1. If a and b both are meet reducible elements then B is isomorphic to

the block given in figure Fig.9(B1).

2. If a and b both are join reducible elements then B is isomorphic to

the block given in figure Fig.9(B2).

3. If without loss of generality, suppose a is meet reducible element and

b is join reducible element then B is isomorphic to the block given in

figure Fig.9(B3).

In the following Proposition 5.2.2, we prove that, there are eight (see

Fig.10) non-isomorphic basic blocks of nullity three, containing five

reducible elements such that at least two of them are incomparable.
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Proposition 5.2.2. |B′′(3, 5)| = 8.

Proof. Let B ∈ B′′(3, 5). Therefore not all 5 reducible elements of B

are comparable. Let 0, 1, a, b, c be the reducible elements of B. Now at

least two of them are incomparable. Without loss of generality, suppose

a||b. Now we have the following three cases.

1. If c||a and c||b then the nullity of B is greater than 3. This is not

possible.

2. If without loss of generality, suppose c||a and c is comparable to b.

Now we have the following three subcases.

(i) Suppose a is a meet reducible element only. If both b and c are either

meet reducible elements or join reducible elements then the nullity of

B is greater than 3. This is not possible. If without loss of generality,

suppose b is a meet reducible element and c is a join reducible element
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then nullity of B is 3 implies that (b, c) is an adjunct pair in an adjunct

representation of B. In this case B is isomorphic to the block given in

figure Fig.10(B4).

(ii) Suppose a is a join reducible element only. If both b and c are either

meet reducible elements or join reducible elements then the nullity of

B is greater than 3. This is not possible. If without loss of generality,

suppose b is a meet reducible element and c is a join reducible element

then nullity of B is 3 implies that (b, c) is an adjunct pair in an adjunct

representation of B. In this case B is isomorphic to the block given in

figure Fig.10(B5).

(iii) Suppose a ia meet reducible as well as join reducible element. Then

nullity of B is greater than 3. This is not possible.

3. If c is comparable to both a and b. Then we have the following three

subcases.

(i) If c is a meet reducible element only then a and b can not both be

meet reducible elements, since otherwise nullity of B is greater than 3.

If both a and b are join reducible elements then a ∧ b = c and (c, a)

and (c, b) can not both be adjunct pairs in an adjunct representation of

B, since otherwise the nullity of B is greater than 3. Therefore at the

most one of them may be an adjunct pair in an adjunct representation

of B. Suppose without loss of generality, (c, a) is an adjunct pair. But

then there exists x ∈ B such that x ∧ c = 0 and x ∨ c = b. In this case

B is isomorphic to the block given in figure Fig10(B7), since the nullity

of B is 3. If none of them is an adjunct pair then there exist x, y ∈ B

such that x∧ c = 0, x∨ c = a, y ∧ c = 0 and y ∨ c = b. In this case B is
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isomorphic to the block given in figure Fig.10(B11), since the nullity of

B is 3. Also, if a is join(meet) reducible and b is meet(join) reducible

element then B is isomorphic to the block given in figure Fig.10(B9),

since the nullity of B is 3.

(ii) If c is a join reducible element only then a and b can not both be

join reducible elements, since otherwise the nullity of B is greater than

3.If both a and b are meet reducible elements then a ∨ b = c and (a, c)

and (b, c) can not both be adjunct pairs in an adjunct representation of

B, since otherwise the nullity of B is greater than 3. Therefore at the

most one of them may be an adjunct pair in an adjunct representation

of B. Suppose without loss of generality, (a, c) is an adjunct pair. But

then there exists x ∈ B such that x ∧ c = b and x ∨ c = 1. In this case

B is isomorphic to the block given in figure Fig10(B6), since the nullity

of B is 3. If none of them is an adjunct pair then there exist x, y ∈ B

such that x∧ c = a, x∨ c = 1, y ∧ c = b and y ∨ c = 1. In this case B is

isomorphic to the block given in figure Fig.10(B10), since the nullity of

B is 3. Also, if a is join(meet) reducible and b is meet(join) reducible

element then B is isomorphic to the block given in figure Fig.10(B8),

since the nullity of B is 3.

(iii) If c is both meet reducible as well as join reducible element then

we have either a ∧ b = 0 or c. In any case, the nullity of B is greater

than 3. This is not possible.

In the following Proposition 5.2.3, we prove that, there are six (see

Fig.11) non-isomorphic basic blocks of nullity three, containing six re-

ducible elements such that at least two of them are incomparable.
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Proposition 5.2.3. |B′′(3, 6)| = 6.

Proof. Let B ∈ B′′(3, 6). Therefore not all 6 reducible elements of B are

comparable. Let 0, 1, a, b, c, d be the reducible elements of B. Now at

least two of them are incomparable. Without loss of generality, suppose

a||b. Now we have the following three cases.

1. Neither c nor d is incomparable to both a and b, since otherwise the

nullity of B is greater than 3.

2. If without loss of generality, suppose (among c and d) c||a and c is

comparable to b. If a||d then nullity of B is greater than 3. Therefore

a and d are comparable. If d is also comparable to either b or c then

nullity of B is greater than 3. Hence d||b and d||c. But then B is

isomorphic to the block given in figure Fig.11(B12).

3. If without loss of generality, suppose (among c and d) c is comparable

to both a and b. Then we have the following three subcases.

(i) Suppose c is meet reducible only. Let x = a ∧ b.

If x = 0 then a ∨ b 6= c, since c is meet reducible element only. Also

a ∨ b 6= 1, since otherwise we get a contradiction to the fact that c is

comparable to both a and b. Therefore a ∨ b = d. This implies that
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d < c, since c is comparable to both a and b. But then the nullity of B

is greater than 3. This is not possible.

If x 6= 0 then either x = c or x = d. Without loss of generality, if x = c

then either a ∨ b = d or a ∨ b = 1. If a ∨ b = d then B is isomorphic

to the block given in figure Fig.11(B13), since the nullity of B is 3. If

a∨ b = 1 then either c||d or c is comparable to d. If c||d then nullity of

B is greater than 3. This is not possible. If d < c then B is isomorphic

to the block given in figure Fig.11(B17), since nullity of B is 3. If c < d

then d is incomparable to either a or b. If d||a and d||b then nullity of

B is greater than 3. Therefore, if without loss of generality, suppose

(among a and b) d||a and d is comparable to b then B is isomorphic to

the block given in figure Fig.11(B15), since the nullity of B is 3.

(ii) Suppose c is join reducible only. Let x = a ∨ b.

If x = 1 then a ∧ b 6= c, since c is join reducible only. Also a ∧ b 6= 0,

since otherwise we get a contradiction to the fact that c is comparable

to both a and b. Therefore a ∧ b = d. This implies that c < d, since

c is comparable to both a and b. But then the nullity of B is greater

than 3. This is not possible.

If x 6= 1 then either x = c or x = d. Without loss of generality, if x = c

then either a ∧ b = d or a ∧ b = 0. If a ∧ b = d then B is isomorphic

to the block given in figure Fig.11(B13), since the nullity of B is 3. If

a ∧ b = 0 then either c||d or c is comparable to d. If c||d then the

nullity of B is greater than 3. This is not possible. If c < d then B is

isomorphic to the block given in figure Fig.11(B16), since the nullity of

B is 3. If d < c then d is incomparable to either a or b. If d||a and
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d||b then the nullity of B is greater than 3. Therefore, if without loss

of generality, suppose (among a and b) d||a and d is comparable to b

then B is isomorphic to the block given in figure Fig.11(B14), since the

nullity of B is 3.

(iii) Suppose c is a meet reducible as well as join reducible. Then the

nullity of B is greater than 3. This is not possible.

Remark 5.2.1. From the figures Fig.9, Fig.10 and Fig.11, it follows

by observation that all the basic blocks depicted in these figures are

fundamental basic blocks. Therefore by Proposition 5.2.1, Proposition

5.2.2 and Proposition 5.2.3, we have

1. B′′(3, 4) = {B1, B2, B3}.

2. B′′(3, 5) = {B4, B5, B6, B7, B8, B9, B10, B11}.

3. B′′(3, 6) = {B12, B13, B14, B15, B16, B17}.

Thus, there are in all seventeen non-isomorphic basic blocks of nul-

lity three such that at least two of the reducible elements in each are

incomparable.

Definition 5.2.2. Let B′′(n, k) be the class of all non-isomorphic blocks

on n elements such that each block in it has nullity k and at least two

of the reducible elements in each block in it are incomparable.

Let B′′(n, k, r) be the subclass of B′′(n, k) such that each block in it

contains r reducible elements.

For the class B′′(n, k, r), if k = 3 then 4 ≤ r ≤ 6. Therefore,

B′′(n, 3) = B′′(n, 3, 4)∪̇B′′(n, 3, 5)∪̇B′′(n, 3, 6). Thus, in order to ob-

tain the cardinality of the class B′′(n, 3), we first obtain the cardi-

nalities of the classes B′′(n, 3, 4), B′′(n, 3, 5) and B′′(n, 3, 6). For this
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purpose, we define in the following seventeen classes corresponding to

each (fundamental) basic block of nullity three, in which at least two

of the reducible elements are incomparable.

Definition 5.2.3. For each i, 1 ≤ i ≤ 17, let

Bi = {B ∈ B′′(n, 3) | Bi is the basic block associated to B}.

By Theorem 3.3.1, it follows that {Bi : 1 ≤ i ≤ 17} forms a partition of

the class B′′(n, 3). By observation, again using Theorem 3.3.1, it also

follows that {Bi : 1 ≤ i ≤ 3} forms a partition of the class B′′(n, 3, 4),

{Bi : 4 ≤ i ≤ 11} forms a partition of the class B′′(n, 3, 5) and {Bi :

12 ≤ i ≤ 17} forms a partition of the class B′′(n, 3, 6).

5.2.2 Enumeration of blocks on four reducible elements

We now consider the problem of enumeration of blocks on four reducible

elements; that is, to find |B′′(n, 3, 4)|. Recall that, {Bi : 1 ≤ i ≤ 3}

forms a partition of the class B′′(n, 3, 4). Therefore, it is required to

find the cardinality of the class Bi for each i, 1 ≤ i ≤ 3.

To begin with, we first define the class L 1(n, 1) as the subclass of

L (n, 1), containing the lattices in which 1 is a reducible element.

In the following, we obtain the cardinality of the class L 1(n, 1).

Lemma 5.2.4. For n ≥ 4, |L 1(n, 1)| =
n−4∑
i=0

[
n− i− 2

2

]
.

Proof. Let L ∈ L 1(n, 1). Then L = C ⊕ B where C is a chain with

|C| = i ≥ 0 and B ∈ B(j, 1) with n = i + j. Now j ≥ 4. Therefore

i = n − j ≤ n − 4. The proof follows from the fact that |B(j, 1)| =

P 2
j−2 = [j−22 ] for all j ≥ 4.
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Remark 5.2.2. For any j ≥ 3, let Sj be the set of all non-isomorphic

posets Y such that Y = C]xC
′ and |Y | = j, where C,C ′ are chains.

Then Y ∈ Sj if and only if Y ⊕ {1} ∈ L 1(j + 1, 1). Therefore |Sj| =

|L 1(j + 1, 1)|.

If sj = |Sj| for all j then sj = |L 1(j + 1, 1)| =
j−3∑
i=0

[
j − i− 1

2

]
.

Recall that, B1 = {B ∈ B′′(n, 3) | B1 (see Fig.9) is the basic block

associated to B}. In the following Proposition 5.2.5, we obtain the

cardinality of the class B1.

Proposition 5.2.5. For n ≥ 8,

|B1| =



∑
n=i+j+2,i>j

sisj, if n is odd;

∑
n=i+j+2,i>j

sisj +
sn−2

2

(
sn−2

2
+ 1
)

2
, if n is even,

where si =
i−3∑
k=0

[
i− k − 1

2

]
.

Proof. Let B ∈ B1. Then B − {0, 1} is the disjoint union of two sub-

posets, say Y1 and Y2 of B such that each one of them is an up 1-sum

of two chains. By (ii) of Theorem 3.2.1, Red(B) = Red(B1). There-

fore, as a, b ∈ Red(B1), let Y1 = C1]aC2 and let Y2 = C3]bC4 with

|Y1| = i ≥ 3 and |Y2| = j ≥ 3, where C1, C2, C3 and C4 are chains.

Suppose without loss of generality, B = ({0} ⊕ Y1 ⊕ {1})]10Y2 with

|Y1| = i ≥ |Y2| = j and |B| = n = i+ j + 2 ≥ 8. It is clear that Y1 ∈ Si
and Y2 ∈ Sj. Let B′ ∈ B1 be such that B′ = ({0} ⊕ Y ′1 ⊕ {1})]10Y ′2 .

Then B ∼= B′ if and only if Y1 ∼= Y ′1 and Y2 ∼= Y ′2 . Therefore, if i > j

then there are
∑

n=i+j+2

(|Si| × |Sj|) non-isomorphic blocks in B1. But if
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i = j then n must be even and it seems that there are |Si|2 blocks(all

may not non-isomorphic). In fact, there are
(|Si|

2

)
blocks which are

counted twice, since i = j. Therefore in the case when i = j, there are

|Si|2−
(|Si|

2

)
= |Si|(|Si|+1)

2 non-isomorphic blocks in B1. The proof follows

from the fact that si = |Si| =
i−3∑
k=0

[
i− k − 1

2

]
.

Recall that, B2 = {B ∈ B′′(n, 3) | B2 (see Fig.9) is the basic block

associated to B}. Note that, the dual B∗2 of the basic block B2 is B1

(see Fig.9). In the following Corollary 5.2.6, we obtain the cardinality

of the class B2.

Corollary 5.2.6. For n ≥ 8,

|B2| =



∑
n=i+j+2,i>j

sisj, if n is odd;

∑
n=i+j+2,i>j

sisj +
sn−2

2

(
sn−2

2
+ 1
)

2
, if n is even,

where si =
i−3∑
k=0

[
i− k − 1

2

]
.

Proof. Clearly |B2| = |B1|, since B ∈ B2 if and only if the dual of B,

B∗ ∈ B1. Thus the proof follows by Proposition 5.2.5.

Recall that, B3 = {B ∈ B′′(n, 3) | B3 (see Fig.9) is the basic block

associated to B}. In the following Proposition 5.2.7, we obtain the

cardinality of the class B3.

Proposition 5.2.7. For n ≥ 8,

|B3| =
∑

n=i+j+2

sisj, where si =
i−3∑
k=0

[
i− k − 1

2

]
.
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Proof. Let B ∈ B3. Then B − {0, 1} is the disjoint union of two sub-

posets, say Y1 and Y2 of B such that one of them is an up 1-sum of

two chains and the other is a down 1-sum of two chains. By (ii) of

Theorem 3.2.1, Red(B) = Red(B3). Therefore, as a, b ∈ Red(B3), let

Y1 = C1]aC2 and Y2 = C3]
bC4 with |Y1| = i ≥ 3 and |Y2| = j ≥ 3, where

C1, C2, C3 and C4 are chains. Then either B = ({0} ⊕ Y1 ⊕ {1})]10Y2 or

B = ({0} ⊕ Y2⊕ {1})]10Y1 with |B| = n = i+ j + 2 ≥ 8. It is clear that

Y1 ∈ Si and the dual of Y2, Y
∗
2 ∈ Sj. (Note that Y1⊕{1} ∈ L 1(i+ 1, 1)

and ({0} ⊕ Y2)∗ ∈ L 1(j + 1, 1).)

Therefore, |B3| =
∑

n=i+j+2

(|Si| × |Sj|) . The proof follows from the fact

that sk = |Sk| =
k−3∑
i=0

[
k − i− 1

2

]
.

In the following Theorem 5.2.8, we obtain the number of non-isomorphic

blocks on n elements, having nullity three, and containing four reducible

elements such that at least two of them are incomparable.

Theorem 5.2.8. For n ≥ 8,

|B′′(n, 3, 4)| =


∑

n=i+j+2,i>j

4sisj if n is odd;∑
n=i+j+2,i>j

4sisj + sn−2
2

(
2sn−2

2
+ 1
)

if n is even,

where si =
i−3∑
k=0

[
i− k − 1

2

]
.

Proof. As {Bi : 1 ≤ i ≤ 3} forms a partition of the class B′′(n, 3, 4),

we have |B′′(n, 3, 4)| = |B1| + |B2| + |B3|. But by Corollary 5.2.6,

|B2| = |B1|. Therefore B′′(n, 3, 4) = 2|B1|+ |B3|. The remaining proof

follows from Proposition 5.2.5 and Proposition 5.2.7.
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5.2.3 Enumeration of blocks on five reducible elements

We now consider the problem of enumeration of blocks on five reducible

elements; that is, to find |B′′(n, 3, 5)|. Recall that, {Bi : 4 ≤ i ≤ 11}

forms a partition of the class B′′(n, 3, 5). Therefore, it is required to

find the cardinality of the class Bi for each i, 4 ≤ i ≤ 11.

Now recall that, B4 = {B ∈ B′′(n, 3) | B4 (see Fig.10) is the basic

block associated to B}. In the following Proposition 5.2.9, we obtain

the cardinality of the class B4.

Proposition 5.2.9. For n ≥ 9,

|B4| =
∑

n=i+j+2

(|L (i, 1)| × sj), where sj =

j−3∑
i=0

[
j − i− 1

2

]
and

|L (i, 1)| =


m(m−1)(4m+1)

6 if i = 2m+ 1;
m(m−1)(4m−5)

6 if i = 2m.

Proof. Let B ∈ B4. Then B−{0, 1} is the disjoint union of a sublattice

M ∈ L (i, 1) and a subposet Y ∈ Sj of B, where i ≥ 4 and j ≥ 3 with

|B| = n = i+ j + 2 ≥ 9. Then either B = ({0} ⊕M ⊕ {1})]10Y or B =

({0}⊕Y ⊕{1})]10M . Therefore, |B4| =
∑

n=i+j+2

(|L (i, 1)| × |Sj|) . There-

fore the proof follows from the fact that sj = |Sj| =

j−3∑
i=0

[
j − i− 1

2

]
and Theorem 5.1.1.

Recall that, B5 = {B ∈ B′′(n, 3) | B5 (see Fig.10) is the basic block

associated to B}. Note that, the dual B∗5 of the basic block B5 is B4 (see

Fig.10). In the following Corollary 5.2.10, we obtain the cardinality of

the class B5.
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Corollary 5.2.10. For n ≥ 9,

|B5| =
∑

n=i+j+2

(|L (i, 1)| × sj), where sj =

j−3∑
i=0

[
j − i− 1

2

]
and

|L (i, 1)| =


m(m−1)(4m+1)

6 if i = 2m+ 1;
m(m−1)(4m−5)

6 if i = 2m.

Proof. Clearly |B5| = |B4|, since B ∈ B5 if and only if the dual of B,

B∗ ∈ B4. Thus the proof follows by Proposition 5.2.9.

For n ≥ 6, let Bn1,2 be the class of all non-isomorphic blocks (of nullity

two) of the type B, where B = C1]
b1
a1
C2]

b2
a2
C3 and 0 = a1 < a2 < b1 =

b2 = 1.

Proposition 5.2.11. [13]. For n ≥ 6,

|Bn1,2| =
[ (n−4)2 ]∑
r=1

(n−2r−3)∑
l=1

(n− l − 2r − 2).

Recall that, B6 = {B ∈ B′′(n, 3) | B6 (see Fig.10) is the basic block

associated to B}. In the following Proposition 5.2.12, we obtain the

cardinality of the class B6.

Proposition 5.2.12. For n ≥ 8,

|B6| =
(n−7)∑
j=1

(n−j−6)∑
i=1

[ (n−i−j−4)2 ]∑
r=1

(n−i−j−2r−3)∑
l=1

(n− i− j − l − 2r − 2)(l).

Proof. Let B ∈ B6. As the nullity of B is 3, by Corollary 2.2.4,

B = C1]
b1
a1=0C2]

b2=b1
a2

C3]
b3=1
a3

C4, where C1 is a maximal chain containing

a1, a2, b1, b2, b3 and C2, C3, C4 are chains with a1 = 0 < (a2 = a || a3 =

b) < b1 = b2 = c < b3 = 1 and a3 ∈ C2. Note that, by (ii) of
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Theorem 3.2.1, Red(B) = Red(B6) and a, b, c ∈ Red(B6). Let B′ =

(C1 ∩ [a1, b1])]
b1
a1
C2]

b2
a2
C3, C

′
1 = (C1 ∩ (b1, b3]) and C ′2 = C4. Then B =

(B′ ⊕ C ′1)]1a3C
′
2. Let |B′| = k ≥ 6, |C ′1| = i ≥ 1 and |C ′2| = j ≥ 1. Then

B′ ∈ Bk1,2 and |B| = n = i+ j + k ≥ 8. By Proposition 5.2.11,

|Bk1,2| =
[ (k−4)2 ]∑
r=1

(k−2r−3)∑
l=1

(k − l − 2r − 2),

where l = |C2|, r = |C3| and for fixed l and r, (k − l − 2r − 2) is the

number of possible positions of a2 in the block B′ and hence in the

block B ∈ B6. Now for fixed i and j, k = n − i − j ≥ 6. Therefore

for fixed j, we have 1 ≤ i = n − j − k ≤ n − j − 6 and therefore

1 ≤ j = n− i− k ≤ n− 1− 6 = n− 7. Now a3 takes |C2| = l number

of positions in the block B′ ∈ Bk1,2 and hence in the block B ∈ B6.

Therefore we have for all n ≥ 8,

|B6| =
(n−7)∑
j=1

(n−j−6)∑
i=1

[ (n−i−j−4)2 ]∑
r=1

(n−i−j−2r−3)∑
l=1

(n− i− j − l − 2r − 2)× (l).

Recall that, B7 = {B ∈ B′′(n, 3) | B7 (see Fig.10) is the basic block

associated to B}. Note that, the dual B∗7 of the basic block B7 is B6 (see

Fig.10). In the following Corollary 5.2.13, we obtain the cardinality of

the class B7.

Corollary 5.2.13. For n ≥ 8,

|B7| =
(n−7)∑
j=1

(n−j−6)∑
i=1

[ (n−i−j−4)2 ]∑
r=1

(n−i−j−2r−3)∑
l=1

(n− i− j − l − 2r − 2)(l).
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Proof. Clearly |B7| = |B6|, since B ∈ B7 if and only if the dual of B,

B∗ ∈ B6. Thus the proof follows by Proposition 5.2.12.

For n ≥ 6, let Bn1,3 be the class of all non-isomorphic blocks (of nullity

two) of the type B, where B = C1]
b1
a1
C2]

b2
a2
C3 and 0 = a1 = a2 < b1 <

b2 = 1. Note that, B ∈ Bn1,3 if and only if B∗ ∈ Bn1,2.

Recall that, B8 = {B ∈ B′′(n, 3) | B8 (see Fig.10) is the basic block

associated to B}. In the following Corollary 5.2.14, we obtain the

cardinality of the class B8.

Corollary 5.2.14. For n ≥ 8,

|B8| =
(n−7)∑
j=1

(n−j−6)∑
i=1

[ (n−i−j−4)2 ]∑
r=1

(n−i−j−2r−3)∑
l=1

(n− i− j − l − 2r − 2)(l).

Proof. Let B ∈ B8. As nullity of B is 3,

B = C1]
b1
a1=a2=0C2]

b2
a2
C3]

b3=1
a3

C4, where C1 is a maximal chain containing

a1, a2, b1, b2, b3 and C2, C3, C4 are chains with a1 = a2 = 0 < (b1 =

b || a3 = a) < b2 = c < b3 = 1 and a3 ∈ C3. Note that, by (ii) of

Theorem 3.2.1, Red(B) = Red(B8) and a, b, c ∈ Red(B8). Let B′ =

(C1 ∩ [a1, b2])]
b1
a1
C2]

b2
a2
C3, C

′
1 = (C1 ∩ (b2, b3]) and C ′2 = C4. Then B =

(B′ ⊕ C ′1)]1a3C
′
2. Let |B′| = k ≥ 6, |C ′1| = i ≥ 1 and |C ′2| = j ≥ 1. Then

B′ ∈ Bk1,3 and |B| = n = i+ j+ k ≥ 8. Now |Bk1,3| = |Bk1,2| for all k ≥ 6,

since a block D ∈ Bk1,3 if and only if its dual D∗ ∈ Bk1,2. Therefore

|B8| = |B6| and hence by Proposition 5.2.12,

|B8| =
(n−7)∑
j=1

(n−j−6)∑
i=1

[ (n−i−j−4)2 ]∑
r=1

(n−i−j−2r−3)∑
l=1

(n− i− j − l − 2r − 2)× (l).
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Note here that l = |C3|, r = |C2| and for fixed l and r, (k − l− 2r− 2)

is the number of possible positions of b1 in the block B′ and hence in

the block B ∈ B8.

Recall that, B9 = {B ∈ B′′(n, 3) | B9 (see Fig.10) is the basic block

associated to B}. Note that, the dual B∗9 of the basic block B9 is B8 (see

Fig.10). In the following Corollary 5.2.15, we obtain the cardinality of

the class B9.

Corollary 5.2.15. For n ≥ 8,

|B9| =
(n−7)∑
j=1

(n−j−6)∑
i=1

[ (n−i−j−4)2 ]∑
r=1

(n−i−j−2r−3)∑
l=1

(n− i− j − l − 2r − 2)(l).

Proof. Clearly |B9| = |B8|, since B ∈ B9 if and only if the dual of B,

B∗ ∈ B8. Thus the proof follows by Corollary 5.2.14.

Recall that, B10 = {B ∈ B′′(n, 3) | B10 (see Fig.10) is the basic block

associated to B}. In the following Proposition 5.2.16, we obtain the

cardinality of the class B10.

Proposition 5.2.16. For n ≥ 7, |B10| = |A1|+ |A2|+ |A3|, where

|A1| =
(n−6)∑
t=2

(n−t−5)∑
r=1

(n−r−t−4)∑
l=1

[n−l−r−t−22 ]∑
r1=1

(e),

where e = (n− r1 − l − r − t− 1)(r1),

|A2| =
(n−6)∑
t=2

[n−t−42 ]∑
r=1

(n−r−t−3)∑
l=r+1

[
n− l − r − t− 1

2

]2
and

|A3| =
(n−5)∑
t=2

[n−t−32 ]∑
l=1

(u)(u+ 1)

2
, where u =

[
n−2l−t−1

2

]
.
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Proof. Let A1 = {(1, l1, r1, l, r, t) : l1 ≥ r1 + 1, t ≥ 2, l1, r1, l, r, t ∈

N, l1 + r1 + l + r + t+ 1 = n ≥ 8},

A2 = {(1, l1, r1, l, r, t) : l1 = r1, l ≥ r+ 1, t ≥ 2, l1, r1, l, r, t ∈ N, l1 + r1 +

l + r + t+ 1 = n ≥ 8} and

A3 = {(1, l1, r1, l, r, t) : l1 = r1, l = r, t ≥ 2, l1, r1, l, r, t ∈ N, l1 + r1 + l +

r + t+ 1 = n ≥ 7}.

Let B = C1]
b1
a1=0C2]

b2=1
a2

C3]
b3=b2
a3

C4 ∈ B10, where

C1 ≡ x0 < x1 < x2 < . . . < xl1+t, C2 ≡ y1 < y2 < . . . < yr1,

C3 ≡ z1 < z2 < . . . < zl and C4 ≡ w1 < w2 < . . . < wr are disjoint

chains with a1 = x0, b1 = xl1+1, a2 ∈ C1∩ [x1, xl1], a3 ∈ C2 and b3 = b2 =

xl1+t. Then B ∈ B10 if and only if (1, l1, r1, l, r, t) ∈ A = A1∪̇A2∪̇A3.

Therefore |B10| = |A| = |A1|+ |A2|+ |A3|.

We first find |A1| in the following.

For fixed value of r1, l, r and t, let

Ar1lrt = {(1, l1, r1, l, r, t) : l1 ≥ r1 + 1, t ≥ 2, l1, r1, l, r, t ∈ N, l1 + r1 + l+

r + t+ 1 = n ≥ 8}. Then it is clear that

|A1| =
∑
t

∑
r

∑
l

∑
r1

|Ar1lrt|. (1)

Now |Ar1lrt| = (n− r1 − l − r − t− 1)× (r1). (2)

This is nothing but the product of l1, the number of possible positions

for a2 in the block B and r1, the number of possible positions for a3 in

the block B. Also for fixed l, r and t, r1 takes its maximum value when

l1 takes its minimum value r1 +1. Therefore r1 = n− l1− l−r− t−1 ≤

n− r1 − 1− l− r− t− 1⇒ 2r1 ≤ n− l− r− t− 2 and hence we have

1 ≤ r1 ≤
[
n−l−r−t−2

2

]
(3)

Again for fixed r and t, l takes maximum value when the other variables
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have minimum value. Therefore

1 ≤ l ≤ n− r − t− 4. (4)

Now for fixed t, r takes maximum value when the other variables have

minimum value. Therefore

1 ≤ r ≤ n− t− 5. (5)

Finally t takes maximum value when other variables have minimum

value. This gives us

2 ≤ t ≤ n− 6. (6)

From (1), (2), (3), (4), (5) and (6) we have ∀ n ≥ 8,

|A1| =
(n−6)∑
t=2

(n−t−5)∑
r=1

(n−r−t−4)∑
l=1

[ (n−l−r−t−2)2 ]∑
r1=1

(e),

where e = (n− r1 − l − r − t− 1)× (r1).

Now in the following we find |A2|.

For fixed value of l, r and t, let

Alrt = {(1, l1, r1, l, r, t) : l1 = r1, t ≥ 2, l ≥ r + 1, l1, r1, l, r, t ∈ N, l1 +

r1 + l + r + t+ 1 = n ≥ 8}. Then it is clear that

|A2| =
∑
t

∑
r

∑
l

|Alrt|. (7)

Now |Alrt| = s× s, where s = l1 = r1. (8)

Note that l1 is the number of possible positions for a2 in the block B

and r1 is the number of possible positions for a3 in the block B. Now

2s = l1 + r1 = n− l − r − t− 1 implies that s =
[
n−l−r−t−1

2

]
. (9)

Also for fixed r and t, l takes maximum value when s take minimum

value. Therefore

r + 1 ≤ l = n− 2s− r − t− 1 ≤ n− r − t− 3. (10)

Again for fixed t, r takes maximum value when other variables have
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minimum value. Therefore

1 ≤ r ≤
[
n−t−4

2

]
. (11)

Finally t takes maximum value when other variables have minimum

value. This gives us

2 ≤ t ≤ n− 6. (12)

From (7), (8), (9), (10), (11) and (12) we have ∀ n ≥ 8,

|A2| =
(n−6)∑
t=2

[n−t−42 ]∑
r=1

(n−r−t−3)∑
l=r+1

([
n− l − r − t− 1

2

])2

.

Now in the following we find |A3|.

For fixed value of l and t, let

Alt = {(1, l1, r1, l, r, t) : l1 = r1, l = r, t ≥ 2, l1, r1, l, r, t ∈ N, l1 + r1 + l +

r + t+ 1 = n ≥ 7}. Then it is clear that

|A3| =
∑
t

∑
l

|Alt|. (13)

Now |Alt| = (u)(u+1)
2 , where u = l1 = r1. (14)

This is nothing but the total number of possible different positions for

a2 and a3 in the block B, since l = r. Now 2u = l1+r1 = n−l−r−t−1 =

n− 2l − t− 1 lead us to conclude that u =
[
n−2l−t−1

2

]
. (15)

Also for fixed t, l takes maximum value when u take minimum value.

Therefore 2l = l + r = n− l1 − r1 − t− 1 = n− 2u− t− 1 ≤ n− t− 3

implies that

1 ≤ l ≤
[
n−t−3

2

]
. (16)

Finally t takes maximum value when the other variables have minimum

value. This gives us

2 ≤ t = n− 2u− 2l − 1 ≤ n− 5. (17)

From (13), (14), (15), (16) and (17) we have ∀ n ≥ 7,
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|A3| =
(n−5)∑
t=2

[n−t−32 ]∑
l=1

(u)(u+ 1)

2
, where u =

[
n−2l−t−1

2

]
.

Recall that, B11 = {B ∈ B′′(n, 3) | B11 (see Fig.10) is the basic block

associated to B}. Note that, the dual B∗11 of the basic block B11 is B10

(see Fig.10). In the following Corollary 5.2.17, we obtain the cardinality

of the class B11.

Corollary 5.2.17. For n ≥ 7, |B11| = |A1|+ |A2|+ |A3|, where

|A1| =
(n−6)∑
t=2

(n−t−5)∑
r=1

(n−r−t−4)∑
l=1

[n−l−r−t−22 ]∑
r1=1

(e),

where e = (n− r1 − l − r − t− 1)(r1),

|A2| =
(n−6)∑
t=2

[n−t−42 ]∑
r=1

(n−r−t−3)∑
l=r+1

[
n− l − r − t− 1

2

]2
and

|A3| =
(n−5)∑
t=2

[n−t−32 ]∑
l=1

(u)(u+ 1)

2
, where u =

[
n−2l−t−1

2

]
.

Proof. Clearly |B11| = |B10|, since B ∈ B11 if and only if the dual of B,

B∗ ∈ B10. Thus the proof follows from Proposition 5.2.16.

Using Proposition 5.2.9, Corollary 5.2.10, Proposition 5.2.12, Corol-

lary 5.2.13, Corollary 5.2.14, Corollary 5.2.15, Proposition 5.2.16 and

Corollary 5.2.17, we obtain the number of non-isomorphic blocks on n

elements, having nullity three, and containing five reducible elements

such that at least two of them are incomparable in the following The-

orem 5.2.18. For the sake of brevity, we avoid the explicit formula

here.
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Theorem 5.2.18. For n ≥ 7,

|B′′(n, 3, 5)| =
11∑
i=4

|Bi|.

Proof. The proof follows from the fact that {Bi : 4 ≤ i ≤ 11} forms a

partition of the class B′′(n, 3, 5).

5.2.4 Enumeration of blocks on six reducible elements

We now consider the problem of enumeration of blocks on six reducible

elements; that is, to find |B′′(n, 3, 6)|. Recall that, {Bi : 12 ≤ i ≤ 17}

forms a partition of the class B′′(n, 3, 6). Therefore, it is required to

find the cardinality of the class Bi for each i, 12 ≤ i ≤ 17.

Recall that, B12 = {B ∈ B′′(n, 3) | B12 (see Fig.11) is the basic block

associated to B}. In the following Proposition 5.2.19, we obtain the

cardinality of the class B12.

Proposition 5.2.19. For n ≥ 10,

|B12| =


∑

n=i+j+2,i>j

(|L (i, 1)| × |L (j, 1)|) if n is odd;∑
n=i+j+2,i>j

(|L (i, 1)| × |L (j, 1)|) + E if n is even,

where E =
|L (n−22 ,1)|×(|L (n−22 ,1)|+1)

2 and

|L (i, 1)| =


m(m−1)(4m+1)

6 if i = 2m+ 1;
m(m−1)(4m−5)

6 if i = 2m.

Proof. Let B ∈ B12. Then B − {0, 1} is the disjoint union of two

sublattices, say Y1 and Y2 of B such that each of them is a 2-sum of

two chains. By (ii) of Theorem 3.2.1, Red(B) = Red(B12). Therefore,
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as a, b, c, d ∈ Red(B12), let Y1 = C1]
d
aC2 and let Y2 = C3]

c
bC4 with

|Y1| = i ≥ 4, |Y2| = j ≥ 4, where C1, C2, C3 and C4 are chains. Then

without loss of generality, suppose B = ({0} ⊕ Y1 ⊕ {1})]10Y2 with

|Y1| = i ≥ |Y2| = j and |B| = n = i + j + 2 ≥ 10. It is clear that

Y1 ∈ L (i, 1) and Y2 ∈ L (j, 1). Let B′ ∈ B12 be such that B′ =

({0}⊕Y ′1 ⊕{1})]10Y ′2 . Then B ∼= B′ if and only if Y1 ∼= Y ′1 and Y2 ∼= Y ′2 .

Therefore, if i > j then there are
∑

n=i+j+2

(|L (i, 1)| × |L (j, 1)|) non-

isomorphic blocks in B12. But if i = j then n must be even and it seems

that there are |L (i, 1)|2 blocks(all may not non-isomorphic). In fact,

there are
(|L (i,1)|

2

)
blocks which are counted twice, since i = j. Therefore

in the case when i = j, there are |L (i, 1)|2−
(|L (i,1)|

2

)
= |L (i,1)|(|L (i,1)|+1)

2

non-isomorphic blocks in B12. Thus the proof follows from Theorem

5.1.1.

For n ≥ 6, let Bn1,4 be the class of all non-isomorphic blocks (of nullity

two) of the type B, where B = C1]
b1
a1
C2]

b2
a2
C3 and 0 = a1 < a2 < b1 <

b2 = 1.

Proposition 5.2.20. [13]. For n ≥ 6,

|Bn1,4| =
(n−5)∑
r=1

(n−r−4)∑
l=1

(n−l−r−3)∑
s=1

(n− s− l − r − 2).

Recall that, B13 = {B ∈ B′′(n, 3) | B13 (see Fig.11) is the basic block

associated to B}. In the following Proposition 5.2.21, we obtain the

cardinality of the class B13.
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Proposition 5.2.21. For n ≥ 8,

|B13| =
(n−7)∑
j=1

(n−j−6)∑
i=1

(n−i−j−5)∑
r=1

(n−i−j−r−4)∑
l=1

(n−i−j−l−r−3)∑
s=1

(e),

where e = (n− i− j − s− l − r − 2)(r).

Proof. Let B ∈ B13. As nullity of B is 3,

B = C1]
b1
a1=0C2]

b2
a2
C3]

b3=1
a3

C4, where C1 is a maximal chain containing

a1, a2, b1, b2, b3 and C2, C3, C4 are chains with a1 = 0 < a2 = c < (b1 =

a || a3 = b) < b2 = d < b3 = 1 and a3 ∈ C3. Note that, by (ii)

of Theorem 3.2.1, Red(B) = Red(B13) and a, b, c, d ∈ Red(B13). Let

B′ = (C1 ∩ [a1, b2])]
b1
a1
C2]

b2
a2
C3, C

′
1 = (C1 ∩ (b2, b3]) and C ′2 = C4. Then

B = (B′ ⊕ C ′1)]1a3C
′
2. Let |B′| = k ≥ 6, |C ′1| = i ≥ 1 and |C ′2| = j ≥ 1.

Then B′ ∈ Bk1,4 and |B| = n = i+ j + k ≥ 8. By Proposition 5.2.20,

|Bk1,4| =
(k−5)∑
r=1

(k−r−4)∑
l=1

(k−l−r−3)∑
s=1

(k − s− l − r − 2),

where s = |[a1, a2)∩C1|, l = |C2|, r = |C3| and for fixed s, l, r, (k− s−

l − r − 2) is the number of possible positions of b1 in the block B′ and

hence in the block B ∈ B13. Now for fixed i and j, k = n− i− j ≥ 6.

Therefore for fixed j, we have 1 ≤ i = n−j−k ≤ n−j−6 and therefore

1 ≤ j = n− i− k ≤ n− 1− 6 = n− 7. Now a3 takes |C3| = r number

of positions in the block B′ ∈ Bk1,4 and hence in the block B ∈ B13.

Therefore we have for all n ≥ 8,

|B13| =
(n−7)∑
j=1

(n−j−6)∑
i=1

(n−i−j−5)∑
r=1

(n−i−j−r−4)∑
l=1

(n−i−j−l−r−3)∑
s=1

(e),

where e = (n− i− j − s− l − r − 2)× (r).
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For n ≥ 7, let Bn2 be the class of all non-isomorphic blocks (of nullity

two) of the type B, where B = C1]
b1
a1
C2]

b2
a2
C3 and 0 = a1 < a2 < b2 <

b1 = 1.

Recall that, B14 = {B ∈ B′′(n, 3) | B14 (see Fig.11) is the basic block

associated to B}. In the Proposition 5.2.23, we obtain the cardinality

of the class B14 using the Proposition 5.2.22. For this purpose, we give

the enumeration of the class Bn2 as it was not clearly mentioned in [13].

Proposition 5.2.22. [13]. For n ≥ 7,

|Bn2 | =
[n−52 ]∑
r=1

n−2r−4∑
l=1

n−l−2r−3∑
s=1

(n− s− l − 2r − 2).

Proof. Let A = {(s,m, t, l, r) : s ≥ 1, t ≥ 2,m, l, r ∈ N, s+m+t+l+r =

n} and φ : A→ Bn2 be a map defined as φ(s,m, t, l, r) = (C1]
b1
a1
C2)]

b2
a2
C3,

where C1 ≡ x1 < x2 < . . . < xs+m+t, C2 ≡ y1 < y2 < . . . < yl and

C3 ≡ z1 < z2 < . . . < zr are disjoint chains with a1 = x1, a2 = xs+1, b2 =

xs+m+1 and b1 = xs+m+t. For B ∈ Bn2 with adjunct representation

(C1]
b1
a1=0C2)]

b2
a2
C3, let s = |[a1, a2)∩C1|,m = |[a2, b2)∩C1|, t = |[b2, b1]∩

C1|, l = |C2| and r = |C3|. Then (s,m, t, l, r) ∈ A and φ(s,m, t, l, r) =

B. This shows that φ is onto. It is evident that φ(s,m, t, l, r) ∈ Bn2 if

and only if t ≥ 2 and s ≥ 1. Also φ(s1,m1, t1, l1, r1) ∼= φ(s2,m2, t2, l2, r2)

if and only if either s1 = s2,m1 = m2, t1 = t2, l1 = l2 and r1 = r2 or

s1 = s2, t1 = t2, l1 = l2, m2 = r1+1 and r2 = m1−1. Hence by imposing

the additional condition m ≥ r+1 on elements of A we observe that the

class Bn2 and the set {(s,m, t, l, r)/s,m, t, l, r ∈ N, s+m+ t+ l+ r = n,

t ≥ 2, s ≥ 1, m ≥ r + 1} become numerically equivalent. Therefore

|Bn2 | = |{(s,m, t, l, r)/s,m, t, l, r ∈ N, s+m+ t+ l+r = n, t ≥ 2, s ≥ 1,
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m ≥ r + 1}|.

For fixed value of r, l and s, let

Arls = {(s,m, t, l, r)|s + m + t + l + r = n, t ≥ 2,m ≥ r + 1}. Then it

is clear that

|Bn2 | =
∑
r

∑
l

∑
s

|Arls|. (A)

For any ordered 5-tuple in Arls, r + 1 ≤ m = n − s − t − l − r ≤

n − l − r − s − 2, and m + t = n − s − l − r (fixed). Hence |Arls| =

n− s− l − r − (r + 1)− 1. That is,

|Arls| = n− s− l − 2r − 2. (B)

This is nothing but the number of possible positions for b2 in the block

B. Also for fixed r and l, s takes maximum value when m and t

take minimum values r + 1 and 2 respectively. Therefore 1 ≤ s ≤

n− l − 2r − 3. (C)

Again for fixed r, l takes maximum value when the other variables

have minimum value, i.e., s = 1,m = r + 1, and t = 2. Therefore

1 ≤ l ≤ n− 2r − 4. (D)

Finally r takes maximum value when other variables have minimum

values, i.e., s = 1,m = r+1, t = 2 and l = 1. This gives us r ≤ n−r−5.

i.e., 2r ≤ n− 5 leads to

1 ≤ r ≤
[
n−5
2

]
. (E)

From (A), (B), (C), (D) and (E) we have

|Bn2 | =
[n−52 ]∑
r=1

n−2r−4∑
l=1

n−l−2r−3∑
s=1

(n− s− l − 2r − 2).

Using Proposition 5.2.22, we prove the following Proposition 5.2.23.
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Proposition 5.2.23. For n ≥ 9,

|B14| =
(n−8)∑
j=1

(n−j−7)∑
i=1

[n−i−j−52 ]∑
r=1

n−i−j−2r−4∑
l=1

n−i−j−l−2r−3∑
s=1

(e),

where e = (n− i− j − s− l − 2r − 2)(l).

Proof. Let B ∈ B14. As nullity of B is 3,

B = C1]
b1
a1=0C2]

b2
a2
C3]

b3=1
a3

C4, where C1 is a maximal chain containing

a1, a2, b1, b2, b3 and C2, C3, C4 are chains with a1 = 0 < (a2 = b < b2 =

d) || a3 = a) < b1 = c < b3 = 1 and a3 ∈ C2. Note that, by (ii)

of Theorem 3.2.1, Red(B) = Red(B14) and a, b, c, d ∈ Red(B14). Let

B′ = (C1 ∩ [a1, b1])]
b1
a1
C2]

b2
a2
C3, C

′
1 = (C1 ∩ (b1, b3]) and C ′2 = C4. Then

B = (B′⊕C ′1)]b3=1
a3

C ′2. Let |B′| = k ≥ 7, |C ′1| = i ≥ 1 and |C ′2| = j ≥ 1.

Then B′ ∈ Bk2 (see [13]) and |B| = n = i + j + k ≥ 9. By above

Proposition 5.2.22,

|Bk2 | =
[k−52 ]∑
r=1

k−2r−4∑
l=1

k−l−2r−3∑
s=1

(k − s− l − 2r − 2).

where s = |[a1, a2)∩C1|, l = |C2|, r = |C3| and for fixed s, l, r, (k− s−

l− 2r− 2) is the number of possible positions of b2 in the block B′ and

hence in the block B ∈ B14. Now for fixed i and j, k = n− i− j ≥ 7.

Therefore for fixed j, we have 1 ≤ i = n−j−k ≤ n−j−7 and therefore

1 ≤ j = n− i− k ≤ n− 1− 7 = n− 8. Now a3 takes |C2| = l number

of positions in the block B′ ∈ Bk2 and hence in the block B ∈ B14.

Therefore we have for all n ≥ 9,

|B14| =
(n−8)∑
j=1

(n−j−7)∑
i=1

[n−i−j−52 ]∑
r=1

n−i−j−2r−4∑
l=1

n−i−j−l−2r−3∑
s=1

(e),
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where e = (n− i− j − s− l − 2r − 2)× (l).

Recall that, B15 = {B ∈ B′′(n, 3) | B15 (see Fig.11) is the basic block

associated to B}. Note that, the dual B∗15 of the basic block B15 is B14

(see Fig.11). In the Corollary 5.2.24, we obtain the cardinality of the

class B15.

Corollary 5.2.24. For n ≥ 9,

|B15| =
(n−8)∑
j=1

(n−j−7)∑
i=1

[n−i−j−52 ]∑
r=1

n−i−j−2r−4∑
l=1

n−i−j−l−2r−3∑
s=1

(e),

where e = (n− i− j − s− l − 2r − 2)(l).

Proof. Clearly |B15| = |B14|, since B ∈ B15 if and only if the dual of B,

B∗ ∈ B14. Thus the proof follows by Proposition 5.2.23.

Recall that, B16 = {B ∈ B′′(n, 3) | B16 (see Fig.11) is the basic block

associated to B}. In the Proposition 5.2.25, we obtain the cardinality

of the class B16.

Proposition 5.2.25. For n ≥ 8,

|B16| =
(n−7)∑
j=1

(n−j−6)∑
i=1

(n−i−j−5)∑
r=1

(n−i−j−r−4)∑
l=1

(n−i−j−l−r−3)∑
s=1

(e),

where e = (n− i− j − s− l − r − 2)(l).

Proof. Let B ∈ B16. As nullity of B is 3,

B = C1]
b1
a1=0C2]

b2
a2
C3]

b3=1
a3

C4, where C1 is a maximal chain containing

a1, a2, b1, b2, b3 and C2, C3, C4 are chains with a1 = 0 < (a2 = b || a3 =

a) < b1 = c < b2 = d < b3 = 1 and a3 ∈ C2. Note that, by (ii)
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of Theorem 3.2.1, Red(B) = Red(B16) and a, b, c, d ∈ Red(B16). Let

B′ = (C1 ∩ [a1, b2])]
b1
a1
C2]

b2
a2
C3, C

′
1 = (C1 ∩ (b2, b3]) and C ′2 = C4. Then

B = (B′⊕C ′1)]b3=1
a3

C ′2. Let |B′| = k ≥ 6, |C ′1| = i ≥ 1 and |C ′2| = j ≥ 1.

Then B′ ∈ Bk1,4 and |B| = n = i+ j + k ≥ 8. By Proposition 5.2.20,

|Bk1,4| =
(k−5)∑
r=1

(k−r−4)∑
l=1

(k−l−r−3)∑
s=1

(k − s− l − r − 2),

where s = |[a1, a2)∩C1|, l = |C2|, r = |C3| and for fixed s, l, r, (k− s−

l−r−2) is the number of possible positions of b1 in the block B′ ∈ Bk1,4
and hence in the block B ∈ B16.

Now for fixed i and j, k = n − i − j ≥ 6. Therefore for fixed j, we

have 1 ≤ i = n− j − k ≤ n− j − 6 and therefore 1 ≤ j = n− i− k ≤

n − 1 − 6 = n − 7. Now a3 takes |C2| = l number of positions in the

block B′ ∈ Bk1,4 and hence in the block B ∈ B16. Therefore we have for

all n ≥ 8,

|B16| =
(n−7)∑
j=1

(n−j−6)∑
i=1

(n−i−j−5)∑
r=1

(n−i−j−r−4)∑
l=1

(n−i−j−l−r−3)∑
s=1

(e),

where e = (n− i− j − s− l − r − 2)× (l).

Recall that, B17 = {B ∈ B′′(n, 3) | B17 (see Fig.11) is the basic block

associated to B}. Note that, the dual B∗17 of the basic block B17 is B16

(see Fig.11). In the Corollary 5.2.26, we obtain the cardinality of the

class B17.

Corollary 5.2.26. For n ≥ 8,

|B17| =
(n−7)∑
j=1

(n−j−6)∑
i=1

(n−i−j−5)∑
r=1

(n−i−j−r−4)∑
l=1

(n−i−j−l−r−3)∑
s=1

(e),
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where e = (n− i− j − s− l − r − 2)(l).

Proof. Clearly |B17| = |B16|, since B ∈ B17 if and only if the dual of B,

B∗ ∈ B16. Thus the proof follows by Proposition 5.2.25.

Using Proposition 5.2.19, Proposition 5.2.21, Proposition 5.2.23, Corol-

lary 5.2.24, Proposition 5.2.25 and Corollary 5.2.26, we obtain the num-

ber of non-isomorphic blocks on n elements, having nullity three, and

containing six reducible elements such that at least two of them are

incomparable in the following Theorem 5.2.27. For the sake of brevity,

we avoid the explicit formula here also.

Theorem 5.2.27. For n ≥ 8,

|B′′(n, 3, 6)| =
17∑
i=12

|Bi|.

Proof. The proof follows from the fact that {Bi : 12 ≤ i ≤ 17} forms a

partition of the class B′′(n, 3, 6).

We now obtain the number (|B′′(n, 3)|) of non-isomorphic blocks (that

is, lattices in which 0 and 1 are reducible elements) on n elements, hav-

ing nullity three, and in which at least two of the reducible elements

are incomparable.

As B′′(n, 3) = B′′(n, 3, 4)∪̇B′′(n, 3, 5)∪̇B′′(n, 3, 6), we have using The-

orem 5.2.8, Theorem 5.2.18 and Theorem 5.2.27, the following Theorem

5.2.28.

Theorem 5.2.28. For all n ≥ 7,

|B′′(n, 3)| = |B′′(n, 3, 4)|+ |B′′(n, 3, 5)|+ |B′′(n, 3, 6)|.
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Definition 5.2.4. Let L ′′(n, k) be the subclass of L (n, k) such that at

least two of the reducible elements in each lattice in it are incomparable.

It is clear that, L (n, k) = L ′(n, k) ∪̇ L ′′(n, k). Using Theorem 5.2.28,

we prove that, the number (|L ′′(n, 3)|) of non-isomorphic lattices on n

elements, having nullity three, and in which at least two of the reducible

elements are incomparable is given by the following Theorem 5.2.29.

Again for the sake of brevity, we avoid the explicit formula here.

Theorem 5.2.29. For all n ≥ 7,

|L ′′(n, 3)| =
n−7∑
i=0

(i+ 1)× |B′′(n− i, 3)|.

Proof. It is clear that a lattice L ∈ L ′′(n, 3) if and only if L = C⊕B⊕

C ′, where B ∈ B′′(n − i, 3) and C, C ′ are chains with |C| + |C ′| = i.

For fixed i ≥ 0, the i elements can be allocated to the chains C and

C ′ in i + 1 ways. Let j = n − i. Now for any B ∈ B′′(j, 3), j ≥ 7.

Therefore i = n − j ≤ n − 7. Thus 0 ≤ i ≤ n − 7. Hence the proof is

complete.

5.3 Enumeration of lattices of nullity three

In this section, we obtain the number (|L (n, 3)|) of all non-isomorphic

lattices on n elements, having nullity three. As L (n, 3) = L ′(n, 3)∪̇L ′′(n, 3),

we first obtain the cardinality of the class L ′(n, 3).

By Proposition 4.3.1, we have the following (Note that k = 3).

Corollary 5.3.1. For any 2 ≤ s ≤ 6, for any n ≥ s + 3 and for

Bb ∈ B′(3, s), the number N s
Bb of non-isomorphic blocks in B′(n, 3, s)
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which are associated by the basic block Bb is given by

N s
Bb =

∑
n−s=u1+u2+···+um+p+l

(
m∏
i=1

Pmi+1
ui

)
×

(
m+p∏
i=m+1

P pi
ui

)
,

where ui ≥ mi + 1, for 1 ≤ i ≤ m, ui ≥ pi, for m+ 1 ≤ i ≤ m+ p and

ui ≥ 0, for m+ p+ 1 ≤ i ≤ m+ p+ l.

Note that for 2 ≤ s ≤ 6, the values of B′(3, s) are given in the Table 9.

By Proposition 4.3.2, we have the following.

Corollary 5.3.2. For any 2 ≤ s ≤ 6 and for any n ≥ s+ 3,

|B′(n, 3, s)| =
∑

Bb∈B′(3,s)

N s
Bb.

By Proposition 4.3.3, we have the following.

Corollary 5.3.3. For any n ≥ 6,

|B′(n, 3)| =
6∑
s=2

|B′(n, 3, s)|.

Therefore by Theorem 4.3.4, we have the following.

Corollary 5.3.4. For any n ≥ 6,

|L ′(n, 3)| =
n−6∑
i=0

(i+ 1)|B′(n− i, 3)|.

As L (n, 3) = L ′(n, 3)∪̇L ′′(n, 3), using Corollary 5.3.4 and Theorem

5.2.29, we obtain the following.

Theorem 5.3.5. For all n ≥ 6,

|L (n, 3)| = |L ′(n, 3)|+ |L ′′(n, 3)|.
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Basic blocks and fundamental basic blocks of nullity three.
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Thus there are in all 75 non-isomorphic basic blocks of nullity three, in

which all the reducible elements are comparable. There are in all 17

non-isomorphic basic blocks of nullity three, in which at least two of

the reducible elements are incomparable (see the figures Fig.9, Fig.10

and Fig.11). Therefore there are in all 92 non-isomorphic basic blocks

of nullity three.

It can also be observed that there are in all 79 non-isomorphic funda-

mental basic blocks of nullity three.
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[24] B. S. W. Schröder, “Ordered Sets - An Introduction”,

Birkhauser, Boston (2003).

[25] D. Duffus and I. Rival, A structure theory for ordered sets,

Discrete Mathematics 35 (1981), 53-118.

[26] B. Larose and L. Zadori, Algebraic properties and dismantla-

bility of finite posets, Discrete Mathematics 163 (1997), 89-99.

[27] I. Rival, A fixed point theorem for partially ordered sets, J.

Comb. Theory (A) 21 (1976), 309-318.

[28] D. Duffus and I. Rival, Retracts of partially ordered sets, J.

Austral. Math. Soc. (Series A) 27 (1979), 495-506.

[29] D. Duffus, W. Poguntke and I. Rival, Retracts and the fixed

point problem for finite partially ordered sets, Canad. Math. Bull.

Vol. 23(2) (1980), 231-236.

[30] W. T. Trotter, Jr. and J. I. Moore, Jr., Characterization prob-

lems for graphs, partially ordered sets, lattices, and families of sets,

Discrete Mathematics 16 (1976), 361-381.

[31] D. Kelly, On the dimension of partially ordered sets, Discrete

Mathematics 35 (1981), 135-156.

[32] G. Pfeiffer, Counting transitive relations, J. Integer Seq. 7



150 BIBLIOGRAPHY

(2004), Article 04.3.2.

[33] G. Brinkmann and B. D. McKay, Counting unlabelled topolo-

gies and transitive relations, J. Integer Seq. 8 (2005), Article 05.2.1.

[34] M. Benoumhani, The number of topologies on a finite set, J.

Integer Seq. 9 (2006), Article 06.2.6.

[35] W. Klotz and L. Lucht, Endliche Verbande. (German), J.

Reine Angew. Math. 247 (1971), 58-68.

[36] D. J. Kleitman and K. J. Winston, The asymptotic number of

lattices, Ann. Discrete Math. 6 (1980), 243-249.

[37] F. Brucker and A. Gly, Crown-free Lattices and Their Related

Graphs, Order 28(3) (2011), 443-454.

[38] Rival et al, Dimension two, fixed points and dismantlable or-

dered sets, Order 13(3) (1996), 245-253.

[39] R. A. Brualdi and J. A. Dias da Silva, Discrete Mathematics

169 (1-3) (1997).

[40] D. Duffus and I. Rival, Path length in the covering graph of a

lattice, Discrete Math. 19 (1977), 139-158.

[41] D. B. West, “Introduction to Graph Theory”, Second ed., Pren-

tice Hall of India, New Delhi (2002).

[42] D. Duffus and I. Rival, Graphs orientable as distributive lat-

tices, Proc. Amer. Math. Soc. 88(2) (1983), 197-200.

[43] J. Jakubik, On lattices whose graphs are isomorphic,

Czechoslovak Math. J. 4 (1954), 131-140.

[44] H. Whitney, Non-separable and planar graphs, Trans. Amer.

Math. Soc. 34 (1932), 339-362.



BIBLIOGRAPHY 151

[45] Y. M. Borse and B. N. Waphare, On Determination and

Construction of Critically 2-Connected Graphs, AKCE. J. Graphs.

Combin., 7(1)(2010), 73-83.
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