
Page 1 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

 

Progressive Education Society’s 

Modern College of Arts, Science and Commerce, Shivajinagar, Pune – 5 

(Autonomous College) 

 First Year of B. Sc.  (2019 Course) 
 

SEMESTER – I   Paper -II 
 

Course Code :19ScEleU102                Course Name: Fundamentals of Digital Electronics 

Course Contents 

 

Chapter 1 Number Systems 16  lectures 

  

Introduction to decimal, binary and hexadecimal number 

systems and their inter conversions, Unsigned and Signed 

binary number representations, Rules of binary addition and 

subtraction, Binary addition and subtraction, Subtraction using 

1’s and 2’s complements, BCD code, Excess-3 code, Gray 

code, Alphanumeric representation in ASCII codes, Code 

conversion –binary to gray, gray to binary. 

 

 

 

 

 

 

 

 

Chapter 2 Logic Gates 7  lectures 

 

 

 

 

Positive and Negative Logic, OR, AND, NOT gates, NAND, 

NOR, EX-OR,   EX-NOR gates (Symbol and truth table). 

 

 

Chapter 3 Boolean Algebra  12  lectures 

 

 

 

 

 

 

 

 

 

 

 

Boolean algebra and Boolean laws: Commutative, Associative, 

Distributive, AND, OR and Inversion laws, De Morgen’s 

theorem, NAND, NOR as universal gate, K-map Basics, Min 

terms, Max terms, Boolean expression in SOP and POS form, 

Simplifications of Logic expressions using Boolean algebra 

rules and Karnaugh map (up to 4 variables), Implementation of 

Boolean expressions using basic gates. 

 

 

Chapter 4 Experiential Learning  1  lecture 

  

Group Discussion / Field Work / Mini Project. 

 

 

 

Text/ Reference Books: 

1. Digital Electronics: Jain R.P., Tata McGraw Hill  

2. Digital Principles and Applications: Malvino Leach, Tata McGraw-Hill 

3. Digital Fundamentals: Floyd T.M., Pearson Education 

 

 

 

 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 2 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

Chapter 3 Boolean Algebra  12  lectures 

 

 

 

 

 

 

 

 

 

 

 

Boolean algebra and Boolean laws: Commutative, Associative, 

Distributive, AND, OR and Inversion laws, De Morgen’s 

theorem, NAND, NOR as universal gate, K-map Basics, Min 

terms, Max terms, Boolean expression in SOP and POS form, 

Simplifications of Logic expressions using Boolean algebra 

rules and Karnaugh map (up to 4 variables), Implementation of 

Boolean expressions using basic gates. 

 

 

 

1. Boolean algebra and Boolean laws:  

 Boolean algebra is the mathematics of digital system. Infact it is a convenient and 

systematic way of expressing and analysing the operation of logic circuits. It is found that the 

knowledge of Boolean algebra is essential to study and analysis of logic circuit. 

 A mathematical system for formulating logical statements with symbols, so that problems 

can be written and solved like a ordinary algebra, was developed by the Irish logician and 

mathematician George Boole and known as Boolean algebra.  

 Boolean algebra was introduced in 1854. Boole is one of the persons in a long historical 

chain who were concerned with formalising and mechanising the process of logical thinking. 

Boolean algebra is a generalisation of set algebra and the algebra of propositions and is a tool 

for studying and applying logic. 

 It provides mathematical basis for expressing logic circuit functions, as well as analysing 

and designing of the digital system. 

 The Boolean axioms are the laws of Boolean algebra for addition, multiplication and for 

the inversion. They are known as axioms because they are the truth which can be verified for 

different possibilities but cannot be proved. There are different operators for Boolean algebra. 

 

2. Boolean Operators :  

 

 The operators in Boolean algebra are slightly different than conventional algebra for the 

basic gates and the following operators are commonly used. 

 (i) Dot sign (·) : The dot sign () which is also expressed as (), indicates logical 

product of two terms. The logical product of two terms A and B is expressed as A·B (or A  

B) and is read as "A AND B". The inputs A and B are said to be ANDed. 

 (ii) Plus sign (+) : The (+) sign indicates the logical sum of two terms. For example,          

A + B represents logical sum of terms A and B and is read as "A OR B". The inputs A and B 

are said to be ORed. 

 (iii) Overbar ( 
– 

) : A sign of ( 
– 

) indicates that the terms which are overbar, are to be 

complemented. For example, 
–
A represents complementation of term A and is read as "NOT 

A". 

 

3. Boolean Addition and Multiplication :  

 Addition in Boolean algebra involves variables having values of either a 

binary 1 or a binary 0. Binary 1 will represent a HIGH level and binary 0 will 

represent a LOW level in Boolean equations. 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 3 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

 The basic rules for Boolean addition are as follows :  

   0 + 0 = 0 

   0 + 1 = 1 

   1 + 0 = 1 

   1 + 1  = 1 

 Boolean addition is the same as the OR. Notice that, it differs from binary 

addition in the case where two 1s are added. 

 Multiplication in Boolean algebra follows the same basic rules governing 

binary multiplication. 

   0 · 0 = 0 

   0 · 1 = 0 

   1 · 0 = 0 

   1 · 1 = 1 

 Boolean multiplication is the same as the AND. 

 Complementation in Boolean algebra is as follows :  

   
–
0  = 1 

   
–
1  = 0 

 It is same as NOT. 

4. Rules and Laws of Boolean Algebra 

 
There are certain rules and laws in Boolean algebra. We shall learn Boolean Commutative, 

Associative, Distributive, AND, OR and Inversion laws in this section. 

 The alphabets A, B, C and D can be used as variables having values 0 and 1. 

 Laws of Intersection :  

 Law 1 : A · 1 = A 

 
Fig. 1 

 If a logic 1 is applied to one of the two inputs of the AND gate and signal A to the other 

input, the output will be A. 

 Law 2 : A · 0 = 0 

 
Fig. 2 

 If a logic 0 is applied to one of the two inputs of the AND gate and signal A to the other 

input, the output will be logic 0. 

 Laws of Union :  

 Law 3 : A + 1 = 1 

 

Fig. 3 

 If a logic 1 is applied to the two inputs of OR gate and signal A to the other input, the 

output will be logic 1. 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 4 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

 Law 4 : A + 0 = A 

 
Fig. 4 

 If a logic 0 is applied to one of the two inputs of OR gate and A to the other input, the 

output will be logic A. 

 Laws of Tautology :  

 Law 5 : A · A = A 

 

Fig. 5 

 If the same signal A is applied to all the inputs of AND gate, the output will be same as 

the input. 

 Law 6 : A + A = A 

 
Fig. 6 

 If the same signal A is applied to all the inputs of OR gate, the output will be same as 

input A. 

 Laws of Complement : 

 Law 7 : A · 
–
A  = 0 

 
Fig. 7 

 If a logic signal A and its complement 
–
A is applied to an AND gate, the output will be 

logic 0. 

 Law 8 : A + 
–
A  = 1 

 
Fig. 8 

 If a logic signal A and its complement 
–
A is applied to an OR gate, the output will be 1. 

 Law of Double negation :  

 Law 9 : 
=
A  = A 

 
Fig. 9 

 The complement of the complement of A is A. 

 Laws of Commutation :  

 Law 10 : A · B = B · A 

 The commutative law of multiplication states that order in which variables are ANDed 

makes no difference at the output. 

 
Fig. 10 

  

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 5 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

Law 11 : A + B = B + A 

 This law states that 'the order in which the inputs are given to an OR gate makes no 

difference at the output'. 

 
Fig. 11 

 Laws of Association :  

 Law 12 : The associative law of addition for three variables is stated as follows,  

   (A + B) + C =  A + (B + C) 

 This law states that 'in the ORing of several variables, the result is same regardless of 

grouping of variables'. 

 
Fig. 12 

 Law 13 : The associative law of multiplication is stated as follows for three variables. 

   (A · B) · C = A · (B · C) 

 
Fig. 13 

Laws of Distribution :  

 Law 14 : The distributive law for three variables is written as follows :  

   A (B + C) = AB + AC 

 This law states that 'ORing several variables and ANDing the result with a single variable 

is equivalent to ANDing the single variable with each of several variables and then ORing the 

products'. 

 
Fig. 14 

 Law 15 :  A + (B · C) = (A + B) · (A + C)  [Comp. Sci. : M-14, 15] 

 
Fig. 15 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 6 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

 Proof :  (A + B) · (A + C) = AA + AB + AC + BC 

    = A (1 + B + C) + BC … (1) 

 Though B and C have any value either 0 or 1, 

   1 + B + C = 1 

 Therefore equation (1) becomes = A · 1 + BC 

 From law (1), A · 1 = A 

   (A + B) (A + C) = A + BC 

Laws of Absorption :      

 Law 16 :  A + A · B = A 

 
Fig. 16 

 Proof : Consider  A + A · B = A · (1 + B) 

    = A · 1  ... 1 + B = 1 

    = A ... A · 1 = A 

 Law 17 :  A · (A + B) = A 

 
Fig. 17 

 Proof :  A · (A + B) = A · A + A · B 

    = A + AB ... A · A = A 

    = A (1 + B)  

    = A · 1 ... 1 + B = 1 

    = A ... A · 1 = A 

 Law 18 :  A · B + 
–
B  = A + 

–
B  

 
Fig. 18 

 Proof :  A · B + 
–
B  = A · B + 

–
B · 1 ... 

–
B · 1 = 

–
B 

    = A · B + 
–
B · (A + 1) ... A + 1 = 1 

    = A · B + 
–
BA + 

–
B · 1 

    = A · (B + 
–
B) + 

–
B  ... 

–
B  1 = 

–
B 

    = A + 
–
B  ... B + 

–
B  = 1 

  

 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 7 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

Law 19 :  A · (
–
A + B) = A · B 

 

Fig. 19 

 Proof :  A · (
–
A + B) = A

–
A + AB  

    = 0 + AB ... A · 
–
A  = 0 

    = A · B 

 Law 20 :  A · 
–
B + B = A + B 

 

Fig. 20 

 Proof : Consider  A · 
–
B + B = A · 

–
B + B · 1 ... B · 1 = B 

    = A · 
–
B + B · (A + 1)  ... A + 1 = 1 

    = A · 
–
B + B · A + B · 1 

    = A (
–
B + B) + B  

    = A · 1 + B  ... 
–
B + B = 1 

    = A + B ... A · 1 = A 

Table 1 : Boolean algebraic theorems  

Law  Classification  Algebraic definition 

1 

2 
Laws of intersection 

 A · 1  = A 

 A · 0  = 0 

3 

4 
Laws of union  

 A + 1 = 1 

 A + 0 = A 

5 

6 
Laws of tautology 

 A · A  = A 

 A + A = A 

7 

8 Laws of complement 
 A · 

–
A  = 0 

 A + 
–
A  = 1 

9 Law of double negation  
=
A  = A 

10 

11 
Laws of commutation  

 A · B  = B · A 

 A + B  = B + A 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 8 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

12 

13 
Laws of association  

 (A + B) + C = A + (B + C) 

 (A · B) · C = A · (B · C) 

14 

15 
Laws of distribution  

 A (B + C) = A · B + A · C 

 A + (B · C) = (A + B) · (A + C) 

16 

17 

18 

19 

20 

Laws of absorption 

 A + A · B = A 

 A · (A + B) = A 

 A · B + 
–
B  = A + 

–
B  

 A · (
–
A + B) = AB  

 A · 
–
B  + B = A + B  

 

5. Simplification of Logic Equations using Laws of Boolean Algebra 

Many times it is essential to reduce number of gates required for designing a digital circuit, 

reduce a particular expression to its simplest form, ultimately which reduces size and price 

(cost) of circuit. By applying basic laws, rules and theorems of Boolean algebra, it is possible 

to implement practically. 

 Following examples illustrate the technique. 

 Example 1 : Simplify the expression AB + A (B + C) + B (B + C) using Boolean algebra 

techniques. 

 Solution : Consider  

   AB + A (B + C) + B (B + C) = AB + AB + AC + BB + BC 

    = A (B + B) + AC + B (B + C) ... B · B = 1 

    = AB + AC + B ... B + B = B, B (B + C) = B 

    = AB + B + AC   

    = B (A + 1) + AC  

    = B · 1 + AC ... A + 1 = 1 

    = B + AC 

   AB + A (B + C) = B + AC 

 The logic circuit will be  

 
Fig. 21 

 Example 2 : Simplify the expression [A
–
B (C + BD) + 

–
A 

–
B ] C using Boolean algebra 

techniques. 

 Solution : Consider  

   [A
–
B (C + BD) + 

–
A 

–
B ] C = (A

–
BC + A

–
BBD + 

–
A 

–
B) C   

    = (A
–
BC + A · 0 · D + 

–
A 

–
B) C ... 

–
B B = 0 

    = (A
–
BC + 0 + 

–
A 

–
B) C 

    = (A
–
BC + 

–
A 

–
B) C 

    = A
–
BCC + 

–
A

–
BC  

    = A
–
BC + 

–
A

–
BC ... C · C = C 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 9 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

    = 
–
BC (A + 

–
A)  

    = 
–
BC · (1)  ... A + 

–
A  = 1 

    = 
–
BC 

   [A
–
B (C + BD) + 

–
A

–
B] C = 

–
BC 

 The logic circuit will be  

 
Fig. 22 

 Example 3 : Using Boolean algebra techniques, simplify the following expressions as 

much as possible : (i) A(A + B), (ii) A(
–
A + AB), (iii) BC + 

–
BC,  (iv) A(A + 

–
AB). 

 Solution : (i) A (A + B) = A·A + A·B 

    = A + A·B ... A·A = A 

    = A (1 + B)  

    = A · (1)  ... 1 + B = 1 

    = A 

   A (A + B) = A 

 (ii)  A (
–
A + AB) = A

–
A + A·AB   

    = 0 + A·AB ... A
–
A = 0 

    = AB ... A·A = A 

   A (
–
A + AB) = AB  

 
Fig. 23 

 (iii)  BC + 
–
BC = C (B + 

–
B)  

    = C · (1)  ... B + 
–
B  = 1 

    = C 

 (iv)  A (A + 
–
AB) = A·A + A·

–
AB  

    = A + A·
–
AB ... A·A = A 

    = A + 0 ... A·
–
A  = 0

  

    = A ... A + 0 = A 

 Example 4 : Reduce the following Boolean expression and draw the logic diagram :  

                
–
ABC

–
D + BC

–
D + B

–
C

–
D + B

–
CD 

  

 

 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 10 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

Solution : Consider  

  
–
ABC

–
D + BC

–
D + B

–
C

–
D + B

–
C D = BC

–
D (

–
A + 1) + B

–
C (

–
D + D)   

(... 
–
A + 1 = 1, D + 

–
D  = 1) 

    = BC
–
D · (1) + B

–
C · (1) = BC

–
D + B

–
C  = B (C

–
D + 

–
C ) 

    = B (
–
DC + 

–
C ) (... 

–
DC = C

–
D) 

    = B (
–
D + 

–
C ) (... 

–
DC + 

–
C  = 

–
D + 

–
C ) 

 The logic circuit will be  

 
Fig. 24 

 Example 5 : Simplify the following equations using laws of Boolean algebra :   

 (i) Y = ABCD + ABC + AB + A
–
B  

 Solution : Consider 

  ABCD + ABC + AB + A
–
B = ABC (D + 1) + A (B + 

–
B) 

    =  ABC · (1) + A · (1) (... D + 1 = 1, B + 
–
B  = 1) 

    =  ABC + A   

 Circuit for Y = ABCD + ABC + AB + A
–
B  can be constructed as follows :  

 
Fig. 25 

 Here four input AND and four input OR gate are used. 

 (ii) Y = 
–
A + AB + A

–
B  

 Solution : Consider 

   
–
A + AB + A

–
B = 

–
A + A (B + 

–
B)  

    =  
–
A + A (1) = 

–
A + A = 1 (... B + 

–
B  = 1) 

 
Fig. 26 

 Here three input OR gate is used. 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 11 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

 (iii) Y = AB + 
–
AB + ABC 

 Solution :  Y = AB + ABC + 
–
AB 

    =  AB (1 + C) + 
–
AB  

    = AB (1) + 
–
A B = AB + 

–
AB (... 1 + C = 1) 

    =  B (A + 
–
A)  

    = B  (... A + 
–
A  = 1) 

 Let us consider the following circuit to solve the given equation. 

 

 
Fig. 27 

 (iv) A = AB + BC + 
–
BA + 

–
AB 

 

 Solution :  Y = AB + 
–
AB + BC + 

–
BA = B (A + 

–
A) + BC + 

–
BA 

    = B + BC + 
–
BA (... A + 

–
A  = 1) 

    = B (1 + C) + 
–
BA  

    = B + 
–
BA (... 1 + C = 1) 

 

 Let us consider the following circuit to solve the given equation. 

 

 
Fig. 28 

 

 

 

 

 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 12 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

6. De Morgen’s theorem:  

  De Morgan, a logician and mathematician proposed two theorems which are important 

parts of Boolean algebra. 

 De Morgan's first theorem  

   
––
AB =

–
A + 

–
B  

 The complement of product is equal to the sum of the complements. The complement of 

two or more variables ANDed is the same as the OR of the complement of each individual 

variables. 

 
Fig. 29 

 It can also be constructed with AND, OR and NOT gate as follows :  

 
Fig. 30 

Table 2 : De Morgan's first theorem 

Input Intermediate value Output 

A B AB –
A  

–
B  

––
A·B  

–
A + 

–
B  

0 

0 

1 

1 

0 

1 

0 

1 

0 

0 

0 

1 

1 

1 

0 

0 

1 

0 

1 

0 

1 

1 

1 

0 

1 

1 

1 

0 

 

 De Morgan's Second Theorem: 

  

     The complement of a sum is equal to the product of the complements. It can be expressed 

as  

   
––––
A + B  = 

–
A · 

–
B  

 
Fig. 31 

  

Using AND, OR and NOT gate, the circuit can be drawn as  

 
Fig. 32 

 

 

 

 

 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 13 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

Table 3 : De Morgan's second theorem 

Input Intermediate value Output 

A B A + B –
A  

–
B  

––––
A + B  

–
A · 

–
B  

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

1 

1 

1 

1 

0 

0 

1 

0 

1 

0 

1 

0 

0 

0 

1 

0 

0 

0 

 Now consider the NAND operation of three variables. 

––––
ABC = 

–
A + 

–
B + 

–
C  

And  
––––––––
A + B + C = 

–
A · 

–
B · 

–
C  

 The above results can be easily extended to any number of variables. 

Applications of De Morgan's Theorems 

 De Morgan's theorems can be used for simplifying logic function. 

 Example 1 : Simplify the following expressions.  

 Solution : (i)           
––––––––––––––
A + B + 

–
C  = 

––––––––––
A + B · 

––
C   [... 

––––––
 
–––––
A + B   = A + B and 

=
C  = C] 

    = A + B · C  

    = (A + B) · C 

                  (ii)      
–––––––––––
A + B + 

–––
CD = 

–––––––––––
A + B  · 

––––––
CD = (

–
A + B) CD 

                  (iii) 
–––––––––––––
AB + 

–
A + AB   =  

––––––––––––––
A + 

–
B + 

–
A + AB   

    =  
–––––––––––
A + 

–
B + AB  ... 

–
A + 

–
A  = 

–
A  

    =  
––––––––––
A + A + 

–
B   ... AB + 

–
B = A + 

–
B  

    =  
–––––
1 + 

–
B  = 

–
1 = 0 

   
–––––––––––––
AB + 

–
A + AB   = 0 

  

                  (iv) 
––––––––––––

(
–
A·B) (B·C) (C

–
D) =  

––––
A·B + 

–––
B·C  + 

–––
(C

–
D) = 

–
A + 

–
B + 

–
B + 

–
C + 

–
C + 

–
D   

         = A + 
–
B + 

–
B + 

–
C + 

–
C + D ... 

–
A = A and 

–
D = D

                                                   =A + 
–
B + 

–
C + D    ... 

–
B + 

–
B = 

–
B  and 

–
C + 

–
C = 

–
C  

                                         
–––––––––––––
(
–
A·B) (BC) (C

–
D) =A + 

–
B + 

–
C + D 

 

7. NAND, NOR as Universal Gate: 

 

The NAND and NOR gates have universal property and can be used for performing 

AND, OR and NOT functions, so an AND/OR/NOT logic circuit can be converted to 

NAND/NOR logic. 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 14 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

 NAND as NOT Gate  

 
Fig. 33 

            

                                                                   Y=
––––
A · A  = 

–
A  

 A NOT gate can be obtained from NAND gate by connecting all the inputs together. 

 NAND as AND Gate  

 
Fig. 34 

 The AND gate can be obtained by simply inverting output of NAND gate. 

 

NAND as OR Gate   

  

The OR gate can be designed by using NAND gate. 

   Y= A + B  

   Y=  
=
A  + 

=
B  

   Y= 
––––––
A  

–
B   

 Therefore an OR gate operation can be obtained by NANDing 
–
A and 

–
B . 

 

Y = 
–––––
A · 

–
B  = A + B 

NOT NAND  

 

 
 

OR gate using NAND gate 

Fig. 35 

 

NOR as NOT Gate 

 
Fig. 36 

  

Two inputs of OR gate are connected together, it gives inverter of input signal i.e. NOT. 

 

 

 

 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 15 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

NOR as AND Gate    

  

 The AND gate can be designed by using NOR gate. 

   Y=A·B  

   Y=
=
A · 

=
B  

   Y=
–––––––
A + 

–
B   

 
Fig. 37 

As a summary NAND  , NOR as universal gate 

 Function Symbol NAND  NOR 

1. NOT 
 

  

2. AND 

 

 

 

 

3. OR 

 

  

 

 

8. K-map Basics, Min terms, Max terms 

 The Karnaugh map or K-map provides a systematic method for simplifying a Boolean 

expression and can be used as visual display of fundamental products needed for a sum of 

products solution. 

 The K-map is composed of an arrangement of adjacent 'cells' each representing one 

particular combination of variables in product form. The K-map consists of 2n cells, where n 

is number of variables. 

 For example, there are four combinations of the products of two variables A and B and 

their complements 
–
A

–
B , 

–
A B, A

–
B and AB. Therefore, the K-map must have four cells, with 

each cell representing one of the variable combination. 

Advantages of K-map 

 (i) As we have seen the laws of Boolean algebra, but it is difficult to apply these laws 

when number of variables are large. In such a case, it makes easy by using K-map. 

 (ii) Use of large number of laws of Boolean algebra increases the chances of error 

because one have to remember all these laws and has to apply them at correct place. But by 

using K-map it is not necessary to remember all the laws, according to circuit situation          

K-map may apply. It provides easiest way to produce simplest Boolean expression with 

minimum chances of error. 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 16 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

 Format of a two variable K-map can be represented as follows :  

     –
B  B 

–
A

–
B  

–
A B 

  –
A  

  

A
–
B  AB   A   

                                                (a)                                                                   (b) 

Fig. 38 

 Variable combination is shown in Fig. 38(a) and actually how K-map can be arranged 

with variables outside the cell is shown in Fig. 38(b). 

 Extensions of the K-map to three and four variables are shown in Fig. 39. 

  –
C  C 

  –
C

–
D  

–
C D CD C

–
D  

 –
A

–
B  

   –
A

–
B  

    

 –
A B 

   –
A B 

    

 AB    AB     

 
A

–
B  

   
A

–
B  

    

                    (a) Three variable map (23 = 8 cells) (b) Four variable map (24 = 16 cells) 

Fig. 39 

 Karnaugh maps can be used for five, six or more variables.  

 We see how K-map can be drawn from the following Table 4.  

Table 4 

A B C Y 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

1 

0 

0 

0 

1 

1 

 Output Y is taken by random selection of 1. First we draw the blank map. 

 –
C  C 

–
A

–
B  

–
A B 

AB 

A
–
B  

  

Fig. 40 

 The vertical column is labelled as 
–
A

–
B , 

–
AB, AB and A

–
B .  

 Output Y = 1 appears for 010, 110 and 111. The fundamental products for these input 

conditions are 
–
A B

–
C , AB

–
C , ABC (bar on variables where it is 0). 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 17 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

 Now, enter 1s for these products in K-map. 

 –
C  C 

–
A

–
B  

  

–
A B 

1  

AB 1 1 

A
–
B  

  

Fig. 41 

 

 Enter 0s in the remaining spaces. Then final K-map becomes as in Fig. 42 

 –
C  C 

–
A

–
B  

0 0 

–
A B 

1 0 

AB 1 1 

A
–
B  

0 0 

Fig. 42 

Pairs , Quads and Octets: 

 

 (a) Pair : The K map shown in Fig. 43 contains a pair of 1s that are horizontally 

adjacent (next to each other). 

 
                                              (a)                                                                                   (b) 

Fig. 43 : Horizontally adjacent ones  

The first 1 represents the product of 
–
A B

–
C

–
D and second 1 the product of 

–
A B

–
C D.  

As we move from the first 1 to second 1, only one variable goes from complemented to 

uncomplemented (
–
D to D), the other variables do not change the form (

–
A B

–
C remains unchanged). In 

such case, we can eliminate the variable that changes the form. 

  

The sum of product (SOP) in which each individual term called as minterm represents 

    Y = 
–
A B

–
C

–
D + 

–
A B

–
C D 

     = 
–
A B

–
C (

–
D + D)  ... 

–
D + D = D + 

–
D  

     = 
–
A B

–
C (D + 

–
D)  

     = 
–
A B

–
C  ... D + 

–
D = 1 

    Y = 
–
A B

–
C  

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 18 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

 Adjacent 1s as shown in Fig.44 (a) complements are dropped out. For easy identification 

we will encircle a pair of adjacent 1s as shown in Fig. 44 (b). 

 For the pair of horizontally or vertically adjacent 1s, we can eliminate the variable that 

appears in both complemented and uncomplemented form. 

 Examples of pairs for 3 variables 

 
Fig. 44 (c)  

 

 B goes from complemented to uncomplemented form (
–
B to B). 

    Y = 
–
A

–
B

–
C + 

–
A B

–
C  

     = 
–
A

–
C  

 If more than one pair exist on a Karnaugh map, we can OR the simplified products to get 

the Boolean equation. 

 For example,  

 
Fig. 45 

 For upper horizontal pair, 

    Y = 
–
A

–
B

–
C

–
D + 

–
A

–
B

–
C D 

    Y = 
–
A

–
B

–
C  

and for the lower vertical pair. 

    Y = ABC
–
D + A

–
B C

–
D  

    Y = AC
–
D  

 The corresponding Boolean equation for this map is 

    Y = 
–
A

–
B

–
C + AC

–
D  

 (b) Quad : A quad is a group of four 1s that are horizontally or vertically adjacent. The 

1s may be end to end or in the form of square. 

  

This group can be formed by combining top row, bottom row, left column, right column, just 

like in pairing. Infact, quad eliminates two variables and their complements. 

  

 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 19 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

Consider K-map for three variables. 

 
Fig. 46 

 Looking in K-map from Fig. 46, we find except for 
–
C , other variables AB are changed 

from complement to uncomplement form and/or vice versa. Therefore, output Y becomes 

from Boolean algebra, 

    Y = 
–
A

–
B

–
C + 

–
A B

–
C + AB

–
C + A

–
B

–
C  

    Y = 
–
A

–
C (

–
B + B) + A

–
C (B + 

–
B)  

    Y = 
–
A

–
C (B + 

–
B) + A

–
C (B + 

–
B)  (... B + 

–
B = 1) 

    Y = 
–
A

–
C + A

–
C  

    Y = 
–
C (

–
A + A)  

    Y = 
–
C  (... 

–
A + A = 1) 

 The other combinations of quads are  

 (a)  

 
Fig. 47 

    Y = 
–
A B

–
C

–
D + 

–
A B

–
C D + 

–
A BCD + 

–
A BC

–
D  

     = 
–
A B

–
C (

–
D + D) + 

–
A BC (D + 

–
D ) 

     = 
–
A B

–
C + 

–
A BC (... D + 

–
D = 1) 

     = 
–
A B (

–
C + C) (... 

–
C + C = 1) 

     = 
–
A B 

 (b)  

 
Fig. 48  

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 20 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

    Y = AB
–
C

–
D + AB

–
C D + A

–
B

–
C

–
D + A

–
B

–
C D 

     = AB
–
C (

–
D + D) + A

–
B

–
C (

–
D + D)  

     = AB
–
C + A

–
B

–
C  

     = A
–
C (B + 

–
B)  (... B + 

–
B  = 1)  

     = A
–
C  

 (c) 

 
Fig.49 

    Y = 
–
A B

–
C

–
D + 

–
A BC

–
D + AB

–
C

–
D + ABC

–
D  

    Y = 
–
A B

–
D (

–
C + C) + AB

–
D (

–
C + C)  

    Y = 
–
A B

–
D + AB

–
D  (... 

–
C + C = 1) 

    Y = B
–
D (

–
A + A)  

    Y = B
–
D  

 (c) Octet : This is a group of eight adjacent 1s. An octet like this eliminates three 

variables and their complements. Octet can be considered as a pair of quads.  

  

   (i) Consider the K-map shown in Fig. 50 

 
Fig. 50 

 The Boolean expression will be  

   Y=
–
A B

–
C

–
D + 

–
A B

–
C D + 

–
A BCD + 

–
A BC

–
D      

            + AB
–
C

–
D + AB

–
C D + ABCD + ABC

–
D  

   Y=
–
AB

–
C (

–
D + D) + 

–
ABC (D + 

–
D) + AB

–
C (

–
D + D) + ABC (D + 

–
D) 

   Y = 
–
AB

–
C + 

–
ABC + AB

–
C + ABC 

       =
–
AB (

–
C + C) + AB (

–
C + C) 

      =
–
AB + AB = B (

–
A + A) = B  

 

 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 21 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

 (ii) Consider the K-map shown in Fig. 51. 

 
Fig. 51 

   Y=AB
–
C

–
D + AB

–
C D + ABCD + ABC

–
D  

              + A
–
B

–
C

–
D + A

–
B

–
C D + A

–
B CD + A

–
B C

–
D  

 First eliminate D, 

   Y=AB
–
C (

–
D + D) + ABC (D + 

–
D ) + A

–
B

–
C (

–
D + D) + A

–
BC (D + 

–
D) 

    =AB
–
C + ABC + A

–
B

–
C + A

–
B C 

 Now eliminate C,  

    Y = AB (
–
C + C) + A

–
B (

–
C + C)  

     = AB + A
–
B  

 Now eliminate B,  

    Y = A (B + 
–
B ) 

    Y = A 

 In this way, three variables B, C, D and their complements dropout from the 

corresponding product. 

 

9. Boolean expression in SOP and POS form: 

 

 Boolean expressions can be used to build the logic circuit. If we have the expression          

Y = A + B + C and asked to build a circuit that perform this logic function, we can very 

easily see that there must be an OR gate having three inputs A, B and C. The circuit can be 

realised using three input OR gate as shown in Fig. 52. 

 
Fig. 52: Logic diagram for Boolean expression Y = A + B + C 

 It is found that the Boolean expression come in two forms. All Boolean expressions can 

be converted into either of two standard forms; the sum of product form or the product of 

sum forms. It is found that this standardisation makes the evaluation, simplification and 

implementation of Boolean expressions much more systematic and easier. 

 

Sum of Product (SOP) Form : 

 

 A product term consist of the product of multiplication of variables or their complements 

(known as literal). When two or more product terms are summed by Boolean addition, the 

resulting expression is known as sum of product (SOP) form.  

 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 22 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

The examples of SOP are, 

   Y=AC + BC 

   Y=AB + ABC 

   Y=ABC + BCD + AB
–
D  etc. 

 The sum of product form is called minterm form in engineering texts and the product 

of sum form is called the maximum term form by engineers, technicians and scientist. 

 An SOP expression can contain a single variable term. In an SOP expression a single 

overbar cannot extend over more than one variable, however more than one variable in a term 

can have an overbar. Thus, 

ABC is not valid but 

–
A 

–
B 

–
C is valid in SOP. 

 The set of variables contained in the expression in either complemented or 

uncomplemented form is known as domain of a Boolean expression. For example, the 

domain of the expression A
–
B + ABC is the set of variable A, B and C.  

Implementation of an SOP Expression : 

 The sum of product (SOP) expression contains product of sum terms. A product term is 

produced by an AND operation and the sum or addition of two or more product terms is 

produced by an OR operation. Therefore, an SOP expression is implemented by an AND-OR 

logic. Consider the SOP expression y = AB + BC + CD, it can be implemented as shown in 

Fig. 53. 

 

Fig. 53 : SOP of Boolean expression Y = AB + BC + CD 

The Product of Sum (POS) Form :  

 A sum term consist of the sum i.e. Boolean addition of literals (variables or their 

complements). When two or more sum terms are multiplied, the resulting expression is 

known as product of sum (POS) form, for example, 

   Y=(A + B) (B + C) 

   Y=(
–
A + B) (A + 

–
B + C) 

 POS expression can contain a single variable term. In a POS expression, a single overbar 

cannot extend over more than one variable, however more than one variable in a term can 

have an overbar. For example, POS expression can have the term 
–
A + 

–
B + 

–
C but will not have 

–––––––––
A + B + C  . 

 

Implementation of a POS Expression :  

  

Given Boolean expression, of the POS form can be implemented by ANDing the outputs of 

two or more OR gates. A sum term is produced by an OR operation and the product of two or 

more sum terms is produced by an AND operation.  

 

 

 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 23 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

The expression  Y = (A + B) (B + C) (C + D) can be implemented as shown in Fig. 54 POS 

form. 

 

Fig. 54 : POS form of Y = (A + B) (B + C) (C + D) 

 Standard or Canonical SOP and POS forms : A logic expression is said to be in the 

standard or canonical form. If each SOP term consists of all the literals/variables in their 

complemented or uncomplemented form, the standard SOP form is  

 
 The Boolean expression is said to be in standard POS form, if all the terms in POS consist 

of all the literals in their complemented or uncomplemented form. For example, 

 

 Each individual term in the standard SOP form is called minterm. 

 e.g. Consider, 

 

 Each individual term in the standard POS form is called maxterm. 

 e.g. Consider,  

 

Conversion of SOP/POS Expression to its standard SOP/POS: 

The given Boolean expression can be converted to their corresponding SOP and POS forms. 

As seen in the standard SOP form each product term consist of all the literals. 

 e.g. Y=AB + A
–
B + 

–
A

–
B  is standard SOP 

 but Y=AB + ABC + AB
–
C  is not standard SOP 

 The conversion of expression into standard SOP form is a three step process : 

 (1)  For each term find the missing literal,  

 (2)  Then AND the term with the term formed by ORing the missing literal and its 

complement,  

 (3)  Simplify the obtained equation. 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 24 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

Conversion to Standard POS Form 

 

 In the standard POS form each sum term consists of all the literals in the complemented 

or uncomplemented form e.g.  

   Y = (
–
A + B) · (

–
A + 

–
B) · (A + 

–
B) is in the standard POS  

 whereas, Y = (
–
A + 

–
B) · (A + B + C) is in the non-standard POS form. 

 The given POS expression can be converted into standard POS form using three steps. 

 Step 1 : For each term find the missing literal. 

 Step 2 : Then OR each term with the term formed by ANDing the missing literal in that 

term with its complement. 

 Step 3 : Simplify the expression to obtain standard POS form. 

 

10. Simplifications of Logic expressions using Boolean algebra rules and Karnaugh 

map: 

 

Example :  1  Convert the expression 

  Y=AB + A
–
C + BC in the standard SOP form.  

 Solution : Given expression is  

   Y=AB + A
–
C + BC 

  

Step 1 : Find the missing literal in each term. 

 

      Y = AB    +        + BC 

       
    ↑      ↑    ↑ 

 Missing 

literal 

is C  

Missing 

literal 

is B 

Missing 

literal 

is A 

 

  

Step 2 : AND each term with its (Missing literal + Its complement). 

  Y=AB (C + 
–
C) + A

–
C (B + 

–
B) + BC (A + 

–
A) 

 Note that C + 
–
C  = 1 then it does not changes the value of expression. 

  

Step 3 : Simplification of the expression. 

  Y=AB (C + 
–
C) + A

–
C (B + 

–
B) + BC (A + 

–
A) 

  Y=ABC + AB
–
C + AB

–
C + A

–
B

–
C + ABC + 

–
ABC 

      =(ABC + ABC) + (AB
–
C + AB

–
C) + A

–
B

–
C + 

–
ABC 

 Since  A + A= A 

  Y=ABC + AB
–
C  + A

–
B

–
C + 

–
ABC 

  

Since in the above expression each term contain all the literals it is in the standard SOP form. 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 25 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

 

Example 2 :   Convert the expression  

Y = (A + B) · (A + 
–
B) · (B + 

–
C) into the standard POS forms. 

 Solution : Find the missing literal in each term 

 

 Step 1 : OR each term with missing literal and its complement. 

   Y = (A + B + C 
–
C) · (A + 

–
B + C 

–
C) · (B + 

–
C + A

–
A) 

  

Step 2 : Simplify the expression 

   Y = (A + B + C 
–
C) · (A + 

–
B + C 

–
C) · (B + 

–
C + A

–
A)  (1) 

 Let  p = A + B,   q = A + 
–
B,   r = B + 

–
C,  

   Y = (p + C
–
C)  (q + C

–
C)  (r + A

–
A)   (2) 

 Since A + BC = (A + B) (A + C) 

    = (A + B + C) (A + B + 
–
C ) (A + 

–
B + C) (A + 

–
B + 

–
C ) 

     (B + 
–
C + A) (B + 

–
C + 

–
A ) 

   Y = (A + B + C) (A + B + 
–
C ) (A + 

–
B + C) (A + 

–
B + 

–
C ) (

–
A + B + 

–
C ) 

 Since each term of above expression contains all the literals so the equation is standard 

POS form. 

11. Implementation of Boolean expressions using basic gates: 

 

The sum of product or SOP form is represented by using basic logic gates like AND 

gate and OR gate. The SOP form implementation will have the AND gate at its input side and 

as the output of the function is the sum of all product terms, it has an OR gate at its output 

side. This is important to remember that we use NOT gate to represent the inverse or 

complement of the variables. 

 

Logic gate implementation 

 

Input side AND gate 

Output side OR gate 

 

 

 

Now to study implementation of Boolean expression in two variables consider  equation 

         . 

 

 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 26 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

In the given SOP function, we have one compliment term,    . So to represent the 

compliment input, we are using the NOT gates at the input side. And to represent the product 

term, we use AND gates.  

 

 
Hence as shown in logic diagram equation           is represented by using logic gates. 
 

---oOo--- 
 

Solved Examples  
 

 

 Example 1 : Simplify the equation and then draw logic diagram. 

    Y = 
–
A

–
B

–
C + 

–
A B

–
C + A

–
B

–
C + AB

–
C   

 Solution : Consider  Y = 
–
A

–
B

–
C + 

–
AB

–
C + A

–
B

–
C + AB

–
C  

    Y = 
–
A

–
C (

–
B + B) + A

–
C (

–
B + B)  

     = 
–
A

–
C (1) + A

–
C (1)  (..

. 
–
B + B = 1) 

     = 
–
A

–
C + A

–
C   

     = 
–
C (

–
A + A)  (..

. 
–
A + A = 1) 

     = 
–
C  

 The logic circuit to solve the above equation is  

 
Fig. 55 

 We can verify the result by considering the input conditions : A = 0, B = 0 and C = 1. 

 The expected result is Y = 
–
C  i.e. Y = 0 

 By applying the input, we get, 

    Y = 
–
A

–
B

–
C + 

–
A B

–
C + A

–
B

–
C + AB

–
C  

     = + 
–
0 0 

–
1 + 0 

–
0 

–
1 + 0 0 

–
1  

     = 0 + 0 + 0 + 0  

     = 0 

    i.e. Y = 
–
C   

 

  

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 27 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

Example 2 : Simplify the following equation and then draw logic diagram and truth table. 

    Y = A
–
BC + A

–
B

–
C + B  

 Solution : Consider Y = A
–
BC + A

–
B

–
C + B 

    Y = A
–
B (C + 

–
C) + B 

     = A
–
B (1) + B (..

. C + 
–
C = 1) 

     = A
–
B + B 

     = A + B (..
. A

–
B + B = A + B) 

 The logic circuit is, 

 
Fig. 56 

Table 2.6 : Truth table 

Inputs Output  

A  B Y = A + B 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

1 

1 

 Example 3 : Simplify the following Boolean equation and then draw logic diagram and truth 

table :  

    Y = AB
–
C  + ABC + BC  

 Solution :  Y = AB
–
C + ABC + BC 

    Y = AB (
–
C + C) + BC (..

. C + 
–
C = 1) 

    Y = AB (1) + BC 

    Y = AB + BC 

    Y = B (A + C) 

 The logic circuit is, 

 
Fig. 57 

Table 2.7 : Truth table  

Inputs Output  

A B C Y = B (A + C) 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

0 

1 

0 

0 

1 

1 

 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 28 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

Example 4 : Minimise the equation y = 
–
A

–
BC + 

–
ABC + A

–
BC + ABC using Boolean Algebra or K-

maps.     

 Solution : (i) Using Boolean algebra : Rearranging the above  

    y = 
–
A

–
BC + A

–
BC + 

–
ABC + ABC  

     = (
–
A + A) 

–
BC + (

–
A + A) BC    (  ∵A + 

–
A = 1) 

     = 
–
BC + BC  = C (

–
B + B)  

    y = C 

    y = 
–
A

–
BC + 

–
ABC + A

–
BC + ABC  

 (ii) Using K-map : Since equation contains three variables, the K-map will have 2
3
 = 8 cells.  

 
Fig. 58 

    y = C 

 

Example 5  : Convert the following SOP expression into standard SOP form : 

    Y = AB + AC + B
–
C   

 Solution : Given expression is  

    Y = AB + AC + B
–
C  

 Step 1 : Find the missing literal in each term  

Y =  AB       +        AC       +       B
–
C  

                                                                                                       

                                                            

missing

literal is

C
             

missing

literal is

B
             

missing

literal is

A
  

 Step 2 : And each term with its (missing literal + its complement) 

    Y = AB (C + 
–
C) + AC (B + 

–
B) + B

–
C (A + 

–
A)  

 Since C + 
–
C = 1, the value of expression does not change as   

    Y = ABC + AB
–
C + ABC + A

–
BC + AB

–
C + 

–
AB

–
C  

     = ABC + ABC + AB
–
C + AB

–
C + A

–
BC + 

–
AB

–
C  (∵A + A = A) 

     = ABC + AB
–
C + A

–
BC + 

–
AB

–
C  

 Since in the above expression each term contains all the literals it is in the standard SOP form. 

 

Example 6 : Simply the following using Boolean algebra.  

–
A

–
BC + (A + B + 

–
C) + 

–
A

–
B

–
CD.  

 Solution : Y = 
–
A

–
BC + 

–
A  

–
B  

=
C + 

–
A

–
B

–
CD Using 


A + BC = 

–
A  

–
B  

–
C  

     = 
–
A

–
BC + 

–
A  

–
B  C + 

–
A

–
B

–
CD  Using 

=
A = A 

     = 
–
A

–
BC + 

–
A

–
B

–
CD                 (∵A + A = A) 

    Y = 
–
A

–
B (C + 

–
CD)  

 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 29 of 29 

 

Boolean Algebra by Prof.S.R.Chaudhari , Deptartment of Electronic Science, Modern College, Shivajinagar, Pune-
411005. is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 
 

QUESTIONS 

 
       1.     State various laws of Boolean algebra. 

 2. State and verify De Morgan's 1st and 2nd theorems.  

 3. Explain procedure for converting a logic circuit into NAND logic. 

 4. Explain how logic circuit can be converted to NOR logic circuit. 

 5. What is K-map ? Where is it used ? What are its advantages ? Explain 3 variable K-map with 

suitable example.    

 6. Draw logic symbols and truth tables for NAND, NOR, EX-OR and NOT gate. 

 7. Simplify following equations using laws of Boolean algebra :  

  (i)Y = AB + BC + 
–
B A + 

–
A B,  (ii)  Y = ABCD + ABC + AB + A

–
B  

  (iii)Y = 
–
A + AB + A

–
B                (iv) Y =  AB + 

–
A B + ABC 

   

 8. Write a note on logic families.    

 9. Why NAND gate is called as universal building block ? Explain it with suitable example.

       

 10. Use only NOR gate to build NAND, OR and EX-OR gates.  

 11. What are the logic families ? Give their different characteristics. 

 12. Design all basic gates using NOR gate.   

 13. Reduce the following Boolean expressions :  

  (i)
–––––––––
A · (A + C) ,  (ii) (

–
C + B) (C + B), (iii) AC

–
D  + 

–
A C

–
D  

  (iv)A
–
B + ABC + A (B + A

–
B ) 

 14. Minimise the following expressions by using K-map :  

  (i)ABC + 
–
A B

–
C + B,  (ii) 

–
A B

–
C D + AB

–
C D + ABC

–
D + A

–
B C

–
D  

 15. Draw a logic circuit and obtain truth table for following expression :  

     Y =AC
–
D + 

–
A BC  

 16. Convert the following expressions into their standard SOP and POS forms : 

  (a)Y=AB + AC + BC 

  (b)Y=(A + B) (
–
B + C) 

  (c)Y=A + B + C + ABC 

 

 

---oOo--- 

https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
https://sites.google.com/moderncollegepune.edu.in/srchaudhari/home
http://creativecommons.org/licenses/by-nc-nd/4.0/

