Commutative Algebra

By Krishna Shinde

Department of Mathematics

Modern College of Arts, Science and Commerce(Autonomous) Shivajinagar, Pune - 5

CHAPTER 1 Rings and Ideals

RINGS AND RING HOMOMORPHISMS:

DEFINITION. A ring A is a set with two binary operations (addition and multiplication) such that

(1) A is an abelian group with respect to addition (That is, A has zero element denoted by 0, and for every element $x \in A$ has an additive inverse -x).

(2) Multiplication is associative((xy) z = x (yz)) and distributive over addition (x (y + z) = xy + xz = (y + z) x) for all $x, y, z \in A$.

(3) xy = yx for all $x, y \in A$.

(4) $\exists 1 \in A$ such that 1x = 1 for all $x \in A$.

Note: Through out the course the word "ring" shall mean a commutative ring with an identity element.

Example:

(1) Z, R, C and Q are examples of rings. (2) $A = \{0\}$ is a ring with $1_A = 0$ called as zero-ring.

(3) If A is a ring, then $A[x] = \{a_0 + a_1x + \dots + a_nx^n / n \in N, a_i \in A\}.$

(4) Let S be any set, then $F(S) = \{f : S \to R\}$ is ring with respect to addition and multiplication defined below,

DEFINITION. Let A be a ring, a subset B of ring A is subring if B itself ring under same operations on A.

Examples:

(1) $Z \subset Q \subset R \subset C$.

(2) Every ring A is subring of A[x].

(3) $A_1[x] = \text{Set of all polynomials } p(x) \in A[x] \text{ such that constant term of } p(x) \text{ is } 0.$

(4) $A_2[x] = \{a_0 + a_1x^2 + \dots + a_nx^{2n}/a_0, a_1, \dots, a_n \in A\} = A[x^2].$

DEFINITION. A mapping $f : A \to B$, from ring A to ring B is said to be ring homomorphism if

(1) f(x+y) = f(x) + f(y) for all $x, y \in A$. (2) $f(x \cdot y) = f(x) \cdot f(y)$, for all $x, y \in A$.

(3)
$$f(1_A) = 1_B$$
.

Examples: (1) If $f: A \to B$ and $g: B \to C$ are ring homomorphisms then $f \circ g: A \to C$

is ring homomorphism.

(2) If S is subring of a ring A which contains identity of A, then identity mapping from S to A is ring homomorphism.

IDEALS. QUOTIENT RINGS :

A subset I of a ring A is an ideal of A, if (I, +) is additive subgroup of A and for every $a \in A$ and $x \in I$ the product $ax \in I$.

Example.

(1) $\{0\} \subseteq A$ and $A \subseteq A$.

(2) $nZ \subseteq Z$.

(3) Collection of polynomials with constant term 0 is ideal of ring A[x].

(4) $I = \{f \in F(S) / f(x) = 0, \forall x \in S\}$ is ideal of F(S).

(5) If $f: A \to B$ is ring homomorphism then ker f is ideal of A.

Define a relation on ring A by $a \sim b$ iff $a - b \in I$ where I is ideal of ring A.

Then clearly \sim is equivalence relation on A and the collection of equivalence classes are denoted by A/I called quotient of A by I.

Define addition and multiplication on A/I as follows:

Addition: (a + I) + (b + I) = (a + b) + I

Multiplication: (a + I)(b + I) = (ab) + I

Then A/I is commutative ring with identity.

Proposition 1.1. There is one-to-one order-preserving correspondence between the set of ideals of A containing I and the set of ideals of A/I.

PROOF. There is natural mapping $\phi : A \to A/I$ defined by $\phi(a) = a + I$, which is surjective ring homomorphism(Check).

If $f : A \to B$ is ring homomorphism, then ker f is an ideal of A, and $\Im f$ is subring of B, then $A / \ker f \equiv \Im f$.

Question. If $f : A \to B$ is ring homomorphism and I is an ideal of A, then f(I) is ideal of A?

Answer. No.

Counter example. The identity mapping $f : \mathbb{Z} \to \mathbb{Q}$ is ring homomorphism and $n\mathbb{Z}$ is an ideal in \mathbb{Z} but $f(n\mathbb{Z}) = n\mathbb{Z}$ is not ideal in \mathbb{Q} .

Example. If $f : A \to B$ is ring homomorphism and J is an ideal of B, then show that $f^{-1}(J)$ is an ideal in A.

Proof. Since J is an ideal in $B \Rightarrow 0 \in J$. : f is homomorphism $\Rightarrow f(0) = 0 \Rightarrow 0 = f^{-1}(0)$ $\Rightarrow 0 \in f^{-1}(J)$ $\Rightarrow f^{-1}(J) \neq \phi.$ Let $x, y \in f^{-1}(J) \Rightarrow a = f(x), b = f(y) \in J.$ $\Rightarrow a - b = f(x) - f(y) \in J$ $\therefore J$ is an ideal in $B, a, b \in J \Rightarrow a - b \in J$ $\Rightarrow f(x-y) \in J$ $\therefore f$ is homomorphism $\Rightarrow x - y \in f^{-1}(J)$ $\Rightarrow f^{-1}(J)$ is additive abelian subgroup of A. Let $x \in f^{-1}(J) \Rightarrow a = f(x) \in J$ and $b \in A \Rightarrow f(b) = r \in B$. $\Rightarrow ra \in J$ $\Rightarrow f(b)f(x) \in J$ $\Rightarrow f(bx) \in J$ $\Rightarrow bx \in f^{-1}(J)$. $\therefore, f^{-1}(J)$ is an ideal in A.

ZERO-DIVISOR. NILPOTENT ELEMENT. UNITS

DEFINITION.

(1) A zero-divisor in a ring A is an element x which divides "0" i.e., for which there exists $y \neq 0$ in A such that xy = 0.

(2) A ring with no zero-divisor $\neq 0$ is called integral domain.

(3) An element $x \in A$ is nilpotent if $x^n = 0$ for some integer n > 0.

- A nilpotent element is a zero-divisor but not conversely.

Counter example. $2 \in \mathbb{Z}_6$ is zero-divisor but not nilpotent.

(4) A unit in A is an element x which divides 1, that is, an element x such that xy = 1 for some $y \in A$.

- The element y is uniquely determined by x, and written as x^{-1} .

The multiples ax of an element $x \in A$ forms a principal ideal, denoted by (x) or Ax. x is unit iff (x) = A = (1).

(5) A field is a ring A in which $1 \neq 0$ and every non-zero element is unit.

- Every field is integral domain but not conversely.

Examples.

(1) F(S) is not integral domain.

Solution: Let $S = \{a, b\}$ define f(a) = 1, f(b) = 0 and g(a) = 0, g(b) = 1.

 $\Rightarrow (f \cdot g)(a) = f(a)g(a) = 0 \text{ also } (f \cdot g)(b) = f(b)g(b) = 0.$

$$\Rightarrow f \cdot g \equiv 0$$

(2) If A is integral domain then A[x] is integral domain.

Solution: On contrary assume that A[x] is not integral domain.

 $\exists f(x), g(x) \in A[x]$ such that $f(x) \cdot g(x) = 0$ for some non-zero $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ and $g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m$.

$$f(x) \cdot g(x) = 0 \Rightarrow (a_0 + a_1x + a_2x^2 + \dots + a_nx^n)(b_0 + b_1x + b_2x^2 + \dots + b_mx^m) = 0$$

$$\Rightarrow a_nb_m = 0$$

 $a_n = 0$ or $a_m = 0$ (Which is contradiction).

Therefore, A[x] must be integral domain.

Proposition 1.2. Let A be a ring $\neq 0$. Then following are equivalent:

(i) A is a field;

(ii) The only ideals in A are 0 and (1);

(iii) Every homomorphism of A into a non-zero ring B is injective.

PROOF. (i) \Rightarrow (ii)

Suppose A is a field.

Let I be an non-zero ideal in A.

 $\Rightarrow \exists 0 \neq x \in I$ such that $(x) \subseteq I$ but every non-zero element of A is unit.

$$\Rightarrow (x) = A = (1)$$

$$\Rightarrow I = (1)$$

 $(ii) \Rightarrow (iii)$

Suppose, the only ideals in A are 0 and (1).

Let $\phi: A \to B$ be a ring homomorphism.

Then kernel of ϕ is an proper ideal of A :: If ker $\phi = (1)$ then $\phi(1) = 0$ which is not true. $\Rightarrow \ker \phi = 0$

 $\Rightarrow \phi$ is injective.

 $(iii) \Rightarrow (i)$

Let x be an element of A which is not a unit. Then $(x) \neq (1)$ hence, B = A/(x) is non-zero ring. Let $\phi: A \to B$ be the natural homomorphism of A onto B with ker $\phi = (x)$. but by our assumption ker $\phi = 0 \Rightarrow (x) = 0 \Rightarrow x = 0$. \Rightarrow Non-unit in A is 0. \Rightarrow Every non-zero element in A is unit. $\Rightarrow A$ is field. PRIME IDEAL AND MAXIMAL IDEAL An ideal P in A is prime if $P \neq (1)$ and if $ab \in P \Rightarrow a \in P$ or $b \in P$. Example. (1) 0 is prime ideal $\Leftrightarrow A$ is integral domain. (2) P is prime ideal in A iff A/P is an integral domain. PROOF. Suppose P is prime ideal in A. Clearly A/P is commutative ring with identity. Assume that (a + P)(b + P) = 0 + P for some $a + P, b + P \in A/P$. $\Rightarrow (ab) + P = 0 + P$ $\Rightarrow (ab - 0) \in P$ $\Rightarrow ab \in P$ $\Rightarrow a \in P \text{ or } b \in P$ $\therefore P$ is prime ideal $\Rightarrow a + P = 0 + P$ or b + P = 0 + P. $\Rightarrow A/P$ is an integral domain. Conversely, Suppose A/P is integral domain. $\Rightarrow 1 + P \neq 0 + P$ and A/P is commutative ring which has no zero-divisor. $\Rightarrow P \neq A$ Assume that $ab \in P$ then ab + P = 0 + P $\Rightarrow (a+P)(b+P) = 0+P$ $\Rightarrow a + P = 0 + P$ or b + P = 0 + P $\Rightarrow a \in P \text{ or } b \in P$ $\Rightarrow P$ is prime ideal. An ideal M in A is maximal if $M \neq (1)$ and if there is no ideal I such that $M \subset I \subset (1)$. Exercise 1. M is maximal ideal if and only if A/M is a field. 2. Show that every maximal ideal is prime ideal. 3. If $f: A \to B$ is a ring homomorphism and P is prime ideal in B, then $f^{-1}(P)$ is prime ideal in A. 4. Find an example of homomorphism in which inverse image of maximal ideal need not be a maximal ideal. Question. Whether every ring $A \neq 0$ has maximal ideal ? **Theorem 1.3.** Every ring $A \neq 0$ has at least one maximal ideal. PROOF. Let $A \neq 0$ be a ring and \sum be collection of all proper ideals in A. That is, $\sum = \{I/I \text{ is proper ideal of } A\}$ Then $\sum \neq \phi$. $\therefore (0) \in \Sigma$ Let $I_1 \subset I_2 \subset \dots$ be chain in \sum . $\cup_{n=1}^{\infty} I_n$ is an ideal in A $\therefore I_1 \subset I_2 \subset \dots$ is an increasing chain. If $\bigcup_{n=1}^{\infty} I_n = A$ then $1_A \in \bigcup_{n=1}^{\infty} I_n$

 $\therefore I_n \subsetneq A$

 $\Rightarrow 1_A \in I_n \text{ for some in } \rightarrow \leftarrow$.

 $\Rightarrow \bigcup_{n=1}^{\infty} I_n \in \sum$ and it is upper bound of chain $I_1 \subset I_2 \subset \dots$

 \Rightarrow Any increasing chain in \sum has maximal element.

 \therefore by Zorn's lemma \sum has maximal element say M.

Now if M is not maximal ideal in A then there exists an ideal J in A such that $M \subsetneq J \subsetneq A$. $\Rightarrow J \in \Sigma$ which contradiction to maximality of Σ . $\therefore M$ is maximal element in Σ . $\therefore M$ is maximal ideal in A.

Corollary 1.4. If $I \neq (1)$ is an ideal of A, then there exists a maximal ideal of A containing I.

PROOF. Let \sum be collection of all ideals of A which contains I.

 $\sum = \{J/J \text{ is an proper ideal of } A \text{ and } I \subset J\}.$

Then by previous theorem there exists maximal ideal M which contains I. **Corollary 1.5** Every non-unit of A is contained in a maximal ideal.

PROOF. Suppose x be a non-unit element in A then $x \in (x) \subseteq A$.

Also by proposition 1.4. every proper ideal is contained in a maximal ideal.

 \Rightarrow (x) \subset M, where M is a maximal ideal in A. \Rightarrow x \in M.

DEFINITION.

1. A ring A with exactly one maximal ideal M is called as local ring.

- Example. $\mathbb{Z}_p \simeq \mathbb{Z}/p\mathbb{Z}$.

2. The field A/M is called as residue field.

- Example. $\mathbb{Z}_p \simeq \mathbb{Z}/p\mathbb{Z}$.

3. A ring with finitely many maximal ideals are called as semi-local rings.

- Example. $\mathbb{Z}_n \simeq \mathbb{Z}/n\mathbb{Z}$.

Corollary 1.6. i) Let A be a ring and $M \neq (1)$ an ideal of A such that every $x \in A - M$ is a unit in A. Then A is local ring and M is maximal ideal.

ii) Let A be a ring and M is a maximal ideal of A, such that every element of 1 + M is a unit in A. Then A is a local ring.

PROOF. i) Since every ideal \neq (1) consist of non-units and also we know that every ideal in contained in some maximal ideal.

Here every $x \in A - M$ is unit hence M contains all non-units hence it is only maximal ideal in A.

 $\Rightarrow A$ is a local ring.

ii) Suppose A is a ring and M is maximal ideal in A such that 1 + M is unit in A.

Let x be a non-unit in a ring A. If $x \notin M$ then (x) + M = (1). $\Rightarrow \exists u \in M \text{ and } r \in (x) \text{ such that } u + rx = 1.$

$$\Rightarrow 1 - u = rx.$$

 $\Rightarrow 1 - u$ is unit in A. \therefore by hypothesis 1 + x is unit for every $x \in M$ $\Rightarrow rx$ is unit.

 $\Rightarrow x$ is unit $\rightarrow \leftarrow$ to assumption that M is maximal ideal.

$$\therefore x \in M.$$

Every non-unit are contained in M.

 $\Rightarrow M$ is the unique maximal ideal in A.

DEFINITION. A principal ideal domain is an integral domain in which every ideal is

principal.

Result. In principal ideal domain every non-zero prime ideal is maximal. **PROOF.** Suppose $(x) \neq (0)$ is prime ideal in PID A and suppose $(x) \subset (y)$. $\implies x \in (y).$ $\implies x = yz$ for some $z \in A$. $\implies yz = x \in (x) \implies yz \in (x).$ But $y \notin (x) \Longrightarrow z \in (x)$. $\implies z = tx$ for some $t \in A$. Then $x = yz = ytx \Longrightarrow x = ytx$. $\implies yt = 1.$ $\implies 1 \in (y).$ $\implies (y) = (1).$ \implies (x) is maximal ideal in A. \implies Every non-zero prime ideal in PID is a maximal ideal. NILRADICAL AND JACOBSON RADICAL **Proposition 1.7.** The set \Re of all nilpotent elements in a ring A is an ideal, and A/\Re has no nilpotent element $\neq 0$. PROOF. If $x \in \Re \Longrightarrow x^n = 0$ for some n > 0. $\implies (ax)^n = a^n x^n = a^n (0) = 0.$ $\implies ax \in \Re.$ Now let $x, y \in \Re$ then $x^n = 0$ and $y^m = 0$ for some m, n > 0. Consider, $(x+y)^{n+m-1} = x^{n+m-1} + x^{n+m-1} C_1 x^{n+m-2} y + \dots + y^{n+m-1}$. It is sum of integer multiple of products $x^r y^s$, where r + s = m + n - 1. We cannot have both r < m and s < n hence each of these product vanishes. $\implies (x+y)^{n+m-1} = 0 \implies x+y \in \Re.$ $\implies \Re$ is ideal of ring A. Also all nilpotent elements are in \Re hence A/\Re has no non-zero nilpotent element. DEFINITION. The ideal \Re is called nilradical of A. **Proposition 1.8.** The nilradical of A is intersection of all prime ideals of A. PROOF. Let \Re' denote the intersection of all prime ideals of A. If $f \in A$ is nilpotent element and P is prime ideal, then $f^n = 0 \in P$, for some n > 0. $\implies f^n \in P$ and P is prime ideal $\implies f \in P$. $\implies \Re \subseteq \Re'.$ (1)Suppose f is not nilpotent element. Let \sum be the set of ideals I such that $f^n \notin I$ for any n > 0. Since $(0) \in \sum \Longrightarrow \sum \neq \phi$. Then by Zorn's lemma lemma \sum has maximal element. Let P be maximal element of \sum . Now we shall show P is prime ideal. Let $x, y \notin P$. $\implies P + (x), P + (y)$ contains P. $\implies P + (x), P + (y) \notin \sum$. $\therefore P$ is maximal element in \sum . $\implies f^m \in P + (x) \text{ and } f^n \in P + (y) \text{ for some } m, n > 0.$ $\implies f^{m+n} \in P + (xy)$ and hence $P + (xy) \notin \Sigma$. $\implies xy \notin P.$ Hence P is prime ideal such that $f \notin P$.

Thus, If f is not nilpotent, then $f \notin P$ for some prime ideal of ring $A \Longrightarrow f \notin \bigcap_{P \subset A} P =$ ℜ′. $\implies f \notin \Re'.$ $\implies \Re' \subseteq \Re.$ (2)From (1) and (2) we get $\Re' = \Re$. Therefore, the nilradical of A is intersection of all prime ideals of A. DEFINITION. The Jacobson radical of ring A is defined to be the intersection of all maximal ideals of A. **Proposition 1.9.** If J is Jacobson radical of A, then $x \in J \iff 1 - xy$ is unit for all $y \in A$. PROOF. Suppose J is Jacobson radical of ring A. Let $x \in J$. On contrary assume that 1 - xy is non-unit then, there exists maximal ideal M such that $1 - xy \in M$ for some maximal ideal M of ring A. Since, $x \in J \Longrightarrow x \in M$. $\implies xy \in M, \quad \forall y \in A.$ $\implies 1 = xy + (1 - xy) \in M \to \leftarrow.$ $\therefore M$ is proper ideal of ring A. $\therefore 1 - xy$ must be unit. Conversely, Suppose 1 - xy is unit for all $y \in A$. If $x \notin J$, then there exists maximal ideal M such that $x \notin M$. $\implies M + (x) = A.$ $\implies m + xy = 1$ for some $m \in M$ and $y \in A$. $\implies m = 1 - xy.$ $\implies m \text{ is unit } \rightarrow \leftarrow$. $\therefore x \in J.$ **Example 1.** Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x, with coefficients in A. Let $f = a_0 + a_1x + \ldots + a_nx^n \in A[x]$. Prove that (i) f is unit in A[x] if and only if a_0 is unit in A and a_1a_2, \dots, a_n , are nilpotent. (ii) f is nilpotent if and only if $a_0, a_1, ..., a_n$ are nilpotent. (iii) f is zero-divisor if and only if there exists $a \neq 0$ in A such that af = 0. **Solution.** (i) Suppose f is unit in A[x]. $\implies \exists g = b_0 + b_1 x + \ldots + b_m x^m \in A[x]$ such that $f \cdot g = 1$. $\implies (a_0 + a_1 x + \dots + a_n x^n)(b_0 + b_1 x + \dots + b_m x^m) = 1.$ $\implies a_0 b_0 = 1 \implies a_0$ is unit in A. Also, $a_n b_m = 0$ and $a_{n-1} b_m + a_n b_{m-1} = 0$. Multiplying both side by a_n we get. $a_n a_{n-1} b_m + a_n^2 b_{m-1} = 0 \Longrightarrow a_n^2 b_{m-1} = 0.$ Similarly multiplying both side of $a_{n-2}b_m + a_{n-1}b_{m-1} + a_nb_{m-2} = 0$ by a_n^2 . $\implies a_n^2 a_{n-2} b_m + a_n^2 a_{n-1} b_{m-1} + a_n^3 b_{m-2} = 0 \implies a_n^3 b_{m-2} = 0$ If the sum of powers of a_n and subscripts of b is m + 1, then the corresponding product is 0. $\implies a_n^{m+1}b_0 = 0.$ Multiplying this it by a_0 we get. $a_n^{m+1}b_0a_0 = 0 \Longrightarrow a_n^{m+1} = 0.$ $:: a_0 b_0 = 1$ $\therefore a_n$ is nilpotent. Inductively, $a_i = 0$ for all $1 \le i \le n$. Conversely, Suppose a_0 is unit and $a_1, a_2, ..., a_n$ are nilpotent in A[x].

Then $f = a_0 + a_1 x + ... + a_n x^n$ is sum of nilpotent element and unit and hence it is unit. (ii) Suppose $f = a_0 + a_1x + \dots + a_nx^n$ is nilpotent in A[x]. \implies 1 – f is unit in A[x]. $\implies 1 - a_0$ is unit in A[x] and $a'_i s, 1 \le i \le n$ are nilpotent in A. Also, $f^m = 0 \Longrightarrow a_0^m = 0 \Longrightarrow a_0$ is nilpotent. Conversely, Suppose $a_0, a_1, ..., a_n$ are nilpotent. If $d \in \mathbb{N}$ such that $a_i^d = 0, 0 \leq i \leq n$, then $f^d = 0$. $\implies f$ is nilpotent. (iii) Suppose f is zero-divisor. $\implies \exists 0 \neq g \in A[x]$ such that fg = 0 then g must be of degree 0. Because if $g = b_0 + b_1 x + \ldots + b_m x^m$ where $b_m \neq 0$ then $a_n b_m = 0 \Longrightarrow a_n = 0 \rightarrow \leftarrow$. •.• degree of f is n. Therefore, g must of degree $0 \Longrightarrow \exists 0 \neq a \in A$ such that $\Longrightarrow af = 0$. Conversely, Suppose $\exists 0 \neq a \in A$ such that af = 0. $\implies f$ is zero-divisor. **Example 2.** In a ring A[x], the Jaconson radical is equal to nilradical. **Solution.** Suppose \Re, \mathfrak{J} are nilradical and Jaconson radical of A[x] respectively. $f(x) \in \Re$ $\implies (f(x))^n = 0 \in \mathfrak{J} \text{ for some } n > 0.$ $\implies f(x) \in \mathfrak{J}.$ $\Re \subset \mathfrak{J}.$ $f(x) \in \mathfrak{J}.$ 1 - f(x)g(x) is unit for all $g(x) \in A[x]$. Let g(x) = x and $f(x) = a_0 + a_1x + ... + a_nx^n$. $\implies 1 - f(x)g(x) = 1 - a_0x + a_1x^2 + \dots + a_nx^{n+1}$ is unit. $\implies a_0, a_1, ..., a_n$ are nilpotent. $\implies f(x)$ is nilpotent. $f(x) \in \Re$ $\Longrightarrow \mathfrak{J} \subseteq \mathfrak{R}. \Longrightarrow \mathfrak{R} = \mathfrak{J}.$ $\therefore A[x]$ is Hilbert ring. **Example 3.** A ring A is such that every ideal not contained in the nilradical contains a non-zero idempotent. Prove that A is Hilbert ring. **Proof.** It is sufficient to show that every prime ideal in A is maximal ideal. Let P be a prime ideal in A and let x be a non-zero element in A - P. \implies (x) contains non-zero idempotent, say a_0x . $\implies a_0 x (a_0 x - 1) = 0 \in P.$ $\implies a_0 x (a_0 x - 1)$ is zero-element in A/P. But A/P is an integral domain and $a_0 x \neq 0$.

- $\implies a_0 x 1 = 0.$
- $\implies a_0 x = 1 \text{ or } x \text{ is unit.}$
- $\implies A/P$ is field.
- $\implies P$ is maximal ideal.

 $\therefore A$ is Hilbert ring.

Example 4. If A is ring in which every element x satisfies $x^n = x$, for some n > 1. Show that every prime ideal in A is maximal.

Solution. Let P be prime ideal in ring A. $\therefore A/P$ is integral domain. Let \bar{x} such that $\bar{x} \neq \bar{0}$. But $x^n = x \Longrightarrow \bar{x}^n = \bar{x}$. $\implies \bar{x}(1-\bar{x}^{n-1})=0\in P.$ $\implies 1 - \bar{x}^{n-1} \in P.$ $\therefore P$ is prime ideal and $\bar{x} \notin P$ $\implies (1 - \bar{x}) + P = 0 + P.$ $\implies 1 + P = x^{n-1} + P.$ $\implies \bar{1} = \bar{x}^{n-1}.$ $\implies \bar{x} \cdot \bar{x}^{n-2} = 1.$ $\implies \bar{x} \text{ is unit in } A/P.$ \implies Every non-zero element is A/P is unit. $\therefore A/P$ is field. $\implies P$ is maximal ideal. **Example 5.** Let $A \neq 0$ be a ring. Show that set of prime ideals in A has minimal element with respect to inclusion. **Proof.** Let $\sum = \{P/P \text{ is prime ideal in } A\}.$ Since every non-zero ring has at least one maximal ideal hence $\sum \neq 0$. Define relation on \sum as $P_1 \leq P_2$ if and only if $P_2 \subseteq P_1$. Then (\sum, \leq) is poset. Let $C: P_1 \leq P_2 \leq \dots$ be any chain in P. $\implies C: P_1 \supseteq P_2 \supseteq \dots$ Let $P = \bigcap_{P_i \in C} P_i$. $\implies P$ is ideal of A. Now we shall show P is prime ideal of A. Suppose $xy \in P$ and $x \notin P$. $\implies xy \in P.$ $\implies xy \in P_i \text{ for all } i.$ Also, $x \notin P \Longrightarrow x \notin P_i$, $\forall i$. $\implies y \in P_i, \quad \forall i.$ $\therefore y \in P.$ $\implies P$ is prime ideal. $\implies P \in \sum \text{ and } P \subseteq P_i, \quad \forall i.$ $\therefore P$ is upper bound of chain C in \sum . \therefore By Zorn's lemma \sum has maximal element, which is required minimal prime ideal. **Example 6.** If $x \notin M$ for any maximal ideal of ring A, then M + (x) = A. Solution. If $M + (x) \subset A$. $\implies M \subset M + (x) \subset A \to \leftarrow.$ $\therefore M$ is maximal ideal of A. **Example 7.** Let A be ring and \Re is it's nilradical. Show that following are equivalent. (i) A has exactly one prime ideal; (ii) Every element of A is either a unit or nilpotent; (iii) A/\Re is field. **Proof.** (i) \implies (ii) Suppose A has exactly one prime ideal.

 \implies A has exactly one maximal ideal.

 \implies A is local ring. \therefore Nil(A) = P. Also, $x \notin P \Longrightarrow x$ is unit in A. \therefore if x is not unit then $(x) \subseteq M$ for some maximal ideal M in A. But $M = P \Rightarrow x \in P \rightarrow \leftarrow$ \therefore Every element of A is either unit or nilpotent. $(ii) \implies (iii)$ Let \Re is nilradical in A and every element of A outside of \Re is unit. \implies Every non-zero element of A/\Re is unit. $\implies A/\Re$ is field. $(iii) \implies (i)$ Suppose A/\Re is field. $\implies \Re$ is maximal ideal in A. But $\Re = \bigcap_{P - \text{prime}} P$. $\implies \Re \subset P, \quad \forall P.$ But \Re is maximal and hence $\Re = P$. $\therefore A$ has exactly one prime ideal. **Example 8.** A ring A is Boolean if $x^2 = x$ for all $x \in A$. In a Boolean ring A, show that (i) 2x = 0 for all $x \in A$; (ii) Every prime ideal P is maximal, and A/P is a field with two elements; (iii) Every finitely generated ideal in A is principal. **Proof.** (i) Let $x \in A$. $(1+x)^2 = 1+x$ $\implies (1+x)(1+x) = (1+x)$ $\implies 1 + x + x + x^2 = 1 + x$ $\implies 1 + x + 2x = 1 + x$ $\implies 2x = 0, \quad \forall x \in A.$ (ii) Let P be a prime ideal in A. $\therefore A/P$ is integral domain. Also, $x^2 = x$, $\forall x \in A$ that is, $x^2 + P = x + P \text{ in } A/P.$ Every element in A/P is idempotent. But 0 and 1 are the only idempotents in integral domain. Hence $A/P \cong Z_2$, but Z_2 is field. $\implies A/P$ is field. $\therefore P$ is maximal ideal. (iii) It is sufficient to show ideal generated by two elements is principal. Let I = (x, y) and z = x + y + xy. Now consider, zx = (x+y+xy)x $= x^{2} + xy + x^{2}y$ = x + xy + xy= x + 2xy= x $\implies zx = x.$

Similarly,

$$zy = (x + y + xy)y$$

= $xy + y^2 + xy^2$
= $xy + y + xy$
= $y + 2xy$
= y

 $\Rightarrow z \text{ is multiplication identity in } I.$ $\Rightarrow I = (z).$ Therefore, every ideal in A is principal. **Example 8.** A local ring contains no idempotent $\neq 0, 1.$ **Proof.** Let A be a local ring. $\Rightarrow A \text{ has unique maximal ideal, say } M.$ Suppose x be an idempotent in a ring A. $\Rightarrow x^2 = x.$ $\Rightarrow x(1-x) = 0 \in M.$ $\Rightarrow x = 0, 1$ Because if $x \notin \{0, 1\}$ then $x, 1 - x \in M.$ $\Rightarrow 1 = x + (1 - x) \in M \rightarrow \leftarrow.$ $\therefore x \in \{0, 1\}.$ **OPERATIONS ON IDEAL**

If I and J are ideals in a ring A, then the sum $I + J = \{x + y/x \in I, y \in J\}$ is smallest ideal containing I and J. More generally we may define the sum $\sum_{i \in \Lambda} I_i =$

 $\left\{\sum_{\text{finite}} x_i/x_i \in I_i\right\} \text{ is smallest ideal containing all ideals } I_i.$ The ideal I and J are said to be co-prime ideals of A if I + J = A. **Result.** If I and J are co-prime ideals, then $I \cap J = IJ$. **Proof.** Since $IJ \subseteq I$ and $IJ \subseteq J \Longrightarrow IJ \subseteq I \cap J$. Also, I and J are co-prime $\Longrightarrow I + J = A$. $\Longrightarrow x + y = 1$ for some $x \in I$ and $y \in J$. $\Longrightarrow IJ = I \cap J$. The intersection of any family $(I_i)_{i \in \Delta}$ of ideals is an ideal. Thus the ideals of

The intersection of any family $(I_i)_{i \in \Delta}$ of ideals is an ideal. Thus the ideals of A forms a complete lattice with respect to inclusion.

The product of two ideals I and J in A is the ideal $IJ = \left\{ \sum_{\text{finite}} x_i y_i / x_i \in I, y_i \in J \right\}$. Similarly we define the product of any finite family of ideals.

Example.

(1) If A = Z, I = (m), J = (n) then I + J is the ideal generated by g.c.d. of m and n. $I \cap J$ is ideal generated by l.c.m. of m and n. $IJ = I \cap J$ iff m, n are co-prime.

Let $A_1, A_2, ..., A_n$ be rings then the direct product $A = \prod_{i=1}^n A_i$ is set of all sequences $(x_1, x_2, ..., x_n)$ with $x_i \in A_i (1 \le i \le n)$ is commutative ring with identity with respect to

component wise addition and multiplication.

The projections $p_i : A \to A_i$ by $p_i(x) = x_i$ are homomorphisms.

Let A be a ring and $I_1, I_2, ..., I_n$ ideals of A. Define a homomorphism $\phi : A \to \prod_{i=1}^n (A/I_i)$. by $\phi(x) = (x + I_1, x + I_2, ..., x + I_n)$.

Proposition 1.10. (i) If I_i and I_j are co-prime whenever $i \neq j$, then $\prod_{i=1}^n I_i = \bigcap_{i=1}^n I_i$.

(ii) ϕ is surjective $\iff I_i, I_j$ are co-prime $i \neq j$. (iii) ϕ is injective $\iff \bigcap_{i=1}^{n} I_i = (0).$ **Proof.** (i) We will use mathematical induction to prove this part. If I_1 and I_2 are two ideals then $I_1 \cap I_2 = I_1 I_2$ holds. Therefore the result is true for n = 2. Assume that the result is true for n-1 ideals. That is, $\prod_{i=1} I_i = \bigcap_{i=1}^{n-1} I_i$. Now we shall prove the result is true for n ideals. Suppose $B = \bigcap_{i=1}^{n-1} I_i$. Now I_i and I_n are co-prime for all i = 1, 2, ..., n - 1. $\therefore I_i + I_n = (1).$ $\therefore x_i + y_i = 1$, for some $x_i \in I_i$ and $y_i \in I_n$. $\therefore x_i = 1 - y_i \in I_i.$ Let $x = x_1 x_2 \dots x_n \in \prod_{i=1}^{n-1} I_i = B.$ $\therefore x = (1 - y_1)(1 - y_2)...(1 - y_{n-1}).$ $\therefore x = 1 - y$, for some $y \in I_n$. $\therefore x + y = 1$ for some $x \in B$ and $y \in I_n$. Therefore, B and I_n are co-prime ideals. $\therefore B \cdot I_n = B \cap I_n.$ $\Longrightarrow \prod_{i=1}^{n} I_i = \bigcap_{i=1}^{n} I_i.$ (ii) Suppose ϕ is surjective. First we will prove that I_1 and I_i are co-prime ideals. Since ϕ is surjective $\exists x \in A$ such that $\phi(x) = (1 + I_1, 0 + I_2, ..., 0 + I_n)$. $\implies (x + I_1, x + I_2, ..., x + I_n) = (1 + I_1, 0 + I_2, ..., 0 + I_n).$ $\implies x + I_1 = 1 + I_1 \text{ and } x + I_i = 0 + I_i, \quad \forall i = 2, 3, ..., n.$ \implies $1 - x \in I_1$ and $x \in I_i$, $\forall i = 2, 3, ..., n$. $\therefore x + (1 - x) \in I_1 + I_i.$ $\therefore 1 \in I_1 + I_i.$ \implies I_1 and I_i are co-prime. Similarly, I_i and I_j are co-prime for $i \neq j$.

Conversely, suppose I_i and I_j are co-prime for $i \neq j$. It is sufficient to show that there exist $v \in A$ such that $\phi(v) = (1 + I_1, 0 + I_2, ..., 0 + I_n)$.

Since, I_1 and I_j are co-prime for j = 2, 3, ..., n.

 $\implies \exists u_i \in I_1 \text{ and } v_j \in I_j \text{ such that } u_i + v_j = 1.$ Take, $v = v_2 \cdot v_3 \cdot \ldots \cdot v_n$. $\implies v = (1 - u_2)(1 - u_3)...(1 - u_n).$ $\implies v = 1 - u$, for some $u \in I_1$. $\therefore \phi(v) = (v + I_1, v + I_2, ..., v + I_n)$ $= ((1-u) + I_1, 0 + I_2, ..., 0 + I_n)$ $= (1 + I_1, 0 + I_2, ..., 0 + I_n)$ $\implies \phi(v) = (1 + I_1, 0 + I_2, ..., 0 + I_n).$ Similarly, For each $e_j \in \prod (A/I_i), \exists$ some v_j in A such that $\phi(v_j) = e_j$ for j = 2, 3, ..., n. Where $e_j = (0 + I_1, 0 + I_2, ..., 1 + I_i, ..., 0 + I_n).$ $\therefore \phi$ is surjective. (iii) Let $x \in \ker \phi$. $\iff \phi(x) = 0.$ $\iff (x + I_1, x + I_2, \dots, x + I_n) = (I_1, I_2, \dots, I_n).$ $\iff x + I_1 = 0 + I_1, x + I_2 = 0 + I_2, \dots, x + I_n = 0 + I_n.$ $\iff x + I_1 = I_1, x + I_2 = I_2, \dots, x + I_n = I_n.$ $\iff x \in I_1, x \in I_2, \dots, x \in I_n.$ $\iff x \in \bigcap_{i=1}^{n} I_i.$ $\implies \ker \phi = \bigcap_{i=1}^n I_i.$ We know that ker $\phi = (0) \iff \phi$ is injective. $\therefore \ker \phi = \bigcap_{i=1}^{n} I_i = (0).$ **Proposition 1. 11.** (i) Let $P_1, P_2, ..., P_n$ be prime ideals and let I be an ideal contained in $\bigcup_{i=1}^{n} P_i$. Then $I \subseteq P_i$ for some *i*. (ii) Let $I_1, I_2, ..., I_n$ be ideals and let P be prime ideal containing $\bigcap_{i=1}^n I_i$. Then $P \supseteq I_i$ for some *i*. If $P = \bigcap_{i=1}^{n} I_i$, the $P = I_i$ for some *i*. PROOF. (i) We will prove this by induction. Let P_1, P_2 are two prime ideals and I be an ideal such that $I \subseteq P_1 \cup P_2$. Let $x \in I$ and suppose $I \not\subseteq P_1$. $\exists y \in I \text{ such that } y \notin P_1.$ $\implies y \in P_2.$ $\implies x + y \in I \subseteq P_1 \cup P_2.$ Suppose $x + y \in P_1$. If $x \in P_1 \Longrightarrow y = (x + y) - x \in P_1 \to \leftarrow$. $\therefore x \notin P_1 \Longrightarrow x + y \notin P_1.$ $\implies x + y \in P_2.$ $\implies x = (x + y) - y \in P_2 \implies I \subseteq P_2.$ \therefore The result is true for n = 2. Now assume that the result is true for n-1 ideals. That is, if $P_1, P_2, \ldots, P_{n-1}$ are prime ideals and $I \subseteq \bigcup_{i=1}^{n-1} P_i$, then $I \subseteq P_i$ for some $i = 1, 2, \dots, n - 1.$ Now suppose $P_1, P_2, ..., P_n$ are prime ideals and $I \subseteq \bigcup_{i=1}^n P_i$. To show: $I \subseteq P_i$ for some i = 1, 2, ..., n.

We will prove the contrapositive statement. That is, if $I \not\subseteq P_i$ $1 \leq i \leq n \Longrightarrow I \not\subseteq \bigcup_{i=1}^n P_i$. \implies For each *i* there exists $x_i \in I$ such that $x_i \notin P_j$ whenever $i \neq j$. If for some *i* we have $x_i \notin P_i$ then we are through. Suppose $x_i \in P_i$ for all $1 \leq i \leq n$. Now consider the element, $y = \sum_{i=1}^{n} x_1 x_2 \dots x_{i-1} x_{i+1} \dots x_n$ Then we have $y \in I$ and $y \notin P_i$ for all $1 \leq i \leq n$. $\implies I \nsubseteq \bigcup_{i=1}^n P_i.$ (ii) Suppose $I_1, I_2, ..., I_n$ be ideals and P be prime ideal containing $\bigcap_{i=1}^n I_i$. To show: $P \supseteq I_i$ for some i. That is, to show : If $I_i \not\subseteq P$ for all i, then $\cap I_i \not\subseteq P$. Suppose $I_i \not\subseteq I_i$ for all i. $\implies \exists x_i \in I_i, x_i \notin P(1 \le i \le n), \text{ and therefore } \prod x_i \in \prod I_i \subseteq \cap I_i.$ But P is prime ideal $\Longrightarrow \prod x_i \notin P$. $\implies \cap I_i \not\subseteq P.$ If $P = \cap I_i$, then $P = I_i$ for some *i*. **Definition.** If I and J are ideals in a ring A then their ideal quotient is denoted by (I:J) and defined as, $(I:J) = \{x \in A | xJ \subseteq I\}.$ **Result 1.** Show that (I : J) is ideal in A. PROOF. Let $x, y \in (I : J) \Longrightarrow xJ \subseteq I, yJ \subseteq I$. Consider, $(x - y)J = xJ - yJ \subseteq I$. $\implies x - y \in (I:J).$ Also, for $x \in (I : J)$ and $a \in A$. $(ax)J = a(xJ) \subseteq I.$ $\implies ax \in (I:J).$ $\therefore (I:J)$ is an ideal in A. **Definition.** If I = (0) then $(0: J) = \{x \in A | xJ = 0\}$. $\implies (0:J) = \{x \in A / xy = 0, \quad \forall y \in J\}.$ The ideal (0: J) is called annihilator of J and is also denoted by Ann(J). **Result 2.** If D denote set of all zero-divisors in a ring A then $D = \bigcup_{x \neq 0} \operatorname{Ann}(x)$. PROOF. Let $x \in D$, then there exists $0 \neq y \in A$ such that xy = 0. $\implies x \in \operatorname{Ann}(y).$ $\implies x \in \bigcup_{x \neq 0} \operatorname{Ann}(x).$ $\therefore D \subseteq \bigcup_{x \neq 0} \operatorname{Ann}(x).$ (1)Suppose, $y \in \bigcup_{x \neq 0} \operatorname{Ann}(x)$. $\implies y \in \operatorname{Ann}(x)$ for some $0 \neq x \in A$. $\implies yx = 0.$ $\implies y \in D.$ $\therefore \cup_{x \neq 0} \operatorname{Ann}(x) \subseteq D.$ (2)From (1) and (2) we get, $D = \bigcup_{x \neq 0} \operatorname{Ann}(x)$. **Definition.** If I is any ideal of A, then radical of I is $r(I) = \{x \in A | x^n \in I \text{ for some } n > 0\}.$ **Result 3.** r(I) is an ideal of a ring A. PROOF. If $\phi: A \to A/I$ is standard homomorphism,

Consider,

(iii) (iv)

(vi)

 \implies \Longrightarrow $I \subseteq$

 \implies \Longrightarrow \implies \implies \implies

(iii)

 \implies \Longrightarrow \implies \implies \implies

 \implies \implies

 \implies \implies

$$\begin{split} \Re(A/I) &= \{\tilde{x} \in A/I : \tilde{x}^n = \bar{0}, \text{ for some } n > 0\} \\ &= \{\tilde{x} \in A/I : x^n \in I, \text{ for some } n > 0\} \\ &= \{\tilde{x} \in A/I : x^n \in I, \text{ for some } n > 0\} \\ &= \{\tilde{x} \in A/I : x^n \in I, \text{ for some } n > 0\} \\ &= \{x \in A : x + I \in \Re(A/I)\} \\ &= \{x \in A : x + I \in \Re(A/I)\} \\ &= \{x \in A : x^n + I = I, \text{ for some } n > 0\} \\ &= \{x \in A : x^n \in I, \text{ for some } n > 0\} \\ &= \{x \in A : x^n \in I, \text{ for some } n > 0\} \\ &= r(I) \\ &\vdots r(I) \text{ is subspace of } A. \\ \textbf{Exercise 1.13 (i) } r(I) \supseteq I \\ &(ii) r(I) = r(I) \\ (ii) r(I) = r(I \cap J) = r(I) \cap r(J) \\ &(ii) \text{ ff } P \text{ is prime ideal, then } r(P) = P(\text{Exercise}) \\ &(v) r(I + J) = r(r(I + r(J))(\text{Exercise}) \\ &(v) r(I + J) = r(r(I) + r(J))(\text{Exercise}) \\ \textbf{Solution. (i) Let } x \in I \\ &\Rightarrow x^n \in I \\ &\Rightarrow x^n \in I \\ &\Rightarrow x \in r(I) \\ I \subseteq r(I). \\ &(ii) \text{ By part (i) } r(I) \subseteq r(r(I)) \\ Let x \in r(r(I)) \\ &\Rightarrow x^n \in r(I) \text{ for some } n > 0 \\ &\Rightarrow (x^n)^m \in I \text{ for some } n > 0 \\ &\Rightarrow x^{nm} \in I \\ &\Rightarrow x \in r(I) \\ &\Rightarrow x^n \in I \\ &\Rightarrow x \in r(I) \\ &\Rightarrow x^n \in I \text{ or } f(I) \\ &\Rightarrow x^n \in I \text{ or } f(I) \\ &\vdots r(r(I)) = r(I). \\ &(iii) \text{ Since } IJ \subseteq I \cap J \Rightarrow r(IJ) \subseteq r(I \cap J). \\ &\text{Let } x \in r(I \cap J) \\ &\Rightarrow x^n \in I \text{ and } x^n \in J \text{ for some } n > 0. \\ &\Rightarrow x^n \in I \text{ and } x^n \in J \text{ for some } n > 0. \\ &\Rightarrow x^n \in I \text{ or } f(I) \\ &\Rightarrow x^n \in I \text{ ond } x^n \in I \text{ or } f(I) \\ &\Rightarrow x^n \in I \text{ ond } x^n \in I \text{ or } f(I) \\ &\Rightarrow x^n \in I \text{ ond } x^n \in I \text{ or } f(I) \\ &\Rightarrow x^n \in I \text{ ond } x^n \in J \text{ or } f(I) \\ &\Rightarrow x^n \in I \text{ ond } x^n \in J \text{ or } f(I) \\ &\Rightarrow x^n (I \cap J) \subseteq r(I) \text{ or } f(J) \\ &\Rightarrow x^n (I \cap J) \subseteq r(I) \text{ or } f(J) \\ &\Rightarrow x^n (I \cap J) \subseteq r(I) \text{ or } f(J) \\ &\Rightarrow x^n (I \cap J) \subseteq r(I) \text{ or } f(J) \\ &\Rightarrow x^n \in I \text{ ond } x^n \in J \text{ or } f(I) \\ &\Rightarrow x^n \in I \text{ ond } x^n \in J \text{ or } f(I) \\ &\Rightarrow x^n \in I \text{ ond } x^n \in J \text{ or } f(I) \\ &\Rightarrow x^n \in I \text{ ond } x^n \in J \text{ or } f(I) \\ &\Rightarrow x^n \in I \text{ ond } x^n \in J \text{ or } f(I) \\ &\Rightarrow x^n \in I \text{ ond } x^n \in J \text{ or } f(I) \\ &\Rightarrow x^n \in I \text{ ond } x^n \in J \text{ or } f(I) \\ &\Rightarrow x^n \in I \text{ ond } x^n \in J \text{ or } f(I) \\ &\Rightarrow x^n \in I \text{ ond } x^n \in J \text{ or } f(I) \\ &\Rightarrow x^n \in I \text{ ond } x^n \in J \text{ or } f(I) \\ &\Rightarrow x^n \in$$

 $\implies x^{nm} \in I \text{ and } x^{mn} \in J.$ $\implies x^{mn} \in I \cap J$ $\implies x \in r(I \cap J)$ $\therefore r(I \cap J) = r(I) \cap r(J).$ $\therefore r(IJ) = r(I \cap J) = r(I) \cap r(J).$ **Proposition 1.14.** The radical of an ideal I is the intersection of the prime ideals which contains I. PROOF. Exercise. **Note.** We may define the radical r(E) for any subset E of ring A. It is not ideal in general. **Example.** If A = Z, I = (m), let $p_i(1 \le i \le r)$ be the distinct prime divisors of m, then find r(I). **Solution.** We know that r(I) = r((m)). $\implies r(I) = (p_1 \cdot p_2 \cdots p_r)$ $\implies r(I) = \bigcap_{i=1}^{r} p_r.$ **Proposition.** Let I, J be ideals in a ring A such that r(I), r(J) are coprime. Then I, Jare coprime. **PROOF.** Let I and J are ideals of ring A and r(I), r(J) are coprime ideals. $\implies r(I) + r(J) = (1).$ Consider, r(I + J) = r(r(I) + r(J)) $\implies r(I+J) = r(1) = (1)$ $\implies I + J = 1.$ **EXTENSION** and **CONTRACTION** Let $f: A \to B$ be a ring homomorphism. If I is an ideal in A, then the set f(I) is not necessarily an ideal in B. We define the Extension I^e of I to be the ideal B(f(I)) that is ideal generated by f(I) in B. Then $I^e = \{\sum y_i f(x_i) / y_i \in B \text{ and } x_i \in I\}.$ If J is ideal in B, then $f^{-1}(J)$ is always an ideal in A, called the contraction J^c . If I is prime ideal in A, then I^e need not be prime in B. Counter Examples: 1. $f: Z \to Q, I \neq 0$, then $I^e = Q$, which is not prime ideal. 2. Consider the identity mapping $f: Z \to Z[i]$, then (2) is prime ideal in Z but (2)^e is not prime ideal. Because $(1+i)(1-i) = 2 \in (2)^e$ but none of 1+i or 1-i lies in $(2)^e$. Therefore, I^e is not prime ideal. **Result 1.** If $I_1 \subseteq I_2$ are ideals of ring A, then show that $I_1^e \subseteq I_2^e$. PROOF. Let $y \in I_1^e$. $\implies y = \sum b_i f(a_i)$ for some $a_i \in I_1$ and $b_i \in B$. $\implies y = \overline{\sum} b_i f(a_i)$ for some $a_i \in I_2$ and $b_i \in B$. $\therefore a_i \in I_1 \subset I_2$ $\implies y \in I_2^e.$ $\therefore I_1^e \subseteq I_2^e.$ **Result 2.** If $J_1 \subseteq J_2$ are ideals of ring B then show that $J_2^c \subseteq J_1^c$. PROOF. Exercise. **Proposition.** Let $f : A \to B$ be ring homomorphism and let I, J are ideals of A, Brespectively then. (i) $I \subseteq I^{ec}, J^{ce} \subseteq J$. (ii) $J^c = J^{cec}, I^e = I^{ece}$.

(iii) If C is set of contraction ideals in A and if E is the set of extended ideals in B, then $C = \{I/I^{ec} = I\}, E = \{J/J^{ce} = J\}, and I \mapsto I^{e}$ is bijective map of C onto E, whose inverse is $J \mapsto J^c$. PROOF. (i) Let $x \in I$ $\implies f(x) \in I^e$ $\implies x = f^{-1}(f(x)) \in I^{ec}$ $\therefore I \subset I^{ec}$. Suppose $y \in J^{ce}$ $\implies f^{-1}(y) \in J^c$ $\implies y = f(f^{-1}(y)) \in J$ $\therefore J^{ce} \subset J.$ (ii) By part (i) we have $I \subseteq I^{ec}$. $\implies I^e \subseteq (I^{ec})^e.$ $:: I_1 \subseteq I_2 \Rightarrow I_1^e \subseteq I_2^e$ $\implies I^e \subset I^{ece}.$ $\because J^{ce} \subseteq J$ Consider, $I^{ece} = (I^e)^{ce} \subset I^e$. $\implies I^{ece} \subseteq I^e.$ $\therefore I^{ece} = I^e.$ Similarly we can show $J^c = J^{cec}$ (Exercise). (iii) We have $C = \{I/I^{ec} = I\}$ and $E = \{J/J^{ce} = J\}.$ Now define, $\phi: C \to E$ by $\phi(I) = I^e$. Let I_1, I_2 be ideals in ring A. Consider, $\phi(I_1) = \phi(I_2)$ $\Longrightarrow I_1^e = I_2^e$

 $\implies \phi$ is one-one mapping. Also we have for each $J \in E$,

$$J = J^{ce}$$

= $(J^c)^e$
= $\phi(J^c)$

 $\implies \phi$ is onto.

Let $\psi: E \to C$ be mapping defined by $\psi(J) = J^c$. Consider,

$$\begin{aligned} (\psi \circ \phi)(I) &= \psi(\phi(I)) \\ &= \psi(I^e) \\ &= (I^e)^c \\ &= I. \qquad \because I \in C \Longrightarrow I^{ec} = I. \end{aligned}$$

 $\implies (\psi \circ \phi)(I) = I, \quad \forall I \in E.$ $\implies \phi = \psi^{-1}.$

Result. Let A be a ring and X be the set of all prime ideals of A. For each subset E of A, let V(E) denote the set of all prime ideals in A containing E. Prove that

(i) If I is ideal generated by E then V(E) = V(I) = V(r(I)). (ii) $V(0) = X, V(1) = \phi$. (iii) If $(E_i)_{i \in \Delta}$ is any family of subsets of A, then $V(\bigcup_{i \in \Delta} E_i) = \bigcap_{i \in \Delta} V(E_i)$. (iv) $V(I \cap J) = V(IJ) = V(I) \cup V(J)$ for any ideals I, J of A. PROOF. We have given $X = \{P/P \text{ is prime ideal of ring } A\}$ and $V(E) = \{P/E \subseteq P - \text{ is prime ideal of ring } A\}.$ (i) Let $I = (E) \Longrightarrow E \subseteq I$. $\implies V(I) \subset V(E).$ Because, if $P \in V(I) \Longrightarrow I \subseteq P$. $\implies E \subset I \subset P \implies E \subset P.$ $\implies P \in V(E).$ Now consider, $P \in V(E)$. $\implies E \subseteq P.$ $\implies (E) \subseteq P.$ \therefore (E) is smallest ideal which contains E. $\implies (E) = I \subseteq P.$ $\implies P \in V(I).$ $\therefore V(E) = V(I).$ (ii) We know that every prime ideal P in ring A contains 0. $\implies V(0) = X.$ Also, none of prime ideal contains $1 \Longrightarrow V(1) = \phi$. (iii) To show: $V(\bigcup_{i \in \Lambda} E_i) = \bigcap_{i \in \Lambda} V(E_i)$. If $(E_i)_{i \in \Delta}$ be any family of subsets of A. We know that each $i \in \Delta, E_i \subseteq \bigcup_{i \in \Delta} E_i$. $\implies V(\cup_{i\in\Delta}E_i)\subseteq V(E_i), \quad \forall i\in\Delta.$ $\implies V(\cup_{i\in\Delta} E_i) \subseteq \cap_{i\in\Delta} V(E_i).$ Let $P \in \bigcap_{i \in \Delta} V(E_i)$. $\implies P \in V(E_i) \quad \forall i \in \Delta.$ $\implies E_i \subset P, \quad \forall i \in \Delta.$ $\implies \cup E_i \subseteq P, \quad \forall i \in \Delta.$ $\implies P \in V(\cup_{i \in \Lambda} E_i).$ $\implies \cap_{i \in \Delta} V(E_i) \subseteq V(\cup_{i \in \Delta} E_i)$ $\therefore V(\cup_{i\in\Delta} E_i) = \cap_{i\in\Delta} V(E_i).$ (iv) To show: $V(I \cap J) = V(IJ) = V(I) \cup V(J)$ for any ideals I, J of A. Let I and J be ideals of ring A. Since $IJ \subset I \cap I \Longrightarrow V(I \cap J) \subseteq V(IJ)$. Let $P \in V(IJ)$. $\implies IJ \subseteq P.$ \implies $I \subseteq P$ or $J \subseteq P$. $\therefore P$ is prime ideal. But $I \cap J \subseteq I$ and J. $\implies I \cap J \subseteq P.$ $\implies P \in V(I \cap J).$ $\therefore V(I \cap J) = V(IJ).$ We know that $I \cap J \subset I \Longrightarrow V(I) \subset V(I \cap J)$. Similarly, $I \cap J \subseteq J \Longrightarrow V(J) \subseteq V(I \cap J)$. $\implies V(I) \cup V(J) \subseteq V(I \cap J).$

Let $P \in V(I \cap J) \Longrightarrow I \cap J \subseteq P$. Claim: $I \subseteq P$ or $J \subseteq P$. On contrary assume that $I \nsubseteq P$ and $J \nsubseteq P$. Let $x \in I$ and $y \in J$ such that $xy \notin P$. But $xy \in IJ \subseteq I \cap J \subseteq P$. $\rightarrow \leftarrow$. \therefore Either $I \subseteq P$ or $J \subseteq P$. $\implies P \in V(I)$ or $P \in V(J)$. $\implies P \in V(I) \cup V(J)$. $\implies V(I \cap J) \subseteq V(I) \cup V(J)$.

 $\therefore V(E)$ satisfies axioms for the closed sets in topological space. The resulting topology is called as Zariski topology. The topological space X is called the prime spectrum of A. **Result.** Let J_i be family of subsets of ring A, then $\cap_{i \in \Delta} V(J_i) = V(\sum_{i \in \Delta} J_i)$.

PROOF. We know that,
$$J_i \subseteq \sum_{i \in \Delta} J_i$$
, $\forall i$.
 $\Rightarrow V(\sum_{i \in \Delta} J_i) \subseteq V(J_i) \quad \forall i$.
 $\Rightarrow V(\sum_{i \in \Delta} J_i) \subseteq \cap_{i \in \Delta} V(J_i)$. (1)
Let $P \in \cap_{i \in \Delta} V(J_i)$.
 $\Rightarrow P \in V(J_i)$, $\forall i \in \Delta$.
 $\Rightarrow J_i \subseteq P \quad \forall i \in \Delta$.
 $\Rightarrow \sum_{i \in \Delta} J_i \subseteq P$.
 $\Rightarrow P \in V(\sum_{i \in \Delta} J_i)$.
 $\Rightarrow \cap_{i \in \Delta} V(J_i) \subseteq V(\sum_{i \in \Delta} J_i)$. (2)
From (1) and (2) $\cap_{i \in \Delta} V(J_i) = V(\sum_{i \in \Delta} J_i)$.
Result. For each $f \in A, V(f) = \{P \in \operatorname{Spec}(A)/f \in P\}$.
Let $X_f = \operatorname{Spec}(A) - V(f)$.
That is, $X_f = \{P \in \operatorname{Spec}(A)/f \notin P\}$ is open set.
For each $f \in A, X_f$ denote the complement of $V(f)$ in $X = \operatorname{Spec}(A)$. The set X_f are
open. Show that they form a basis of open set for the Zariski topology and that
(i) $X_f \cap X_g = X_{fg}$;
(ii) $X_f = X_f$ if and only if f is unit;
(iv) $X_f = X_g$ if and only if $r((f)) = r((g))$;
(v) X is quasi-compact;

 $\therefore P$ is prime ideal.

PROOF. (i) Let $P \in X_f \cap X_g$. $\iff P \in X_f \text{ and } P \in X_g.$ $\iff f \notin P \text{ and } g \notin P.$ $\iff fg \notin P.$ $\iff P \in X_{fq}.$ $\therefore X_f \cap X_g = X_{fg}.$ (ii) Suppose $X_f = \phi$. \iff Every prime ideal contains f. $\iff f \in \cap_{P-\operatorname{Prime}} P = \Re(A).$ $\iff f$ is nilpotent. $\therefore X_f = \phi \iff f$ is nilpotent. (iii) $X_f = X$. \iff None of prime ideal contains f. $\iff (f) = A.$ $\iff f$ is unit in A. (iv) Suppose $X_f = X_g$. To show: r((f)) = r((g)). $X_f = X_q.$ $\iff X - X_f = X - X_q.$ $\iff V(f) = V(g).$ \iff Every prime ideal P which contains f that also contains q.

Consider,

$$r((f)) = \bigcap_{P - \text{Prime ideal and } f \in P} P$$

= $\bigcap_{P \in V(f)} P$
= $\bigcap_{P \in V(g)} P$
= $\bigcap_{P - \text{Prime ideal and } g \in P} P$
= $r((g))$

Prof. K. R. Shinde

 $\implies V(1) = V(\sum_{i=1}^{n} (f_{\alpha_i})).$ $\implies \phi = \bigcap_{i=1}^n V(f_{\alpha_i}).$ $\implies X - \phi = X - \bigcap_{i=1}^{n} V(f_{\alpha_i}).$ $\implies X = \bigcup_{i=1}^{n} (X - V(f_{\alpha_i})).$ $\Longrightarrow X = \bigcup_{i=1}^n X_{f_{\alpha_i}}.$ $\therefore X$ is compact. **Example 1.** A topological space X is said to irreducible if $X \neq \phi$ and if every pair of non-empty open sets in X intersects, or equivalently if every non-empty open set is dense in X(X) is irreducible iff X cannot be union of two closed sets). Show that Spec(A) is irreducible if and only if the nilradical of A is prime a prime ideal. PROOF. Suppose X is irreducible. On contrary assume that $\Re(A)$ is not prime ideal. $\therefore \exists x, y \notin \Re(A) \text{ but } xy \in \Re(A).$ Let $K_x = V((x))$ and $K_y = V((y))$. Then K_x and K_y are closed sets in X. Let $P \in X = \operatorname{Spec}(A)$. We know that $\Re(A) \subseteq P$ and $xy \in \Re(A)$. $\implies xy \in P.$ $\implies x \in P \text{ or } y \in P.$ \implies $(x) \subseteq P$ or $(y) \subseteq P$. $\implies P \in K_x \text{ or } P \in K_y. \implies P \in K_x \cup K_y.$ $\therefore X = K_x \cup K_y.$ Now it is remains to prove K_x and K_y are proper subsets of A. Since $x \notin \Re(A) = \cap P$. \therefore \exists prime ideal P such that $x \notin P$. $\implies P \notin K_x.$ $\therefore K_x \neq X.$ Similarly, $K_u \neq X$. \implies K_x and K_y are proper closed sets of X whose union is X. $\rightarrow \leftarrow$. $\therefore X$ is irreducible. $\therefore \Re(A)$ is prime ideal. Conversely, suppose $\Re(A)$ is prime ideal. To show: X is irreducible. We shall prove the contrapositive statement. That is, if X is reducible, then $\Re(A)$ is not prime ideal. Suppose X is reducible. To show: $\Re(A)$ is not prime ideal. Since X is reducible $\implies X = V(I) \cup V(J)$, where $V(I), V(J) \neq X$. $\implies X = V(I \cap J).$ Let $P \in X$. $\implies P \in V(I \cap J).$ $\implies I \cap J \subseteq P, \quad \forall P \in X.$ $\implies I \cap J \subseteq \cap P = \Re(A).$

Since, $V(I), V(J) \neq X$. $\implies I \cap J \subset \Re(A).$ But $IJ \subset I \cap J \subset \Re(A)$. That is, $\exists x \in I - \Re(A)$ and $y \in J - \Re(A)$ such that $xy \in IJ \subset \Re(A)$. $\therefore \Re(A)$ is not prime ideal. **Example 2.** Let X be topological space. (i) If Y is irreducible subspace of X, then the closure \overline{Y} of Y in X is irreducible. (ii) Every irreducible subspace of X is contained in a maximal irreducible subspace. PROOF. (i) Let Y is irreducible subspace of X. On the contrary assume that \overline{Y} is not irreducible. $\implies \overline{Y} = S \cup T$ for some proper closed sets T and S of \overline{Y} . But we know that, $Y = Y \cap \overline{Y}$. \implies $Y = (Y \cap S) \cup (Y \cap T).$ Since S and T are closed subsets of \overline{Y} and $\overline{Y} \subset X$. $\implies Y \cap S$ and $Y \cap T$ are closed in Y. It is remains to show $Y \cap S$ and $Y \cap T$ are proper subsets of Y. If $Y \cap S = Y \Longrightarrow Y \subset S$. $\implies \bar{Y} = S \rightarrow \leftarrow$. $\therefore S$ is proper subset of \overline{Y} . $\therefore Y \cap S$ and $Y \cap T$ are proper closed subsets of Y such that $Y = (Y \cap S) \cup (Y \cap T)$. \implies Y is reducible $\rightarrow \leftarrow$. $\therefore \bar{Y}$ must be irreducible in X. (ii) Let Y be a irreducible subspace of X. $\sum = \{Z/Z \text{ is irreducble and contains } Y\}.$ Then $\sum \neq \phi$. Then \sum is poset under set inclusion. $\therefore Y \in \sum$. Let $C: Z_1 \subseteq Z_2 \subseteq ...$ be any chain in \sum . Take, $Z = \bigcup Z_i$, where each $Z_i \in \Sigma$. Claim: Z is irreducible. On contrary assume that Z is not irreducible. \implies $Z = S \cup T$ for some proper closed subsets S and T of Z. Then, $Z_1 = Z_1 \cap Z$ = $Z_1 \cap (S \cup T)$ = $(Z_1 \cap S) \cup (Z_1 \cap T)$ \implies Z_1 is union of two proper closed subsets of Z_1 . \implies Z_1 is not irreducible $\rightarrow \leftarrow$.

 $\therefore Z$ must be irreducible.

Hence every chain in \sum has upper bound in \sum .

Therefore, by Zorn's lemma \sum has maximal element.

Such maximal irreducible subspace is called as irreducible component.

÷÷÷

CHAPTER 2 Modules

MODULES AND MODULE HOMOMORPHISMS

Definition. Let A be a ring. An A-module is an abelian group M on which A acts linearly; more precisely, it is pair (M, μ) , where M is abelian group and $\mu : A \times M \to M$ is mapping defined by $\mu(a, x) = ax$ and satisfies following axioms:

(i)
$$\mu((a, x + y)) = a(x + y) = ax + ay.$$

(ii)
$$\mu((a+b), x) = (a+b)x = ax + bx$$
.

(iii) $\mu(ab, x) = (ab)x = a(bx).$

(iv) 1x = x, for all $x, y \in M$ and $a, b \in A$.

Examples. (1) An ideal I of ring A is an A-module. In particular A itself is an A-module.

(2) If A is field F, then A-module = F-vector space.

(3) $A = \mathbb{Z}$, then \mathbb{Z} -module = abelian group.

(4) A = F[x], where F is field; an A-module is a K-vector space with linear transformation.

Definition. Let M, N be A-modules. A mapping $f : M \to N$ is an A-module homomorphism (or A-linear) if

(i) f(x+y) = f(x) + f(y).

(ii)f(ax) = af(x). for all $x, y \in M$ and $a \in A$.

If A is field, an A-module homomorphism is the same thing as a linear transformation of vector spaces.

The composition of A-modules homomorphisms is again an A-module homomorphism. The set of all A-module homomorphism from M to N can be turned into and A-module as follows: we define addition and multiplication by the rules

(f+q)(x) = f(x) + q(x),

(af)(x) = af(x), for all $a \in A$ and $x \in M$.

which is denoted by $\operatorname{Hom}_A(A, M)$ or just by $\operatorname{Hom}(A, M)$.

SUBMODULES AND QUOTIENT MODULES

A submodule M' of M is subgroup of M which is closed under multiplication by elements of A.

That is, M' is submodule of M is it satisfies following properties:

(1) For $x, y \in M' \Longrightarrow x - y \in M'$.

(2) $ax \in M'$ for all $a \in A$ and $x \in M'$.

Note. The submodule of A over an A-module are the ideals of A.

Let M' be a submodule of A-module M, then

 $M/M' = \{m + M'/m \in M\}$ is module over A called as quotient module.

PROOF. Clearly M/M' is additive abelian group of A.

Let $a, b \in A$ and $\bar{x}, \bar{y} \in M/M'$.

$$a(\bar{x} + \bar{y}) = a(x + M' + y + M')$$

= $a((x + y) + M')$
= $a(x + y) + M'$
= $(ax + ay) + M'$
= $ax + M' + ay + M'$
= $a(x + M') + a(y + M')$
= $a\bar{x} + a\bar{y}$

$$(a+b)\bar{x} = (a+b)(x+M') = (a+b)x + M' = (ax+bx) + M' = ax + M' + bx + M' = a(x+M') + b(x+M') = a\bar{x} + b\bar{y}$$

$$a(b\bar{x}) = a(b(x + M'))$$

= $a(bx + M')$
= $(ab)x + M'$
= $(ab)\bar{x}$

and $1 \cdot \bar{x} = \bar{x}$

 $\therefore M/M'$ is module over A called quotient module.

Note. (1) There is a one-to-one order-preserving correspondence between submodules of M containing M' and submodules of M/M'.

(2) Submodule of M/M' is of the form M_1/M' , where M_1 is submodule of M containing M'.

Let $f: M \to N$ be an module homomorphism then

$$\ker f = \{x \in M/f(x) = 0\}$$

and is a submoule of M. The image set of f is the set

$$\operatorname{Im}(f) = f(M) = \{y \in N/f(x) = y, x \in M\}$$

is an submodule of N. The cokernel of f is

$$\operatorname{Coker}(f) = N/\operatorname{Im}(f)$$

which is quotient module of N.

Result. Let $f: M \to N$ be a ring homomorphism and M' be submodule of A-module M such that $M' \subseteq \ker f$, then the mapping $\overline{f}: M/M' \to N$, defined by $\overline{f}(\overline{x}) = f(x)$ is homomorphism induced by f with ker $\overline{f} = \ker f/M'$. PROOF. To show: \overline{f} is homomorphism. Let $\bar{x} = x + M', \bar{y} = y + M' \in M/M'$ and $a \in A$. Consider,

$$\bar{f}(\bar{x} + a\bar{y}) = \bar{f}((x + M') + a(y + M'))$$

$$= \bar{f}((x + ay) + M')$$

$$= \bar{f}(\overline{x + ay})$$

$$= f(x + ay)$$

$$= f(x) + af(y) \qquad \because f \text{ is module homomorphism.}$$

$$= \bar{f}(\bar{x}) + a\bar{f}(\bar{y})$$

 $\therefore \bar{f}(\bar{x} + a\bar{y}) = \bar{f}(\bar{x}) + a\bar{f}(\bar{y}).$ $\implies \bar{f} \text{ is module homomorphism.}$ Now consider,

$$\ker \bar{f} = \{ \bar{x} \in M/M' : \bar{f}(\bar{x}) = 0 \} \\ = \{ x + M' \in M/M' : f(x) = 0 \} \\ = \{ x + M' \in M/M' : x \in \ker f \} \\ = \ker f/M'$$

 $\therefore \ker \bar{f} = \ker f/M'.$

OPERATIONS ON SUBMODULES

Let M be an A-module and let $(M_i)_{i \in \Delta}$ be a family of submodules of M. Their sum $\sum M_i$ is the set of all finite sums $\sum x_i$ where $x_i \in M_i$ for all $i \in \Delta$ and almost all the x_i are zero.

 $\sum M_i$ is smallest submodule of M which contains all the M_i .

The intersection $\cap M_i$ is again submodule of M. Thus the submodule of M form a complete lattice with respect to inclusion.

Proposition. (i) If $L \supseteq M \supseteq N$ are A-modules, then

 $(L/N)/(M/N) \cong L/M.$

(ii) If M_1, M_2 are submodules of M, then

$$(M_1 + M_2)/M_1 \cong M_2/(M_1 \cap M_2).$$

PROOF. (i) Define the mapping $\theta : L/N \to L/M$ by $\theta(x+N) = x+M$. Let $\bar{x} = x + N, \bar{y} = y + N \in L/N$ and $a \in A$. Consider,

$$\theta(\bar{x} + a\bar{y}) = \theta((x + N) + a(y + N))$$

$$= \theta((x + ay) + N)$$

$$= (x + ay) + M$$

$$= (x + M) + (ay + M)$$

$$= (x + M) + a(y + M)$$

$$= \theta(x + N) + a\theta(y + N)$$

$$= \theta(\bar{x}) + a\theta(\bar{y})$$

Therefore, θ is module homomorphism.

Also, for each $x + N \in L/N$ there exists $x + M \in L/M$ such that $\theta(x + N) = x + M$. $\implies \theta$ is onto.

Consider,

$$\ker \theta = \{ \overline{x} \in L/N : \theta(\overline{x}) = \overline{0} \}$$

=
$$\{ x + N \in L/N : \theta(x + N) = M \}$$

=
$$\{ x + N \in L/N : x + M = M \}$$

=
$$\{ x + N \in L/N : x \in M \}$$

=
$$M/N$$

 $\therefore \theta \text{ is module homomorphism } L/N \text{ onto } L/M \text{ with kernel } M/N.$ $\implies (L/N)/(M/N) \cong (L/M).$ (ii) Define $g: M_2 \to (M_1 + M_2)/M_1$ by $g(x) = x + M_1.$ Let $x, y \in M_2$ and $a \in A.$ Consider,

$$g(x + ay) = (x + ay) + M_1$$

= $x + M_1 + ay + M_1$
= $(x + M_1) + a(y + M_1)$
= $g(x) + ag(y)$

 $\therefore g$ is module homomorphism.

Also, for each $x + M_1 \in (M_1 + M_2)/M_1$, there exists $x \in M_2$ such that $g(x) = x + M_1$. $\therefore g$ is onto.

Now consider,

$$\ker g = \{x \in M_2 : g(x) = \bar{0}\} \\ = \{x \in M_2 : x + M_1 = M_1\} \\ = \{x \in M_2 : x \in M_1\} \\ = M_1 \cap M_2$$

 $\therefore g$ is module homomorphism from M_2 onto $(M_1 + M_2)/M_1$ with kernel $M_1 \cap M_2$. $\therefore M_2/(M_1 \cap M_2) \cong (M_1 + M_2)/M_1$.

We cannot in general define product of two submodules, but we can define product IM, where I is an ideal and M an A-module.

$$IM = \left\{ \sum_{\text{finite}} a_i x_i : a_i \in I, x_i \in M \right\}.$$

Let $x, y \in IM \Longrightarrow x = \sum_{\text{finite}} a_i x_i, \quad y = \sum_{\text{finite}} b_i y_i \text{ for some } a_i, b_i \in I \text{ and } x_i, y_i \in M.$
Then, $x - y = \sum_{i=1}^n a_i x_i - \sum_{i=1}^m b_i y_i \in IM.$
Also, for $a \in A$ and $x \in IM.$

$$ax = a(\sum_{i=1}^{n} a_i x_i)$$
$$= \sum_{i=1}^{n} (aa_i) x_i \in IM$$

Prof. K. R. Shinde

 $\therefore IM$ is submodule of M. If N, P are submodules of M, then $(N : P) = \{x \in A : xP \subseteq N\}$ is ideal of A. In particular $(0: M) = \{x \in A : xM = 0\} = Ann(M)$ is ideal of A called as annihilator of M. Any A-module M is said to be faithful if Ann(M) = 0. **Result.** Suppose M be an A-module with $Ann(M) \neq 0$ and I be an ideal A such that $I \subseteq Ann(M)$ then M is faithful module over A/I. **Exercise.** Prove that (i) $Ann(M+N) = Ann(M) \cap Ann(N)$. (ii) $(N:P) = Ann(\frac{N+P}{N})$. PROOF. (i) We know that $M + N = \{x + y | x \in M, y \in N\}$. $\therefore M \subseteq M + N$ and $N \subseteq M + N$. \implies $Ann(M + N) \subseteq Ann(M)$ and $Ann(M + N) \subseteq Ann(N)$. \implies $Ann(M + N) \subset Ann(M) \cap Ann(N).$ Let $a \in Ann(M) \cap Ann(N)$. $\implies a \in Ann(M) \text{ and } a \in Ann(N).$ $\implies ax = 0, \quad \forall x \in M \text{ and } ay = 0, \quad \forall y \in N.$ Now consider, a(x + y) = ax + ay = 0, $\forall x + y \in M + N$. $\implies a \in Ann(M+N).$ \implies $Ann(M) \cap Ann(N) \subseteq Ann(M+N).$ $\therefore Ann(M+N) = Ann(M) \cap Ann(N).$ (ii) Let $a \in (N : P) \Longrightarrow aP \subseteq N$. $\implies ax \in N, \quad \forall x \in P \text{ and let } y + N \in \frac{N+P}{N} \text{ for some } y \in P.$ Consider, $a(y+N) = ay + N = \overline{0}, \quad \forall y + N \in \frac{N+P}{N}.$ $\therefore ay \in N.$ $\implies a \in Ann(\frac{N+P}{N}).$ $\implies (N:P) \subseteq Ann(\frac{N+P}{N}).$ Let $b \in Ann(\frac{N+P}{N})$. $\implies b(y+N) = \overline{0} = N.$ $\implies by + N = N.$ $\implies by \in N, \quad \forall y \in P.$ $\implies bP \subseteq N.$ $\implies b \in (N : P).$ $\Longrightarrow Ann(\underline{N+P}) \subseteq (N:P).$ $\therefore (N:P) = Ann(\frac{N+P}{N}).$ DIRECT SUM AND PRODUCTS If M and N are A-modules, their direct sum $M \oplus N = \{(x, y) | x \in M, y \in N\}$. This is an A-module with respect to addition and multiplication: $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ a(x, y) = (ax, ay).More generally $\{M_i\}_{i\in\Delta}$ is collection of A-modules then the direct sum of M'_is is given by $\bigoplus_{i \in \Delta} M_i = (x_1, x_2, ...)$ such that $x_i \in M_i$ and $x_i \neq 0$ for all but finitely many i. If we drop the condition on number of $x'_i s$ are non-zero we have direct product $\prod M_i$.

Therefore, direct sum and direct product are same if the index set Δ is finite, but not

otherwise, in general.

Suppose that the ring A is a direct product $\prod_{i=1} A_i$. Then the set I_i of all elements of A

of the form $(0, 0, ..., 0, a_i, 0, ..., 0)$ with $a_i \in A_i$ is an ideal of A but not subring.

A ring A considered as an A-module then it's ideal are submodules of A. Hence A is direct sum of A modules I_i .

FINITELY GENERATED MODULES

A free A-module is one which is isomorphic to an A-module of the form $\bigoplus_{i \in \Delta} M_i$, where $M_i \cong A$ (as an A-module).

A finitely generated free A-module is isomorphic to $A \oplus A \oplus ... \oplus A$ (n-times) which is denoted by A^n .

Proposition. M is a finitely generated A-module if and only if M is isomorphic to a quotient of A^n for some integer n > 0.

PROOF. Suppose M is finitely generated A-module.

 $\therefore M = \langle x_1, x_2, \dots, x_n \rangle.$

Define, $\phi: A^n \to M$ by $\phi((a_1, a_2, ..., a_n)) = a_1x_1 + a_2x_2 + ... + a_nx_n$. Now for any $a, b \in A^n \Longrightarrow a = (a_1, a_2, ..., a_n), b = (b_1, b_2, ..., b_n)$ and $r \in A$. Consider,

$$\begin{aligned} \phi(a+rb) &= \phi((a_1, a_2, \dots, a_n) + r(b_1, b_2, \dots, b_n)) \\ &= \phi((a_1 + rb_1, a_2 + rb_2, \dots, a_n + rb_n) \\ &= (a_1 + rb_1)x_1 + (a_2 + rb_2)x_2 + \dots + (a_n + rb_n)x_n \\ &= a_1x_1 + rb_1x_1 + a_2x_2 + rb_2x_2 + \dots + a_nx_n + rb_nx_n \\ &= (a_1x_1 + a_2x_2 + \dots + a_nx_n) + r(b_1x_1 + b_2x_2 + \dots + b_nx_n) \\ &= \phi((a_1, a_2, \dots, a_n)) + r\phi((b_1, b_2, \dots, b_n)) \\ &= \phi(a) + r\phi(b) \end{aligned}$$

 $\implies \phi$ is module homomorphism.

For each $x \in M \implies x = a_1x_1 + a_2x_2 + \ldots + a_nx_n$ then $(a_1, a_2, \ldots, a_n) \in A^n$ such that $\phi((a_1, a_2, \ldots, a_n)) = a_1x_1 + a_2x_2 + \ldots + a_nx_n = x.$ $\implies \phi$ is onto.

 $\Rightarrow \phi$ is onto module homomorphism.

 $\therefore A^n / \ker \phi \cong M.$

Conversely, suppose $M \cong A^n/I$ for some ideal I of A. If $\bar{x} \in A^n/I$ then,

$$\begin{split} \bar{x} &= (x_1, x_2, \dots x_n) + I \\ &= (x_1(1, 0, \dots, 0) + x_2(0, 1, 0, \dots, 0) + \dots + x_n(0, 0, \dots, 1)) + I \\ &= (x_1e_1 + x_2e_2 + \dots + x_ne_n) + I \\ &= x_1(e_1 + I) + x_2(e_2 + I) + \dots + x_n(e_n + I) \\ &= x_1\bar{e_1} + x_2\bar{e_2} + \dots + x_n\bar{e_n} \end{split}$$

 $\implies \{\bar{e_1}, \bar{e_2}, ..., \bar{e_n}\} \text{ generates } A^n/I.$ Let $\phi: A^n/I \to M$ be isomorphism and $\phi(\bar{e_1}) = x_1, \phi(\bar{e_2}) = x_2, ..., \phi(\bar{e_n}) = x_n.$ $\therefore \{\phi(\bar{e_1}), \phi(\bar{e_2}), ..., \phi(\bar{e_n})\} = \{x_1, x_2, ..., x_n\}$ is generating set of M. Because for each $x \in M$.

$$\begin{aligned} x &= \phi(\bar{y}) \text{ for some } \bar{y} \in A^n / I \Longrightarrow \bar{y} = a_1 \bar{e_1} + a_2 \bar{e_2} + \dots + a_n \bar{e_n} \text{ for some } a_1, a_2, \dots a_n \in A. \\ &= \phi(a_1 \bar{e_1} + a_2 \bar{e_2} + \dots + a_n \bar{e_n}) \\ &= a_1 \phi(\bar{e_1}) + a_2 \phi(\bar{e_2}) + \dots + a_n \phi(\bar{e_n}) \\ &= a_1 x_1 + a_2 x_2 + \dots + a_n x_n \end{aligned}$$

 $\therefore M = < x_1, x_2, \dots, x_n >.$

Proposition. Let M be finitely generated A-module, let I be an ideal of A, and let ϕ be an A-module endomorphism of M such that $\phi(M) \subseteq IM$. Then ϕ satisfies an equation of the form

 $\phi^n + a_1 \phi^{n-1} + \dots + a_n = 0$ where $a_i \in A$. PROOF. Let M is finitely generated A-module. Let $M = \langle x_1, x_2, ..., x_n \rangle$. Since $\phi(M) \subseteq IM$. $\implies \phi(x_i) = \sum_{j=1}^{n} a_{ij} x_j, \quad \forall 1 \le i \le n, a_{ij} \in I \text{ for all } i, j.$ This is system of n equations in n unknowns can be written as: $\sum (\delta_{ij}\phi - a_{ij})x_j = 0.$ Multiplying both side by adjoint of $\delta_{ij}\phi - a_{ij}$ we get. $\operatorname{adj}(\delta_{ij}\phi - a_{ij})(\delta_{ij}\phi - a_{ij})x_j = 0.$ $\therefore \{x_1, x_2, ..., x_n\}$ generates M. $\implies \det(\delta_{ij}\phi - a_{ij}) = 0.$ Expanding this determinant we get: $\phi^n + a_1 \phi^{n-1} + \dots + a_n = 0.$ **Proposition.** (Nakayama's Lemma). Let M be a finitely generated A-module and I be an ideal of A contained in Joconson radical \mathcal{J} of A. Then $IM = M \Longrightarrow M = 0$. PROOF. On contrary assume that $M \neq 0$.

Let $\{x_1, x_2, ..., x_n\}$ be minimal generating set of M.

We have given IM = M.

For $x_1 \in M$ and $a_{ij} \in A, 1 \leq i, j \leq n$.

Prof. K. R. Shinde

Corollary. Let M be a finitely generated A-module, N a submodule of $M, I \subseteq \mathcal{J}$ an ideal. Then $M = IM + N \Longrightarrow M = N$.

PROOF. Since $N \subseteq M + N$, hence it is submodule of M + N.

 $\implies M+N$ is an $A-{\rm module}$ also M is finitely generated hence M/N is also finitely generated.

Now consider,

$$I(M/N) = IM/N$$

= $(IM + N)/N$
= M/N

 $\implies I(M/N) = M/N$, where $I \subseteq \mathcal{J}$.

Therefore by previous proposition (applying previous proposition on M/N). $M/N \equiv 0$.

 $\implies M = N.$

Result. Let A be a local ring with maximal ideal I and M be a finitely generated A-module. Then show that M/IM is annihilated by I.

PROOF. Since I is maximal ideal and M is A-module.

 \implies IM is submodule of M.

Also, M/IM is A-module.

If $x + IM \in M/IM$ and $a \in I$

Then, a(x + IM) = ax + IM = IM.

 $\implies a \in \operatorname{Ann}(M/IM).$

 $\implies I \subseteq \operatorname{Ann}(M/IM).$

 $\therefore M = \operatorname{Ann}(M/IM).$

 $\implies M/IM$ annihilates by I.

 $\therefore I$ is maximal ideal in A.

Note. Let A be local ring with maximal ideal I, then F = A/I its residue field. Then M/IM forms vector space over field F.

Proposition. Let A be local ring with maximal ideal I. If $\{x_1, x_2, ..., x_n\}$ be elements of M whose images in M/IM form a basis of vector space M/IM, then show that x_i generates M.

PROOF. Let N be submodule of M generated by $\{x_1, x_2, ..., x_n\}$.

Suppose $f: N \to M$ defined by f(x) = x, $\forall x \in N$ and $g: M \to M/IM$ defined by g(y) = y + IM, $\forall y \in M$.

Then $g \circ f : N \to M/IM$ is onto mapping.

Because for any $\bar{y} = y + IM \in M/IM$.

 $\implies \bar{y} = (a_1 + I)x_1 + (a_2 + I)x_2 + \dots + (a_n + I)x_n, \text{ for some } a_1 + I, a_2 + I, \dots, a_n + I \in A/I.$ Take $z = a_1x_1 + a_2x_2 + \dots + a_nx_n \in N.$

Then,

$$\begin{array}{rcl} (g \circ f)(z) &=& g(f(z)) \\ &=& g(z) \\ &=& z + IM \\ &=& (a_1x_1 + a_2x_2 + \ldots + a_nx_n) + IM \\ &=& a_1x_1 + IM + a_2x_2 + IM + \ldots + a_nx_n + IM \\ &=& a_1(x_1 + IM) + a_2(x_2 + IM) + \ldots + a_n(x_n + IM) \\ &=& (a_1 + I)x_1 + (a_2 + I)x_2 + \ldots + (a_n + I)x_n \\ &=& \bar{y} \end{array}$$

Now let $\phi: M \to M/IM$ be natural mapping defined by $\phi(m) = m + IM$, then $\phi(N) = N/IM = (N + IM)/IM$. $\Rightarrow M/IM = (N + IM)/IM$. $\Rightarrow \frac{M/IM}{(N + IM)/IM} = 0$. $\Rightarrow M(N + IM) = 0$. $\Rightarrow M = N + IM$. $\therefore N + IM = M$. $\therefore By \text{ previous corollary of Nakayama's lemma}$. $\therefore N = M$. EXACT SEQUENCES **Definition.** A sequence of A-modules and A-homomorphisms

$$\cdots \to M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1} \to \cdots$$

is said to be exact at M_i if $\text{Im}(f_i) = \text{ker}(f_{i+1})$.

A sequence is exact if it is exact at each M_i .

Example 1. $0 \to M' \xrightarrow{f} M$ is exact $\iff f$ is injective.

Example 2. $M \xrightarrow{g} M'' \to 0$ is exact $\iff g$ is surjective.

Example 3. $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ is exact $\iff f$ is injective, g is surjective and g induces an isomorphism of $\operatorname{Coker}(f) = M/f(M')$ onto M''.

CHAPTER 3

Integral Dependence and Valuations

Integral Dependence

Definition. Let B be a ring and A be a subring of B. An element x of B is said to be integral over A if x if x is a root of monic polynomial with coefficients in A, that is x satisfies an equation of the form.

$$x^n + a_1 x^{n-1} + \dots + a_n = 0$$

where, a_i are elements of A.

Example 1. Every element of ring A is integral over A. **Example 2.** $A = \mathbb{Z}, B = \mathbb{Q}$. If a rational number x = r/s is integral over \mathbb{Z} , where r, s have no common factor. $\implies x$ satisfies equation of the form $x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n = 0.$ $\implies (r/s)^n + a_1(r/s)^{n-1} + \dots + a_{n-1}(r/s) + a_n = 0.$ Multiplying both side by s^n we get, $r^n + a_1 r^{n-1} s + \dots + a_n s^n = 0.$ $\implies r^n = -a_1 r^{n-1} s - \dots - a_n s^n.$ $\implies r^n = (-a_1 r^{n-1} - \dots - a_n s^{n-1})s.$ \implies s divides r^n . $\implies s = \pm 1.$ $\implies x \in \mathbb{Z}.$ \implies Element in \mathbb{Q} is integral over \mathbb{Z} , if it is integer. **Example 3.** $A = k[x^2], B = k[x]$ then $x \in B$ in integral over A. Because it satisfies equation of the form $y^2 - x^2$. **Example 4.** Let R be a ring and G be a finite subgroups of Automorphisms(Isomorphism from R to R) of R. Let $A = R^G = \{a \in R : g(a) = a, \forall g \in G\}$ and $a \in R$. Let $P(y) = \prod (y - g(a)).$ $q \in G$ Every element of R is integral over R^G . **Proposition.** Let $A \subseteq B$ be rings, then the followings are equivalent: (i) $x \in B$ is integral over A; (ii) A[x] is a finitely generated A-module; (iii) A[x] is contained in a subring C of B such that C is finitely generated A-module; (iv) There exists a faithful A[x]-module M which is finitely generated as an A-module. PROOF. (i) \implies (ii). Let $x \in B$ is integral over A. $\implies x$ satisfies equation of the form $x^n + a_1 x^{n-1} + \ldots + a_n = 0$ for some $a_i \in A$. $\implies x^n = -a_1 x^{n-1} - \dots - a_n.$ $\implies A[x]$ is generated by $\{1, x, ..., x^{n-1}\}$. $\implies A[x]$ is finitely generated. $(ii) \implies (iii)$ Suppose A[x] is finitely generated.

Take C = A[x]. $(iii) \implies (iv)$ Suppose, A[x] is contained in a subring C of B such that C is finitely generated A-module. Take C = M, then it is faithful A[x]-module. Because for any $y \in A[x]$, $yC = 0 \Longrightarrow y \cdot 1 = 0 \Longrightarrow y = 0$. $(iv) \Longrightarrow (i)$ Suppose, there exists a faithful A[x]-module M which is finitely generated as an A-module. Consider the map $\phi: M \to M$ defined by $\phi(m) = xm$. $\implies \phi(M) \subseteq M \implies xM \subseteq M.$ Suppose M is generated by $\{m_1, m_2, ..., m_n\}$ over A. Then $\phi(m_1) = xm_1$. $\implies \phi(m_1) = \sum_{j=1}^n a_{1j}m_j.$ $\Longrightarrow \phi(m_1) - \sum_{i=1}^n a_{1j}m_j = 0.$ $\implies [\phi \delta_{1j} - a_{1j}][m_1, m_2, ..., m_n]^{\perp} = 0.$ $\therefore [\phi \delta_{ij} - a_{ij}][m_1, m_2, ..., m_n]^{\perp} = 0.$ Multiplying both side by adjoint of matrix of $[\phi \delta_{ij} - a_{ij}]$ we get, $\det[\phi \delta_{ij} - a_{ij}](m_i) = 0, \quad \forall 1 \le i \le n.$ $\implies (\phi^n + a_1\phi^{n-1} + \dots + a_n)(m_i) = 0,$ $\forall 1 < i < n.$ $\implies (x^n + a_1 x^{n-1} + \dots + a_n) m_i = 0, \quad \forall 1 \le i \le n.$ $\implies x^n + a_1 x^{n-1} + \dots + a_n \in Ann(M) = (0).$:: M is faithful A-module. $\implies x^n + a_1 x^{n-1} + \dots + a_n = 0.$ $\implies x \in B$ is integral over A. Note. If N is finitely generated B-module and B is finitely generated A-module, then N is finitely generated A-module. **Corollary.** Let $x_i (1 \le i \le n)$ be elements of B, each integral over A. Then the ring $A[x_1, x_2, ..., x_n]$ is a finitely-generated A-module. PROOF. We will prove this corollary by induction on n. For n = 1, that is if $x_1 \in B$ is integral over A then $A[x_1]$ is finitely generated. ∵ By previous preposition. Assume that the result is true for n-1 elements. That is, If $x_1, x_2, \dots, x_{n-1} \in B$ are integral over B, then $A_{n-1} = A[x_1, x_2, \dots, x_{n-1}]$ is finitely generated A-module. To prove: The result is true for n elements. That is to prove, If $x_1, x_2, ..., x_n \in B$ are integral over B, then $A_n = A[x_1, x_2, ..., x_n]$ is finitely generated A-module. Suppose, $x_1, x_2, ..., x_n \in B$ are integral over B. Then $A_n = A_{n-1}[x_n]$ is finitely generated A_{n-1} -module. $\therefore A_n$ is finitely generated A-module. Because, If N is finitely generated B-module and B is finitely generated A-module, then N is finitely generated A-module. Corollary. The set C of elements of B which are integral over A is subring of B containing A.

PROOF. Exercise.

Definition. The ring C of elements of B which are integral over A is called the integral closure of A in B. If C = A then A is said to be integrally closed in B.

Definition. Let $f : A \to B$ be a ring homomorphism. If $a \in A$ and $b \in B$, define a product ab = f(a)b such that, with respect to this multiplication B forms A-module structure. The ring B which has both ring and A-module structure is called as an A-algebra.

Remark. Let $f : A \to B$ be a ring homomorphism, so that B is an A-algebra. Then f is said to be integral, and B is said to be an integral A-algebra, if B is integral over its subring f(A).

Corollary. If $A \subseteq B \subseteq C$ are rings and if B is integral over A, and C is integral over B, then C is integral over A(transitivity of integral dependence).

PROOF. Let $x \in C$ in integral over B.

 $\implies x^n + b_1 x^{n-1} + \dots + b_n = 0 \qquad (b_i \in B).$

 $\implies B' = [b_1, b_2, ..., b_n]$ is a finitely generated A-module, and B'[x] is a finitely generated B'-module(since x is integral over B').

Hence B'[x] is a finitely generated A-module and hence x is integral over A.

Corollary. Let $A \subseteq B$ be rings and let C be the integral closure of A in B. Then C is integrally closed in B.

PROOF. Let $x \in B$ be integral over C.

 $\implies x$ is integral over A, hence $x \in C$.

Prof. K. R. Shinde