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CHAPTER 1

Rings and Ideals

RINGS AND RING HOMOMORPHISMS:

DEFINITION. A ring A is a set with two binary operations (addition and multiplication)
such that

(1) A is an abelian group with respect to addition(That is, A has zero element denoted
by 0, and for every element z € A has an additive inverse —zx).

(2) Multiplication is associative((zy) z = z (yz)) and distributive over addition (z (y + z) =
xy+zz=(y+2)z) for all z,y,z € A.

(3) zy = yx for all z,y € A.

(4) 31 € A such that 1z =1 for all z € A.

Note: Through out the course the word ”"ring” shall mean a commutative ring with an
identity element.

Example:

(1) Z,R,C and @ are examples of rings. (2) A = {0} is a ring with 14 = 0 called as
Zero-ring.

(3) If A is a ring, then A [z] = {ay + @12 + ... + a,2"/n € N,a; € A}.

(4) Let S be any set, then F'(S) = {f:S — R} is ring with respect to addition and
multiplication defined below,

(f +9)(s)=f(s)+g(s)

(f-9)(s) = f(s)-g(s)

DEFINITION. Let A be a ring, a subset B of ring A is subring if B itself ring under
same operations on A.

Examples:

() ZCcQQCRCC.

(2) Every ring A is subring of A [z].

(3) Ay [x] = Set of all polynomials p (x) € A [z] such that constant term of p (z) is 0.

(4) Ay [z] = {ap + a12® + ... + a,2*" Jag, ay, ..., a, € A} = A[z?].

DEFINITION. A mapping f : A — B, from ring A to ring B is said to be ring homo-
morphism if

(1) fz4+y)=f(z)+ f(y) for all z,y € A.

@) f-y) = F(@)-[(y) forall 2,y € A

(3) 1 (1) = 1.

Examples: (1)If f: A — B and g : B — C are ring homomorphisms then fog: A — C
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is ring homomorphism.

(2) If S is subring of a ring A which contains identity of A, then identity mapping from
S to A is ring homomorphism.

IDEALS. QUOTIENT RINGS :

A subset I of a ring A is an ideal of A, if (I,+) is additive subgroup of A and for every
a € A and x € I the product ax € I.

Example.

(1) {0} C Aand A C A.

(2)nzZ C Z.

(3) Collection of polynomials with constant term 0 is ideal of ring A[z].

(4) I ={feF(S)/f(x)=0,Yx € S} is ideal of F(S).

(5) If f: A— B is ring homomorphism then ker f is ideal of A.

Define a relation on ring A by a ~ b iff a — b € I where I is ideal of ring A.

Then clearly ~ is equivalence relation on A and the collection of equivalence classes are
denoted by A/I called quotient of A by I.

Define addition and multiplication on A/I as follows:

Addition: (a+ 1)+ (b+1)=(a+b)+1

Multiplication: (a + I)(b+ 1) = (ab) + I

Then A/I is commutative ring with identity.

Proposition 1.1. There is one-to-one order-preserving correspondence between the set
of ideals of A containing I and the set of ideals of A/I.

PROOF. There is natural mapping ¢ : A — A/I defined by ¢(a) = a + I, which is
surjective ring homomorphism(Check).

If f: A— B isring homomorphism, then ker f is an ideal of A, and S f is subring of B,
then A/ker f = Sf.

Question. If f: A — B is ring homomorphism and [ is an ideal of A, then f(I) is ideal
of A?

Answer. No.

Counter example. The identity mapping f : Z — Q is ring homomorphism and nZ is an
ideal in Z but f(nZ) = nZ is not ideal in Q.

Example. If f : A — B is ring homomorphism and .J is an ideal of B, then show that
f71(J) is an ideal in A.

Proof. Since J is an ideal in B = 0 € J.

=0¢e f1(J) - f is homomorphism = f(0) =0 = 0= f71(0)

= [7H(]) # ¢

Let z,y € fYJ) = a= f(x),b= f(y) € J.

=a—b=f(z)— fly)eJ ~Jisanidealin B,a,be J=a—-beJ
= fle—y)eJ *. f is homomorphism

=x—ye f1(J)

= f~1(J) is additive abelian subgroup of A.

Letz € f7Y(J)=>a=f(z)e Jandbe A= f(b)=r € B.
=ra¢€J

() e T

= f(bx) € J

= bx e f71(J). -, f7H(J) is an ideal in A.
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ZERO-DIVISOR. NILPOTENT ELEMENT. UNITS

DEFINITION.

(1) A zero-divisor in a ring A is an element x which divides 707 i.e., for which there exists
y # 0 in A such that zy = 0.

(2) A ring with no zero-divisor # 0 is called integral domain.

(3) An element x € A is nilpotent if 2" = 0 for some integer n > 0.

- A nilpotent element is a zero-divisor but not conversely.

Counter example. 2 € Zg is zero-divisor but not nilpotent.

(4) A unit in A is an element x which divides 1, that is, an element z such that zy = 1
for some y € A.

- The element y is uniquely determined by x, and written as 27 !.
The multiples az of an element = € A forms a principal ideal, denoted by (z) or Azx.
x is unit iff (z) = A = (1).

(5) A field is a ring A in which 1 # 0 and every non-zero element is unit.

- Every field is integral domain but not conversely.

Examples.

(1) F(S) is not integral domain.

= f-g=0.

(2) If A is integral domain then A[z] is integral domain.

Solution: On contrary assume that A[z] is not integral domain.

3f(z), g(z) € Alz] such that f(z)- g(x) = 0 for some non-zero f(z) = ag + a1 + agz? +
o+ apx™ and g(z) = by + by + box? + ... + D™,

f(x)-g(x) =0= (ap + a1z + asx® + ... + a,z") (b + byw + box? + ... + byz™) =0
= ayb, =0

a, =0 or a, =0 (Which is contradiction).

Therefore, A[z] must be integral domain.

Proposition 1.2. Let A be a ring # 0. Then following are equivalent:

(i) A is a field;

(ii) The only ideals in A are 0 and (1);

(iii) Every homomorphism of A into a non-zero ring B is injective.

PROOF. (i) = (ii)

Suppose A is a field.

Let I be an non-zero ideal in A.

= 30 # z € I such that (z) C I but every non-zero element of A is unit.

= (z)=A=(1)

=1=(1)

(ii) = (i)

Suppose, the only ideals in A are 0 and (1).

Let ¢ : A — B be a ring homomorphism.

Then kernel of ¢ is an proper ideal of A .- If ker ¢ = (1) then ¢(1) = 0 which is not true.
= ker¢p =0

= ¢ is injective.

(iii) = (i)
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Let x be an element of A which is not a unit.

Then (x) # (1) hence, B = A/(z) is non-zero ring.

Let ¢ : A — B be the natural homomorphism of A onto B with ker ¢ = (z).
but by our assumption ker¢p = 0= (z) = 0=z = 0.

= Non-unit in A is 0.

= Every non-zero element in A is unit.

= A is field.

PRIME IDEAL AND MAXIMAL IDEAL

An ideal P in A is prime if P # (1) and ifabe P =a € P or b € P.
Example.

(1) 0 is prime ideal < A is integral domain.

(2) P is prime ideal in A iff A/P is an integral domain.

PROOF. Suppose P is prime ideal in A.

Clearly A/P is commutative ring with identity.

Assume that (a4 P)(b+ P) =0+ P for some a + P, b+ P € A/P.

= (ab)+ P=0+P

= (ab—0) € P

=abe P

=a€PorbeP *.* P is prime ideal
=a+P=0+Porb+P=0+P.

= A/P is an integral domain.

Conversely, Suppose A/P is integral domain.

=14+ P # 0+ P and A/P is commutative ring which has no zero-divisor.
=P#A

Assume that ab € P then ab+ P =0+ P

= (a+P)(b+P)=0+P

=a+P=0+Porb+P=0+P

=a€PorbeP

= P is prime ideal.

An ideal M in A is maximal if M # (1) and if there is no ideal I such that M C I C (1).
Exercise

1. M is maximal ideal if and only if A/M is a field.

2. Show that every maximal ideal is prime ideal.

3. If f : A — B is a ring homomorphism and P is prime ideal in B, then f~!(P) is prime
ideal in A.

4. Find an example of homomorphism in which inverse image of maximal ideal need not
be a maximal ideal.

Question. Whether every ring A # 0 has maximal ideal ?

Theorem 1.3. Every ring A # 0 has at least one maximal ideal.

PROOF. Let A # 0 be a ring and ) _ be collection of all proper ideals in A.
That is, Y = {I/I is proper ideal of A}

Then S # ¢. o (0) € X2
Let Iy C I C ... be chain in ) .
U I, is an ideal in A Iy C I, C ... is an increasing chain.

If U I, = A then 14 € U2, 1,
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= 14 € I, for some in —><—. oI, CA
= UX I, € > and it is upper bound of chain I, C I C ...

= Any increasing chain in ) has maximal element.

.. by Zorn’s lemma ) has maximal element say M.

Now if M is not maximal ideal in A then there exists an ideal J in A such that M C J C A.
= J € ) which contradiction to maximality of ). " M is maximal element in ).
.. M is maximal ideal in A. [ |
Corollary 1.4. If I # (1) is an ideal of A, then there exists a maximal ideal of A con-
taining 1.

PROOF. Let ) be collection of all ideals of A which contains I.

That is,

Y>> ={J/J is an proper ideal of A and I C J}.

Then by previous theorem there exists maximal ideal M which contains 1. |
Corollary 1.5 Every non-unit of A is contained in a maximal ideal.

PROOF. Suppose = be a non-unit element in A then x € (z) C A.

Also by proposition 1.4. every proper ideal is contained in a maximal ideal.

= (r) C M, where M is a maximal ideal in A. = x € M. [ |
DEFINITION.

1. A ring A with exactly one maximal ideal M is called as local ring.

- Example. Z, ~ Z/pZ.

2. The field A/M is called as residue field.

- Example. Z, ~ Z/pZ.

3. A ring with finitely many maximal ideals are called as semi-local rings.

- Example. Z,, ~ Z/nZ.

Corollary 1.6. i) Let A be a ring and M # (1) an ideal of A such that every x € A— M
is a unit in A. Then A is local ring and M is maximal ideal.

ii) Let A be a ring and M is a mazimal ideal of A, such that every element of 1 + M is
a unit in A. Then A is a local ring.

PROOF:. i) Since every ideal # (1) consist of non-units and also we know that every ideal
in contained in some maximal ideal.

Here every x € A — M is unit hence M contains all non-units hence it is only maximal
ideal in A.

= A is a local ring.

ii) Suppose A is a ring and M is maximal ideal in A such that 1 + M is unit in A.

Let & be a non-unit in a ring A.

If # ¢ M then () + M = (1).

= Ju € M and r € (z) such that u +rz = 1.

=1—-—u=rx.

= 1 — u is unit in A. *.» by hypothesis 1 4+ x is unit for every x € M
= rz is unit.

= r is unit —<— to assumption that M is maximal ideal.

sx e M.

Every non-unit are contained in M.

= M is the unique maximal ideal in A. [ |
DEFINITION. A principal ideal domain is an integral domain in which every ideal is
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principal.

Result. In principal ideal domain every non-zero prime ideal is maximal.

PROOF. Suppose (x) # (0) is prime ideal in PID A and suppose (z) C (y).

— 1z € (y).

— x = yz for some z € A.

— yz=1x € (x) = yz € ().

But y ¢ (z) = z € (x).

— 2z =tz for some t € A.

Then z = yz = ytr = = = ytx.

— yt = 1.

= 1€ (y).

— (y) = (1)

—> (x) is maximal ideal in A.

—> Every non-zero prime ideal in PID is a maximal ideal. |
NILRADICAL AND JACOBSON RADICAL

Proposition 1.7. The set R of all nilpotent elements in a ring A is an ideal, and A/R
has no nilpotent element # 0.

PROOF. If x € R = 2™ = 0 for some n > 0.

= (az)" = a"2" = a"(0) = 0.

— ax € N.

Now let z,y € R then 2" = 0 and y™ = 0 for some m,n > 0.

Consider, (z + y)"tm=1 = grtm=1 pntn=1 G gntm=2y 4 4 yntm=1

It is sum of integer multiple of products z"y*, where r + s = m +n — 1. We cannot have
both » < m and s < n hence each of these product vanishes.

— (r+y)"" Il =0=2+yeR

— R is ideal of ring A.

Also all nilpotent elements are in R hence A/® has no non-zero nilpotent element. W
DEFINITION. The ideal R is called nilradical of A.

Proposition 1.8. The nilradical of A is intersection of all prime ideals of A.

PROOF. Let R’ denote the intersection of all prime ideals of A.

If f € A is nilpotent element and P is prime ideal, then f* =0 € P, for some n > 0.
—> f" € P and P is prime ideal = f € P.

— RCR. (1)
Suppose f is not nilpotent element.

Let > be the set of ideals I such that f™ ¢ I for any n > 0.

Since (0) € > = > # ¢.

Then by Zorn’s lemma lemma » | has maximal element.

Let P be maximal element of >_.

Now we shall show P is prime ideal.

Let z,y ¢ P. = P+ (x), P + (y) contains P.

— P+ (x),P+ (y) ¢ >_. *.* P is maximal element in ).
= f" € P+ (z) and f* € P+ (y) for some m,n > 0.

— f™" € P+ (zy) and hence P + (zy) ¢ >_.

— zy ¢ P.

Hence P is prime ideal such that f ¢ P.
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Thus, If f is not nilpotent, then f ¢ P for some prime ideal of ring A = f ¢ NpcaP =
R

— [ ¢ R.

— R CR. (2)
From (1) and (2) we get R = R.

Therefore, the nilradical of A is intersection of all prime ideals of A. [ |

DEFINITION. The Jacobson radical of ring A is defined to be the intersection of all
maximal ideals of A.

Proposition 1.9. If J is Jacobson radical of A, then x € J <= 1 — zy is unit for all
y € A.

PROOF. Suppose J is Jacobson radical of ring A.

Let z € J. On contrary assume that 1 — zy is non-unit then, there exists maximal ideal
M such that 1 — xy € M for some maximal ideal M of ring A.

Since, x € J =z € M.

—axy e M, Vye A

— l=ay+ (1 —ay) € M —+. "~ M is proper ideal of ring A.
.. 1 — 2y must be unit.

Conversely, Suppose 1 — xy is unit for all y € A.

If = ¢ J, then there exists maximal ideal M such that « ¢ M.

— M+ (z) = A.

= m+ xy = 1 for some m € M and y € A.

= m=1-—-uay.

= m 1Is unit —+<—.

SLx e . [ ]
Example 1. Let A be a ring and let A[x] be the ring of polynomials in an indeterminate
x, with coefficients in A. Let f = ap+ a1z + ... + a,2" € Alz]. Prove that

(i) f is unit in A[z] if and only if ag is unit in A and a as, ..., a,, are nilpotent.

(ii) f is nilpotent if and only if ag, ay, ..., a,, are nilpotent.

(iii) f is zero-divisor if and only if there exists a # 0 in A such that af = 0.

Solution. (i) Suppose f is unit in A[z].

— Jg=0by+ bz + ... + b,x™ € Alz] such that f-g=1.

= (ap + a1 + ... + a,x")(bo + b1z + ... + bz™) = 1.

= agbyg = 1 = ag is unit in A.

Also, a,b,, = 0 and a,,_1b,, + a,b,,_1 = 0. Multiplying both side by a,, we get.
UnGp—1b + a2y 1 = 0 = a2b,,_1 =

Similarly multiplying both side of a,_2b,, + @pn_1bm—1 + anbm_2 = 0 by a?.

- a%an_gbm + afban_lbm_l + a%bm_Q =0= Clibm_g =

If the sum of powers of a,, and subscripts of b is m + 1, then the corresponding product
is 0.

— a?—’—lbo =0.

Multiplying this it by ay we get.

aZ”lboao =0= CLZH_l =0. CL(]bO =1
.". a, is nilpotent.

Inductively, a; =0 for all 1 < i < n.

Conversely, Suppose ag is unit and ay, ag, ..., a,, are nilpotent in Alz].

Prof. K. R. Shinde 7 Department of Mathematics



Commutative Algebra Modern College of ASC(Autonomous), Pune

Then f = ag+ a1z + ... + a,x™ is sum of nilpotent element and unit and hence it is unit.
(ii) Suppose f = ap + a1z + ... + a,z™ is nilpotent in A[z].

= 1 — f is unit in A[z].

—> 1 — qp is unit in A[z] and a}s,1 < i < n are nilpotent in A.

Also, f™ =0 = aj' = 0 = qy is nilpotent.

Conversely, Suppose ag, a1, ..., a, are nilpotent.

If d € N such that af = 0,0 <4 <n, then f¢ = 0.

— f is nilpotent.

(iii) Suppose f is zero-divisor.

— 30 # g € Alz] such that fg = 0 then g must be of degree 0.

Because if g = by + bz + ... + b,,z™ where b,, # 0 then a,b,, =0 = a,, =0 —+.
degree of f is n.

Therefore, g must of degree 0 = 40 # a € A such that = af = 0.

Conversely, Suppose 30 # a € A such that af = 0.

— f is zero-divisor.

Example 2. In a ring Alz], the Jaconson radical is equal to nilradical.
Solution. Suppose R, J are nilradical and Jaconson radical of A[z] respectively.
flz) e R

— (f(x))" =0 € J for some n > 0.

— f(z) € J.

RCJ.

f(z) €.

1 — f(x)g(z) is unit for all g(z) € Alz].

Let g(x) =z and f(z) = ap + a1z + ... + apz™.

= 1— f(x)g(x) =1 — apr + a12? + ... + a, 2" is unit.

= ag, a1, ..., A, are nilpotent.

= f(x) is nilpotent.

flz) eR

— JCR —= R=73.

.. Alz] is Hilbert ring.

Example 3. A ring A is such that every ideal not contained in the nilradical contains a
non-zero idempotent. Prove that A is Hilbert ring.

Proof. It is sufficient to show that every prime ideal in A is maximal ideal.

Let P be a prime ideal in A and let x be a non-zero element in A — P.

—> () contains non-zero idempotent, say aoz.

:>CL013(6L0$—1>:O€P.

= agx(apr — 1) is zero-element in A/P.

But A/P is an integral domain and agz # 0.

— apr — 1 =0.

= apx = 1 or x is unit.

— A/P is field.

—> P is maximal ideal.

.. A is Hilbert ring.

Example 4. If A is ring in which every element x satisfies 2™ = x, for some n > 1. Show
that every prime ideal in A is maximal.
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Solution. Let P be prime ideal in ring A.

. A/P is integral domain.

Let Z such that 7 # 0.

But 2" =2z =2"=172.

—T(l-2""YH=0€eP.

= 1-z""'eP. " P is prime ideal and = ¢ P
— (1-2)+P=0+P.

—1+P=a"14+P.

= 1=z""1

— 7 " r=1

= T is unit in A/P.

—> Every non-zero element is A/P is unit.

. A/P is field.

—> P is maximal ideal.

Example 5. Let A # 0 be a ring. Show that set of prime ideals in A has minimal
element with respect to inclusion.

Proof. Let > = {P/P is prime ideal in A}.

Since every non-zero ring has at least one maximal ideal hence ) # 0.

Define relation on ) as P, < P, if and only if P, C P;.

Then (3, <) is poset.

Let C: P, < P, < ... be any chain in P.

—C:PDFPD..

Let P = mPZ-EC'Pi-

— P is ideal of A.

Now we shall show P is prime ideal of A.

Suppose zy € P and = ¢ P.

— xy € P.

=— 2y € P, for all 4.

Also, 2 ¢ P=x ¢ P,, Vi.

—yeph, Vi

Sy e P.

—> P is prime ideal.

— Pec) and PC P, Vi

.. P is upper bound of chain C' in ).

.. By Zorn’s lemma ) has maximal element, which is required minimal prime ideal.
Example 6. If x ¢ M for any maximal ideal of ring A, then M + (z) = A.
Solution. If M + (z) C A.

—= M C M+ () CA—+. " M is maximal ideal of A.
Example 7. Let A be ring and R is it’s nilradical. Show that following are equivalent.
(i) A has exactly one prime ideal;

(ii) Every element of A is either a unit or nilpotent;

(iii) A/R is field.

Proof. (i) = (ii)

Suppose A has exactly one prime ideal.

—> A has exactly one maximal ideal.
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—> A is local ring.
. Nil(A) = P.
Also, ¢ P = x is unit in A. - if z is not unit then (z) C M for some maximal ideal
MinA But M =P=x € P —+
.. Every element of A is either unit or nilpotent.
(ii) = (i)
Let R is nilradical in A and every element of A outside of R is unit.
—> Every non-zero element of A/R is unit.
— A/R is field.
(i) = (i)
Suppose A/R is field.
— R is maximal ideal in A.
But ® = ﬁp_primeP.
— RC P, VP.
But R is maximal and hence ® = P.
.. A has exactly one prime ideal.
Example 8. A ring A is Boolean if 22 = z for all z € A. In a Boolean ring A, show that
(i) 22 =0 for all x € A;
(ii) Every prime ideal P is maximal, and A/P is a field with two elements;
(iii) Every finitely generated ideal in A is principal.
Proof. (i) Let z € A.
S(l+r)i=1+x
= (1+2z)(1+2z)=(1+x)
—= lt+r+r+2P=1+x
— l+o+2x=1+ux
—2xr =0, VzeA.
(ii) Let P be a prime ideal in A.
. A/ P is integral domain.
Also, 2 = x, Va € A that is,
>+ P=x+Pin A/P.
Every element in A/P is idempotent.
But 0 and 1 are the only idempotents in integral domain.
Hence A/P = Z,, but Z, is field.
= A/P is field.
.. P is maximal ideal.
(iii) It is sufficient to show ideal generated by two elements is principal.
Let [ = (z,y) and z = = + y + xv.
Now consider,
zx = (x+y+ay)x

= 22+ ay+ 2%y
= r+ay+ay
T+ 2xy
=z
— zr = .
Similarly,
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zy = (z+y+ayy
= ay+y®+ay?
Yy +y+axy
Y+ 2zy
=Y

—> z is multiplication identity in I.

= [ = (2).

Therefore, every ideal in A is principal.

Example 8. A local ring contains no idempotent # 0, 1.
Proof. Let A be a local ring.

— A has unique maximal ideal, say M.

Suppose x be an idempotent in a ring A.

= 12 = 1.
— z(1—2)=0¢€ M.
— =01

Because if « ¢ {0,1} then z,1 —x € M.

= l=x+(1—2) € M —+.

soxeq0,1}.

OPERATIONS ON IDEAL

If 7 and J are ideals in a ring A, then the sum [ + J = {zx+y/zel,ye J} is

smallest ideal containing I and J. More generally we may define the sum ZL- =
ieA

{Z x;/x; € I; p is smallest ideal containing all ideals I;.

finite

The ideal I and J are said to be co-prime ideals of A if [ + J = A.

Result. If [ and J are co-prime ideals, then INJ = 1J.

Proof. Since IJClTand IJCJ=I1JCINJ.

Also, I and J are co-prime — I + J = A.

— x+y=1forsomex el and ye J.

= I1J=1InNnJ.

The intersection of any family (1;);ca of ideals is an ideal. Thus the ideals of A forms a
complete lattice with respect to inclusion.

The product of two ideals I and J in A is the ideal I.J = {Z /v, € I,y; € J}.

finite

Similarly we define the product of any finite family of ideals.

Example.

(H)IfA=Z1=(m),J = (n) then I 4+ J is the ideal generated by g.c.d. of m and n.
I N J is ideal generated by l.c.m. of m and n.

1J =1nJ iff m,n are co-prime.

Let Ay, Ao, ..., A, be rings then the direct product A = HAi is set of all sequences
i=1
(1, o, ..., x,) With x; € A;(1 < i < n) is commutative ring with identity with respect to
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component wise addition and multiplication.
The projections p; : A — A; by p;(x) = z; are homomorphisms.

Let A be a ring and I, I, ..., I,, ideals of A. Define a homomorphism ¢ : A — H(A/IZ)
i=1
by ¢($) = (‘1. + [1,.ZC =+ ]27 ey T In)

Proposition 1.10. (i) If I; and I; are co-prime whenever i # j, then HIi =Ny 1.
i=1

(ii) ¢ is surjective <= I;,I; are co-prime i # j.

(iii) ¢ is injective <= NI, 1; = (0).

Proof. (i) We will use mathematical induction to prove this part.

If I; and I, are two ideals then I; N I, = I; 1, holds.

Therefore the result is true for n = 2.

Assume that the result is true for n — 1 ideals.
n—1

That is, [ [ I = N5 L.

Now we slh;ﬂl prove the result is true for n ideals.
Suppose B = N }'I;.

Now I; and I,, are co-prime for all : = 1,2,...n — 1.
L+ 1, = (1)

cox;+y; =1, for some x; € I; and y; € I,.
Sxp=1—y € 1.

n—1
Let x = x125...¢,, € Hji = B.

i=1
c.x=1—y, for some y € [,.
S.x+y=1for some x € B and y € [,.
Therefore, B and I,, are co-prime ideals.

.B-I,=BnNlI,.
=1

(ii) Suppose ¢ is surjective.

First we will prove that I; and I; are co-prime ideals.

Since ¢ is surjective 3z € A such that ¢(x) = (1 + 1,0+ Io,...,0+ I,,).
= (e+ Lo+ Is,..;o+1,) =1+ 1,0+ 1,....,0+ I,).

— v+ L=1+LHandoz+[;=0+1, Vi=23 .., n
—l—xelandzxel;, Yi=23,..n.

e+ (l—z)el, + 1,

= [; and I; are co-prime.

Similarly, I; and I; are co-prime for 7 # j.

Conversely, suppose I; and I; are co-prime for 7 # j.

It is sufficient to show that there exist v € A such that ¢(v) = (1 + 11,0+ Iy, ...,0+ 1,,).
Since, I; and I; are co-prime for j = 2,3,...,n.

Prof. K. R. Shinde 12 Department of Mathematics



Commutative Algebra Modern College of ASC(Autonomous), Pune

—> Ju; € I and v; € [; such that u; +v; = 1.
Take, v = vy - v3 - ... - V,.

= v =(1—u)(1l—uz)...(1 —uy,).

— v =1 — u, for some u € I.

o) = (v+L,v+ 1.0+ 1)
= ((1_u)+]1a0+12770+ln)
= (1+0L,0+1,..,0+1,)

— ¢(0) = (1+ 1,0+ Lo, .., 0+ I,).
Similarly, For each e; € H<A/]i)’ J some v; in A such that ¢(v;) =e; for j =2,3,...,n.

i=1
Where €; = (O + Il, 0+ ]2, ceey 1+ ]7;, ceey 0+ In)

.. ¢ is surjective.

(ili) Let x € ker ¢.

< ¢(z) = 0.

<~ (l’ + Il,x + [2, e T+ In) = (Il, [2, ceey ]n)

<:>$+Il :0+]1,l'+]2:0+]2,...7l'+]n:O+In.

— x+ 1L :[1,$+[2 =0bL,.,a+1,=1,.

<~ zczech,xel, .. xel,.

= ren, .

— ker¢ = m?:l'll

We know that ker ¢ = (0) <= ¢ is injective.

cokero =N, L = (0). [ |
Proposition 1. 11. (i) Let Py, P, ..., P, be prime ideals and let I be an ideal contained
in U P;. Then I C P; for some i.

(i) Let I, I, ..., I, be ideals and let P be prime ideal containing N'_,1;. Then P D I; for
some i. If P=N",1;, the P =1, for some 1.

PROOF. (i) We will prove this by induction.

Let Py, P, are two prime ideals and I be an ideal such that I C P, U Ps.

Let z € I and suppose I € P;.

Jy € I such that y ¢ P;.

— Yy € P;.

:>x—|—y€I§P1UP2

Suppose x +y € Py.

lfeeP—=y=(@+y) —vc P —.

x¢Ph=ux+y¢P.

— xrtyc PQ.

—zrz=(r+4+y) —yeP,=1CPHh,

.. The result is true for n = 2.

Now assume that the result is true for n — 1 ideals.

That is, if Py, P, ..., P, 1 are prime ideals and I C U}~'P;, then I C P; for some
1=1,2,...,n— 1.

Now suppose P, Ps, ..., P, are prime ideals and I C U | F;.

To show: I C P, for some i =1,2,...,n.
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We will prove the contrapositive statement.

Thatis,if]QPi 1§i§n:>]§U?:1Pi.

= For each i there exists z; € I such that z; ¢ P; whenever i # j.
If for some i we have z; ¢ P; then we are through.

Suppose x; € P; for all 1 <7 <n.

n

Now consider the element, y = E T1T9... T 1Tj11..-Tp

=1
Then we have y € [ and y ¢ P, for all 1 < i <n.
— [ U P.
(ii) Suppose Iy, I, ..., I,, be ideals and P be prime ideal containing N7, I;.
To show: P D I; for some 1.
That is, to show : If I; ¢ P for all ¢, then NI; € P.
Suppose I; ¢ I; for all i.
= Jdu; € I;,x; ¢ P(1 <i<n), and therefore [[z; € [[ ; C NI;.
But P is prime ideal = [[z; ¢ P.
— NI; ¢ P.
If P =nN1I;, then P = I; for some 1. [ |
Definition. If I and J are ideals in a ring A then their ideal quotient is denoted by
(I :J) and defined as, (I : J)={x € A/xJ C I}.
Result 1. Show that (/ : .J) is ideal in A.
PROOF. Let x,y € ([ : J) = xJ C I,yJ C I.
Consider, (z —y)J =zJ —yJ C I.
—c—ye(l:J).
Also, for x € (I : J) and a € A.
(ax)J = a(zJ) C I.
= ax € (I :J).
o (I:J)is an ideal in A. [ ]
Definition. If I = (0) then (0: J) ={z € A/zJ = 0}.
— (0:J)={z € AJzy=0, VyeJ}.
The ideal (0: .J) is called annihilator of J and is also denoted by Ann(.J).
Result 2. If D denote set of all zero-divisors in a ring A then D = U, Ann(z).
PROOF. Let x € D, then there exists 0 # y € A such that zy = 0.
= = € Ann(y).
—> 2 € UpzoAnn(z).
. D C UpzoAnn(z). (1)
Suppose, y € UyzoAnn(z).
= y € Ann(z) for some 0 # = € A.

= yr = 0.

—=yeD.

o UgzoAnn(z) C D. (2)

From (1) and (2) we get, D = U,20Ann(z). [ |

Definition. If I is any ideal of A, then radical of I'isr(I) = {x € A/z"™ € I for some n > 0}.
Result 3. r(]) is an ideal of a ring A.
PROOF. If ¢ : A — A/I is standard homomorphism,
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Consider,

R(A/T) = {z€A/I: 7"

=0, for some n > 0}

= {ze€eA/l:x"+ =1, for somen >0}
= {ze€A/l:x" €1, for some n > 0}

GIR(AIT)) = {oe A o(x) € R(A/T)}
{reA:x+1eRA/MN}

{re A: (x+1)" =1, for some n > 0}
{reA:a2"+1=1, for somen >0}
{reA:a" eI, for somen >0}

. r([I) is subspace of A.

Exercise 1.13 (i) r(/) 2

(i) r(r(1)) = ()

Elll) r(IJ)=r(INJ)=r{I)Nr(J)
(

iv) If P is prime ideal, then r(P) = P(Exercise)

v)r(I+J)=r(r() +T(J))(Exercise)
(vi) (1) = (1) & I = (1)(Exercise)
Solution. (i) Let x € I

—a" el

=z er(l)

I Cr(l).

(i) By part (i) r(I) C r(r(1))

Let z € r(r(1))

— 2" € r(I) for some n > 0

— (2")™ € I for some m >0

=" el

=z er(l)

= r(r(I)) Cr(I)

sor(r(D) =r().

(iii) Since IJ CINJ = r(IJ) Cr(INJ).
Let x € r(INJ)

=—a"elnJ

—> 2" € I and 2" € J for some n > 0.
== a"-a"elJ

— el

=z er(lJ)

(1) = r(INJ).

Also, INJClTand INJ CJ
—r(INJ)Cr(l)and r(INJ)Cr(J)
—r(InJ)Cr)Nnr(J)

Let z € r(I)Nr(J)

=z er(l)and x € r(J)

= 2" € [ and 2™ € J for some n,m > 0.
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= z" €[ and 2™ € J.

=" eclnJ

=z er(InlJ)

sr(InJ)y=rI)nr(J).

sr(ID)y=r(INnJ)=r(I)Nr(J). [ |
Proposition 1.14. The radical of an ideal I is the intersection of the prime ideals which
contains 1.

PROOF. Exercise.

Note. We may define the radical r(F) for any subset E of ring A. It is not ideal in
general.

Example. If A= Z 1 = (m), let p;(1 <1i <r) be the distinct prime divisors of m, then
find r(1).

Solution. We know that r(I) = r((m)).

= r(I)=(p1-p2---pr)

— r(I) =N_pr

Proposition. Let I,J be ideals in a ring A such that r(I),r(J) are coprime. Then I, J
are coprime.

PROOF. Let I and J are ideals of ring A and r(I),r(J) are coprime ideals.

= r(I)+r(J)=(1).

Consider, r({ + J) =r(r(I) +r(J))

= r(I+J)=r(1)=(1)

—I+J=1 |
EXTENSION and CONTRACTION

Let f: A — B be a ring homomorphism. If I is an ideal in A, then the set f(I) is not
necessarily an ideal in B. We define the Extension I¢ of I to be the ideal B(f(I)) that
is ideal generated by f(I) in B. Then I¢ = {> v f(z;)/y; € B and z; € I}.

If J is ideal in B, then f~1(J) is always an ideal in A, called the contraction J°.

If I is prime ideal in A, then ¢ need not be prime in B.

Counter Examples: 1. f: Z — Q,I # 0, then I° = ), which is not prime ideal.

2. Consider the identity mapping f : Z — Z[i], then (2) is prime ideal in Z but (2)¢ is
not prime ideal.

Because (1 +14)(1 —i) =2 € (2)° but none of 1 +i or 1 — i lies in (2)°.

Therefore, 1€ is not prime ideal.

Result 1. If [; C I, are ideals of ring A, then show that I C IS.

PROOF. Let y € I7.

— y = > bif(a;) for some a; € I} and b; € B.

— y = > b f(a;) for some a; € I, and b; € B. ca; €1, Clo
==y els.
I C IS N

Result 2. If J; C J, are ideals of ring B then show that J§ C Jy.

PROOF. Exercise.

Proposition. Let f : A — B be ring homomorphism and let I,J are ideals of A, B
respectively then,

(i) I C e, Jee C J.

(11) J¢ = Jeee Je = Jece,
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(iii) If C is set of contraction ideals in A and if E is the set of extended ideals in B, then
C=A{l/I“=1},E={J/J=J}, and I — I°¢ is bijective map of C onto E, whose
wnverse 15 J — J°.

PROOF. (i) Let x € I

— f(z) € I°

=z = f"1(f(x)) €I*

I g Jec.

Suppose y € J

= [ y) e J°

= y=f(f"(y)eJ

cLJeC .

(ii) By part (i) we have I C [°°.

= [¢ C ([*)°. T hH ChL=I{CI
— Je C Jece.

Consider, ¢ = (I€) C [°. o Je CJ
= [°¢ C ]°.

Jece — Je.

Similarly we can show J¢ = J“(Exercise).

(iii) We have C = {I/I*“ =1} and E = {J/J* = J}.

Now define, ¢ : C' — E by ¢(I) = I°.

Let Iy, I be ideals in ring A.

Consider,
o(11) = &(lr)
=17 = I
== [{¢ = I§
=1, = L. '.'Iec:I, VI € C.
= ¢ is one-one mapping.
Also we have for each J € F|
J = J*
— (Jc)e
= ¢(J°)
= ¢ is onto.
Let ¢ : E — C be mapping defined by ¥(J) = J°.
Consider,

Woo)(I) = ¥(e(l))

I
—~
.\m‘ﬁ
—_ M~
o 8y
S—

= I cleC = I°=1].

— (Yoop)(I)=1, VI€EE.

= ¢ =1L [ |
Result. Let A be a ring and X be the set of all prime ideals of A. For each subset E of
A, let V(E) denote the set of all prime ideals in A containing E. Prove that
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(i) If I is ideal generated by E then V(FE) =V (I) =V (r(I)).
(i) V(0) = X, V(1) = 6.
(iii) If (E;)ien is any family of subsets of A, then V(U;eaE;) = NieaV (E5).
(iv) VINJ)=V(IJ)=V(I)UuV(J) for any ideals I, J of A.
PROOF. We have given X = {P/P is prime ideal of ring A} and
V(FE) ={P/E C P —is prime ideal of ring A}.
(i) Let I = (E) = E C I.
= V() CV(E).
Because, if P € V(I) = 1 C P.
— FECICP= FECP.
== P e V(E).
Now consider, P € V(E).
— EFCP.
— (F) C P. " (E) is smallest ideal which contains E.
— (E)=I1CP.
= P e V().
S V(E)=V(I).
(ii) We know that every prime ideal P in ring A contains 0.
= V(0) = X.
Also, none of prime ideal contains 1 = V(1) = ¢.
(111) To show: V(UzeAEz) = ﬂ,eAV(Ez)
If (E;)iea be any family of subsets of A.
We know that each i € A, E; C U;jea E;.
= V(UieaF;) CV(E;), VieA.
—= V(UieaEs) C NMieaV(E;).
Let P € NieaV(E;).
— PeV(E;) VieA.
— E,CP, VicA
— UE; C P, VieA.
— P € V(UjeaE;).
= NieaV (E;) CV(Uiea E)
V(UieAEi) = ﬂiGAV(Ez’)‘
(iv) To show: V(INJ)=V(IJ)=V(I)UV(J) for any ideals I, J of A.
Let I and J be ideals of ring A.
Since IJ CINI = V({InNJ)CV(LJ).
Let P € V(1J).
= [J CP.
— JICPorJCP. *.» P is prime ideal.
But INnJ C1I and J.
= INJCP.
= PeV({InlJ).
“VInJ)=V({IJ).
We know that INJ C I = V(I) CV(INJ).
Similarly, INJ C J = V(J)CV(INJ).
= V({)UV(J)CV(InNJ).
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Let PeV(INJ)=1INnJCP.
Claim: I C Por J CP.
On contrary assume that [ ¢ P and J € P.
Let x € I and y € J such that xy ¢ P.
ButxzyelJCINJCP.
— <.
. Either I C Por JCP.
— PeV({)or PeV(J).
— PecV({)UV(J).
— V({INnJ)CcV{I)uV(J).
SVInJ)=V(I)uV(J). [ |
. V(F) satisfies axioms for the closed sets in topological space. The resulting topology
is called as Zariski topology. The topological space X is Called the prime spectrum of A.
Result. Let J; be family of subsets of ring A, then N;eaV (J, Z Ji).
1EA
PROOF. We know that, J; € > J;, Vi.
ieA
—= VO _J)CV() Vi
ieA
— V(O i) S NieaV (i) (1)
1€EA
Let P € ﬂieAV(Ji).

—= PecV(J), VieA.

= Z J, C P.
ieA
— PeV()_J).
i€A
= MieaV() SV ). (2)
1€EA
From (1) and (2) MeaV(J, Z J;). |

1EA

Result. For each f € A, V(f) ={P € Spec(A)/f € P}.
Let Xy = Spec(A) — V(f).
That is, X; = {P € Spec(A)/f ¢ P} is open set.
For each f € A, Xy denote the complement of V(f) in X = Spec(A). The set X are
open. Show that they form a basis of open set for the Zariski topology and that
(i) Xy N Xy = Xyg;
i) Xy = QS if and only if f is nilpotent;
iii) Xy = X if and only if f is unit;

(i
(
(iv) Xy = X, if and only if r((f)) = r((9));
(v) X is quas1 compact;
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PROOF. (i) Let P € X; N X,.
<= Pc X;and P € X,.

< f¢ Pandg¢ P.

<~ fg ¢ P. *.» P is prime ideal.
— P e Xy,

.'.Xf ﬂXg = ng.

(ii) Suppose Xy = ¢.

<= Every prime ideal contains f.
<~ f € Np_primel’ = ‘SR(A)

<= f is nilpotent.

. Xt = ¢ <= f is nilpotent.

(i) X; = X.
<= None of prime ideal contains f.
= (f) =A.

<= f is unit in A.

(iv) Suppose X; = X|,.

To show: r((f)) = r((9)).

Xr=X,.

— X-X;=X-X,.

— V() = V(g).

<= Every prime ideal P which contains f that also contains g.
Consider,

T((f)) = (p_Prime ideal and fEPP
= Nrevinl

Npev(g P

(P —Prime ideal and gEPP

= 1((9))

= r((f)) = r((9))-

(v) To show: X is quasi-compact.

Let X = Upca X,

For any P € X = P € X;, for some o € A.

= fo ¢ P for some a € A.

Let I = (fays fags---), then I is a non-zero ideal of A.
If I # A then there exists a prime ideal P such that I C P.
S fa€ P, YaeA.

— P ¢ Xfa? Va € A.

— .

S =A

= 1€l =_far, fogs )

= 1 = a1 fa, + @2fay + ... + anfa, for some a; € A.

= 1= Zalfl € Z<fa’)

i=1
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= V(1) =V(Q_(fa)-
i=1
— ¢ = N,V (far):
— X —¢ =X — 1,V (fa,):
— X = Uznzl(X - V(focz))
— X = U?':leai.
.. X is compact. |
Example 1. A topological space X is said to irreducible if X # ¢ and if every pair of
non-empty open sets in X intersects, or equivalently if every non-empty open set is dense
in X (X is irreducible iff X cannot be union of two closed sets). Show that Spec(A) is
irreducible if and only if the nilradical of A is prime a prime ideal.
PROOFEF. Suppose X is irreducible.
On contrary assume that $(A) is not prime ideal.
c 3z, y & R(A) but 2y € R(A).
Let K, = V((z)) and K, = V((y)).
Then K, and K, are closed sets in X.
Let P € X = Spec(A).
We know that ®(A) C P and 2y € R(A).
— xy € P.
—xe€PoryeP.
= () C Por (y) CP.
— PeK,or Pe Ky, — Pec K, UK,.
X =K, UK,
Now it is remains to prove K, and K, are proper subsets of A.
Since x ¢ R(A) = NP.
.. 3 prime ideal P such that = ¢ P.
— P ¢ K,.
SR # X
Similarly, K, # X.
—> K, and K, are proper closed sets of X whose union is X.
—4—. .+ X is irreducible.
. R(A) is prime ideal.
Conversely, suppose $(A) is prime ideal.
To show: X is irreducible.
We shall prove the contrapositive statement.
That is, if X is reducible, then R(A) is not prime ideal.
Suppose X is reducible.
To show: $(A) is not prime ideal.
Since X is reducible = X = V(1) U V(J), where V(I),V(J) # X.
= X =V{InNJ).
Let P € X.
— PecV({INnJ).
= INJCP VPelX.
— INJ CNP==RA).
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Since, V(I),V(J) # X.
= INJ CRA).
But IJ CInJCR(A).
That is, 3z € I — R(A) and y € J — R(A) such that zy € I.J C R(A).
. R(A) is not prime ideal. [ |
Example 2. Let X be topological space.
(i) If Y is irreducible subspace of X, then the closure Y of Y in X is irreducible.
(ii) Every irreducible subspace of X is contained in a maximal irreducible subspace.
PROOF. (i) Let Y is irreducible subspace of X.
On the contrary assume that Y is not irreducible.
— Y = SUT for some proper closed sets 7" and S of Y.
But we know that, Y =Y NY.
=Y =YnS ulynT).
Since S and T are closed subsets of Y and Y C X.
— Y NS and Y NT are closed in Y.
It is remains to show Y NS and Y N7 are proper subsets of Y.
fynS=yYy=YcCSs.
— Y =5 5. -+ S is proper subset of Y.
2. Y NS and Y NT are proper closed subsets of Y such that Y = (Y NS)Uu (Y NT).
— Y is reducible —+.
.Y must be irreducible in X.
(ii) Let Y be a irreducible subspace of X.
> ={Z/Z is irreducble and contains Y }.
Then ) # ¢. wYed.
Then ) is poset under set inclusion.
Let C': Zy C Zy C ... be any chain in ).
Take, Z = UZ;, where each Z; € > _.
Claim: Z is irreducible.
On contrary assume that Z is not irreducible.
—> Z = SUT for some proper closed subsets S and 1" of Z.
Then,
Zl - Zl N Z
= Z1N(SUT)
= (Z1nS)u(Z;NT)

—> Z, is union of two proper closed subsets of Z;.

= Z; is not irreducible —<.

.. Z must be irreducible.

Hence every chain in ) has upper bound in ).

Therefore, by Zorn’s lemma ) has maximal element.

Such maximal irreducible subspace is called as irreducible component. |

dodhd
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CHAPTER 2

Modules

MODULES AND MODULE HOMOMORPHISMS

Definition. Let A be a ring. An A-module is an abelian group M on which A acts
linearly; more precisely, it is pair (M, u), where M is abelian group and pu: A x M — M
is mapping defined by u(a,x) = azx and satisfies following axioms:

(i) p((a, 2 +y)) = alr +y) = ax + ay.

(ii) u((a+0b),z) = (a + b)z = ax + bz.

(iii) p(ab, x) = (ab)z = a(bx).

(iv) 1z =z, for all x,y € M and a,b € A.

Examples. (1) An ideal I of ring A is an A-module. In particular A itself is an
A—module.

(2) If A is field F, then A-module = F-vector space.

(3) A =Z, then Z—module = abelian group.

(4) A = F[z], where F is field; an A-module is a K-vector space with linear transforma-
tion.

Definition. Let M, N be A-modules. A mapping f : M — N is an A-module homo-
morphism (or A-linear) if

(i) fle+y) = fz)+ fy).

(ii) f(azx) = af(x). for all z,y € M and a € A.

If A is field, an A-module homomorphism is the same thing as a linear transformation of
vector spaces.

The composition of A-modules homomorphisms is again an A-module homomorphism.
The set of all A-module homomorphism from M to N can be turned into and A—module
as follows: we define addition and multiplication by the rules

(f +9)(z) = fz) + g(z),

(af)(z) =af(x), for all a € A and x € M.

which is denoted by Hom4(A, M) or just by Hom(A, M).

SUBMODULES AND QUOTIENT MODULES

A submodule M’ of M is subgroup of M which is closed under multiplication by elements
of A.

That is, M’ is submodule of M is it satisfies following properties:

(1) Forz,y e M' = x —y € M.

(2) ax € M’ for alla € A and x € M.

Note. The submodule of A over an A-module are the ideals of A.

Let M’ be a submodule of A-module M, then

M/M' ={m+ M'/m € M} is module over A called as quotient module.

PROOF. Clearly M/M’ is additive abelian group of A.

Let a,b € A and z,y € M/M'.
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a(T+y) = ale+M +y+ M)
a((z +y) + M)

a(r +y) + M’

(ax + ay) + M’

ar + M' 4+ ay + M’
alz + M) + a(y + M)
= ax +ay

(a+b)z = (a+b)(x+ M)
= (a+bz+ M
= (ax+bx)+ M
= ar+ M +bx+ M
= alz+ M)+ blx+ M)
= ax+by

a(bz) = a(blx + M)
a(bx + M')
(ab)x + M’
= (ab)x

and1-z2=12

. M /M’ is module over A called quotient module. [ |
Note. (1) There is a one-to-one order-preserving correspondence between submodules of
M containing M’ and submodules of M/M’.

(2) Submodule of M /M’ is of the form M;/M’, where M, is submodule of M containing
M.

Let f: M — N be an module homomorphism then

ker f = {x € M/f(x) =0}

and is a submoule of M.
The image set of f is the set

Im(f) = f(M) ={y € N/f(z) = y,z € M}

is an submodule of N.
The cokernel of f is

Coker(f) = N/Im(f)

which is quotient module of N.

Result. Let f: M — N be a ring homomorphism and M’ be submodule of A-module
M such that M’ C ker f, then the mapping f : M/M’ — N, defined by f(z) = f(x) is
homomorphism induced by f with ker f = ker f/M’.

PROOQOF. To show: f is homomorphism.
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Let z=x+ M ,g=y+ M € M/M" and a € A.
Consider,

f(z+ay) = (x+ M) +aly+ M)

(x + ay) + M)

I
S
_l’_
Q
S

|
P

x)+af(y) *» f is module homomorphism.

@+ ag) = f(2) +af ().
— f is module homomorphism.
Now consider,

ker f = {zeM/M': f(z)=0}
= {z+M e M/M: f(x)=0}
= {z+M € M/M': x € ker f}
= ker f/M'

- ker f =ker f/M’. [ |
OPERATIONS ON SUBMODULES
Let M be an A-module and let (M;);ea be a family of submodules of M. Their sum
> M; is the set of all finite sums > z; where x; € M; for all i € A and almost all the z;
are zero.
> M; is smallest submodule of M which contains all the M,;.
The intersection NM; is again submodule of M. Thus the submodule of M form a
complete lattice with respect to inclusion.
Proposition. (i) If L O M O N are A-modules, then
(L/N)/(M/N)= L/M.
(ii) If My, M5 are submodules of M, then
(M 4+ My) /My = My /(M N Ms).
PROOF. (i) Define the mapping 6 : L/N — L/M by 0(z + N) =z + M.
Let t=x+ N,y=y+ N € L/N and a € A.
Consider,
0(z+ay) = O0(z+ N)+aly+N))

= O0((z+ay)+ N)

— (z+ay)+M

= (x+ M)+ (ay + M)

= (x+M)+aly+ M)

= O(x+N)+ab(y+ N)

— 0(z) + ab(y)

Therefore, 6 is module homomorphism.

Also, for each x + N € L/N there exists x + M € L/M such that 0(z + N) =z + M.
= 0 is onto.

Consider,
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ker§ = {z€L/N:0(z)=0}
= {4+ Ne€L/N:0(x+ N)= M}
= {e+NeL/N:x+M =M}
= {t+Ne€L/N:ze M}
— M/N
.. 0 is module homomorphism L/N onto L/M with kernel M/N.
s (L/N)/(M/N) = (L/M),
(ii) Define g : My — (My + My) /M by g(z) = x + M;.
Let x,y € M, and a € A.
Consider,
gl +ay) = (x+ay)+ M,
= x4+ M, +ay+ M,
= (z+ M) +aly+ M)
= g(z) +ag(y)
.. g is module homomorphism.
Also, for each « + My € (M, + My) /My, there exists © € M, such that g(z) = x + M;.
.. g is onto.
Now consider,

kerg = {x € M,:g(z)=0}

= {xreMy:x+ M =M}

= {zxeMy:xe M}

= M1 N MQ
.. ¢ is module homomorphism from Ms onto (M; + Ms)/M; with kernel M; N M.
oMo/ (My 0 M) = (M + M) /M. [ |
We cannot in general define product of two submodules, but we can define product I M,
where [ is an ideal and M an A-module.

IM = {ZaiinQiEI,xieM}.

finite

Let x,y € [M:x:Zaixi, y:Zbiyi for some a;,b; € I and x;,y; € M.

finite finite

Then, x—y:iaixi—ibiyi e IM.

i=1 i=1

Also, for a € A and x € IM.

ar = a(z a;x;)
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.. IM is submodule of M.

If N, P are submodules of M, then (N : P)={z € A:xP C N} is ideal of A.
In particular (0: M) ={x € A:2M =0} = Ann(M) is ideal of A called as annihilator
of M.

Any A—module M is said to be faithful if Ann(M) = 0.

Result. Suppose M be an A—module with Ann(M) # 0 and I be an ideal A such that
I C Ann(M) then M is faithful module over A/I.

Exercise. Prove that

(i) Ann(M + N) = Ann(M) N Ann(N).

(ii) (N : P) = Ann(2¥EE).

PROOF. (i) We know that M + N ={z +y/xr € M,y € N}.

SMC M+ Nand NC M+ N.

= Ann(M + N) C Ann(M) and Ann(M + N) C Ann(N).

= Ann(M + N) C Ann(M) N Ann(N).

Let a € Ann(M) N Ann(N).

—> a € Ann(M) and a € Ann(N).

—ar=0, Vre Manday=0, Vye&N.

Now consider, a(z +vy) =ar+ay =0, Vr+ye&E M+ N.

= a € Ann(M + N).

= Ann(M) N Ann(N) C Ann(M + N).

S Ann(M + N) = Ann(M) N Ann(N).

(ii) Let a € (N : P) = aP C N.

= ax € N, VxEPandlety+N€#forsomeyEP.

Consider, a(y+ N) =ay+ N =0, Vy+ N € 2&E. “~ay € N.
—> a € Ann(%3E).

— (N : P) C Ann(&EE).

Let b € Ann(2EE).

— bly+N)=0=N.

== by + N =N.

—bye N, VyecP.

— bP C N.

= be (N:P).

— Ann(¥EE) C (N : P).

(N : P) = Ann(%EE). [
DIRECT SUM AND PRODUCTS

If M and N are A—modules, their direct sum M & N = {(x,y)/x € M,y € N}. This is
an A—module with respect to addition and multiplication:

(1,191) + (22, ¥2) = (x1 + T2, 71 + Y2)

a(z,y) = (az, ay).

More generally {M;},_, is collection of A—modules then the direct sum of M;s is given
by @ieaM; = (x1, 22, ...) such that x; € M; and x; # 0 for all but finitely many 1.

If we drop the condition on number of z’s are non-zero we have direct product H M;.

i=1
Therefore, direct sum and direct product are same if the index set A is finite, but not
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otherwise, in general.

Suppose that the ring A is a direct product H A;. Then the set I; of all elements of A

i=1
of the form (0,0, ...,0,a;,0, ...,0) with a; € A; is an ideal of A but not subring.

A ring A considered as an A—module then it’s ideal are submodules of A. Hence A is
direct sum of A modules I;.

FINITELY GENERATED MODULES

A free A—module is one which is isomorphic to an A—module of the form &;ca M;, where
M; = A (as an A—module).

A finitely generated free A—module is isomorphic to A @ A @ ... ® A(n-times) which is
denoted by A”".

Proposition. M is a finitely generated A—module if and only if M is isomorphic to a
quotient of A™ for some integer n > 0.

PROOQOF. Suppose M is finitely generated A—module.

oM=< 21,29, ..., 1, >.

Define, ¢ : A" — M by ¢((a1,az, ..., a,)) = a121 + asxs + ... + apTy.

Now for any a,b € A" = a = (a1, a9, ...,a,),b = (b1, bs,....b,) and r € A.

Consider,

ola+rb) = o((ar,ag,...,a,) +1(b1,bay ..., by))
= o((ay +rby,as + b, ..., a, + rby)
(a1 + rby)xy + (az + rbo)xs + ... + (an + 70,) Ty
a1 + rbixy + asxy + rbeze + ... + apx, + rbyxy,
(a1 + asxe + ... + apxy,) + r(bixy + boxs + ... + byxy,)
= o((ay,ag,....,a,)) +ro((by, b, ..., b,))
= ¢(a) +ro(b)

—> ¢ is module homomorphism.
For each x € M = = = ayxy + asxy + ... + ayx, then (ay, a9, ...,a,) € A™ such that
o((a1,az,...,an)) = a121 + asxs + ... + apx, = T.
—> ¢ is onto.
=—> ¢ is onto module homomorphism.
LAY kerg = M.
Conversely, suppose M = A" /I for some ideal I of A.
If z € A"/I then,
T = (r1,7,.. xn) +1
(#1(1,0, ...,0) + 22(0,1,0, ...,0) + ... + 2,(0,0,...,1)) + I
(r1e1 + .17262 + ...t ane,) +1
zi(er + 1)+ xo(ea + 1)+ ... +xp(e, + 1)
= X161 + T9éy + ... + 1,6,

= {é1, €y, ..., 6, } generates A"/I.
Let ¢ : A"/I — M be isomorphism and ¢(é€1) = z1, ¢(€2) = xa, ..., () = Tp.
Aoler), p(e), ..., p(€,)} = {1, xa, ..., x, } is generating set of M.
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Because for each x € M.

x = ¢(y) for some y € A"/I = y§j = a1€1 + asés + ... + a, €, for some ay,as, ...a, € A.
= ¢lar€1 + azés + ... + a,€,)
= md(€1) + ag(é2) + ... + and(én)
= a1x1 + asxs + ... + apxy,

oM=< L1y X2y eeey Ty > [ |
Proposition. Let M be finitely generated A—module, let I be an ideal of A, and let ¢ be
an A—module endomorphism of M such that (M) C IM. Then ¢ satisfies an equation
of the form

"+ a "t + ...+ a, =0 where a; € A.

PROOQOF. Let M is finitely generated A—module.

Let M =< 21,29, ..., 2, >.

Since ¢p(M) C IM.

— ¢(z;) = Zaijxj, V1 <i<n,a; €1 foralli,j.
=1

This is system of n equations in n unknowns can be written as:
n

Y (66 — ay)z; = 0.
j=1
Multiplying both side by adjoint of 6;;¢ — a;; we get.

adj(dij¢ — ai;)(0i5¢ — ai)x; = 0.

= det(d;;¢ — a;;) = 0. Ay, 29, ..., x,} generates M.
Expanding this determinant we get:
" +a "t + .. +a,=0. [ |

Proposition. (Nakayama’s Lemma). Let M be a finitely generated A—module and I be
an ideal of A contained in Joconson radical J of A. Then IM = M — M = 0.
PROOF. On contrary assume that M # 0.

Let {x1,za, ..., ,} be minimal generating set of M.

We have given IM = M.

For zy € M and a;; € A,1 <14,5 <n.

T = a1121 + a1222 + ... + 1,2,

Tp = Qp1%1+ Qpa%2 + ... + Appy

Since, r1 = a11T1 + 1202 + ... + A1 Tp.

— (1 — &11)1‘1 — Q12T9 — ... — ATy = 0.

Also, a1; € I C J.

—> 1 — @y is unit in A.

= 11 = (1 —ay) tapzs + (1 — ay) tazes + ... + (1 — a11) tay,,.

— {9, 23, ..., T, } generates M.

—<— to minimality of generating set M.

S M =0. [ |
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Corollary. Let M be a finitely generated A—module, N a submodule of M,I C J an
ideal. Then M = IM + N = M = N.
PROOF. Since N C M + N, hence it is submodule of M + N.
— M + N is an A—module also M is finitely generated hence M/N is also finitely
generated.
Now consider,
I(M/N) = IM/N

= (IM+ N)/N

= M/N
= I(M/N) = M/N, where I C J.
Therefore by previous proposition(applying previous proposition on M/N).
M/N = 0.
= M = N. [ |
Result. Let A be a local ring with maximal ideal I and M be a finitely generated
A—module. Then show that M/IM is annihilated by I.
PROOF. Since [ is maximal ideal and M is A—module.
= I'M is submodule of M.
Also, M/IM is A—module.
Ifx+IMe M/IM and a € 1
Then, a(z + IM) =ax + IM = IM.
—a € Ann(M/IM).
— [ C Ann(M/IM).
SoM = Ann(M/IM). *.» I is maximal ideal in A.
= M/IM annihilates by I. [ |
Note. Let A be local ring with maximal ideal I, then F' = A/I its residue field. Then
M /IM forms vector space over field F.
Proposition. Let A be local ring with mazimal ideal I. If {x1,x,...,x,} be elements
of M whose images in M/IM form a basis of vector space M/IM, then show that x;
generates M.
PROOF. Let N be submodule of M generated by {x1, za, ..., 2, }.
Suppose f : N — M defined by f(x) =z, Vxr € N and g: M — M/IM defined by
gly)=y+IM, Vye M.
Then go f: N — M/IM is onto mapping,.
Because for any gy =y + IM € M/IM.
—y= (a1 + 1z + (aa+1)xo+ ...+ (an + )z, for some a1 + 1, a0+ 1,...;a, +1 € A/
Take z = a1x1 + asxo + ... + a,x, € N.

Then,
(9o )(z) = g(f(2))

= g(2)

= z+IM

= (@121 + agxe + ... + apxy,) + IM

= a1 +IM+asxo+IM+ ... +ayx, + IM
ar(zy +IM) + as(za + IM) + ... + ap(z, + IM)
(a1 + xy + (ag + Dy + ... + (ay, + Dy,

=Y
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Now let ¢ : M — M /IM be natural mapping defined by ¢(m) =m + I M,

then ¢(N) = N/IM = (N +1IM)/IM. " IM/N = (N +IM)/N for any ideal I.
— M/IM = (N + IM)/IM.

M/IM
- (N+I§V[)/IM =0.

— M(N +IM) = 0.
— M =N+ IM.

SN +IM =M.
.. By previous corollary of Nakayama’s lemma.
SN =M. [ |

EXACT SEQUENCES
Definition. A sequence of A—modules and A—homomorphisms

SURENY VAN INY VAELENG VAN

is said to be exact at M; if Im(f;) = ker(fi1).
A sequence is exact if it is exact at each M;.

Example 1. 0 — M’ Iy M is exact <= f is injective.
Example 2. M & M" — 0 is exact <= g is surjective.

Example 3. 0 — M’ Iy M % M7 = 0 s exact <= f is injective, g is surjective and g
induces an isomorphism of Coker(f) = M/f(M’) onto M".

Sodd
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CHAPTER 3
Integral Dependence and Valuations

Integral Dependence

Definition. Let B be a ring and A be a subring of B. An element x of B is said to be
integral over A if x if x is a root of monic polynomial with coefficients in A, that is x
satisfies an equation of the form.

" +a" . +a, = 0

where, a; are elements of A.

Example 1. Every element of ring A is integral over A.

Example 2. A =7Z,B = Q. If a rational number x = r/s is integral over Z, where 7, s
have no common factor.

— 7 satisfies equation of the form 2" + a12" ' + ... + ap_12 + a, = 0.

= (r/s)" +ai(r/s)" '+ ...+ a,_1(r/s) + a, = 0.

Multiplying both side by s™ we get,

4 ar" s+ ..+ a,s” = 0.

= " = —ar" s — ... — a,s".
= 1" = (—a;r" ! — . —a,s"T)s.
— s divides r".

= s = *£1.

= x € 4.

—> Element in Q is integral over Z, if it is integer.
Example 3. A = k[2?], B = k[z] then 2 € B in integral over A.
Because it satisfies equation of the form y? — x2.
Example 4. Let R be aring and G be a finite subgroups of Automorphisms(Isomorphism
from R to R) of R.
Let A=R¢={a€ R:g(a)=a, Vg€ G}andacR.
Let P(y) = [[(y — 9(a)).
geG
Every element of R is integral over R®.
Proposition. Let A C B be rings, then the followings are equivalent:
(i) x € B is integral over A;
(ii) Alz] is a finitely generated A—module;
(iii) Alx] is contained in a subring C' of B such that C' is finitely generated A—module;
(iv) There exists a faithful Alx]—module M which is finitely generated as an A—module.
PROOF. (i) = (ii).
Let x € B is integral over A.
— x satisfies equation of the form " + a 2" ! + ... + a,, = 0 for some a; € A.
— 2" = —aqz" ! — ... —a,.
— A[z] is generated by {1,z,...,2""'}.
= A[z] is finitely generated.
(ii) = (i)
Suppose A[z] is finitely generated.
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Take C' = Alx].

(iii) = (iv)

Suppose, A[z] is contained in a subring C' of B such that C'is finitely generated A—module.
Take C' = M, then it is faithful A[z]—module.

Because for any y € Alz], yC =0—=y-1=0= y = 0.

(iv) = (i)

Suppose, there exists a faithful A[z]—module M which is finitely generated as an A—module.
Consider the map ¢ : M — M defined by ¢(m) = xm.

— ¢(M)C M = M C M.

Suppose M is generated by {m, ms, ..., m,} over A.

Then ¢(my) = xm,.

= ¢(mi) =) _aym;.

J=1
n

— gb(ml) — Z ap;m; = 0.
j=1
— [¢51j — alj][ml, ma, ..., mn]L = 0.
[(bd” — aij][ml, ma, ...,77’ln]L =0.
Multiplying both side by adjoint of matrix of [¢d;; — a;;] we get,
= (¢" + a10" '+ ...+ a,)(m;) =0, V1<i<n.
— (2" +az" '+ ... +a,)m; =0, V1<i<n.

= 2" +a2" '+ ... +a, € Ann(M) = (0). "~ M is faithful A—module.
—= "+ a2 '+ ... +a,=0.
—> x € B is integral over A. [ |

Note. If N is finitely generated B—module and B is finitely generated A—module, then
N is finitely generated A—module.

Corollary. Let x;(1 < i < n) be elements of B, each integral over A. Then the ring
Alxy, za, ..., ] is a finitely-generated A—module.

PROOF. We will prove this corollary by induction on n.

For n = 1, that is if x; € B is integral over A then A[z] is finitely generated. " By
previous preposition.

Assume that the result is true for n — 1 elements.

That is, If 1, 29,...,2,_1 € B are integral over B, then A, = Alxy, 29, ...,2,_1] is
finitely generated A—module.

To prove: The result is true for n elements.

That is to prove, If z1,xs,...,x, € B are integral over B, then A, = A[xy, 2z, ..., x,] is
finitely generated A—module.

Suppose, x1,Ts, ..., T, € B are integral over B.

Then A, = A, _1[z,] is finitely generated A,,_;—module.

.. A, is finitely generated A—module.

Because, If N is finitely generated B—module and B is finitely generated A—module,
then N is finitely generated A—module. ]
Corollary. The set C of elements of B which are integral over A is subring of B con-
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taining A.

PROOF. Exercise.

Definition. The ring C' of elements of B which are integral over A is called the integral
closure of A in B. If C' = A then A is said to be integrally closed in B.

Definition. Let f : A — B be a ring homomorphism. If a € A and b € B, define a
product ab = f(a)b such that, with respect to this multiplication B forms A—module
structure. The ring B which has both ring and A—module structure is called as an
A—algebra.

Remark. Let f: A — B be a ring homomorphism, so that B is an A—algebra. Then f
is said to be integral, and B is said to be an integral A—algebra, if B is integral over its
subring f(A).

Corollary. If A C B C C are rings and if B is integral over A, and C' is integral over
B, then C is integral over A(transitivity of integral dependence).

PROOF. Let x € C in integral over B.

—= "+ bx" '+ ... +0b,=0 (b; € B).

= B’ = [by, by, ..., b,] is a finitely generated A—module, and B’[z] is a finitely generated
B’—module(since z is integral over B’).

Hence B'[z] is a finitely generated A—module and hence z is integral over A. [ |
Corollary. Let A C B be rings and let C be the integral closure of A in B. Then C 1is
integrally closed in B.

PROOQOF. Let x € B be integral over C.

— 1 is integral over A, hence z € C. [ |

Sodd
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