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CHAPTER 1

Hilbert Spaces

ELEMENTARY PROPERTIES AND EXAMPLES.

Vector Space:

Let (V, +) is abelian group and let F' be a field. Suppose there is mapping o : F'xV — V|
with o(a, x) written ax satisfying the following axioms. For all a, f € F,x,y € V

(a) a(r+y) = az + ay

(b) (e + Bz = ax + fu

(©) (aB)z = a(fa)

(d) lx ==z

Then V is called vector space over the field F'.

Inner Product Space:

If V' is a vector space over F', a semi-inner product on V' is a function u : V. xV — F
such that for all o, 8 € F and z,y, 2z € V, the following are satisfied:

(a) u(ax + By, 2) = au(z, z) + Pu(y, 2)

(b) w(z, Oéy+BZ) = au(z,y) + Bu(z,2)

(c) u(z,x) >

D wor) = 555

Here, & is complex conjugate of a.

An inner product on V' is a semi-inner product that also satisfied the following:

(e) if u(z,z) =0, then x = 0.

Note: Inner product can be denoted by u (z,y) = (z,y).

A vector space V' together with some inner product (-, -) is called as inner product space.
Example 1:

Let X be collection of all sequences {ay,|n > 1} of scalars «y, from F' such that a,, = 0 for
all but a finite number of values of n. Then X is vector space with respect to following
addition and scalar multiplication.

Addition :
{an} +{Bn} = {an + Ba}

Scalar multiplication:

afa,} = {aa,}.
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(i) Let uw: X x X — F be a mapping defined by u ({a,},{5.}) = Zanﬁn on X.

For any sequences {a,},{6.},{} € X and o, 8,y € F.
(a) Consider,

u(a{on} +8{Bu} {m}) = w{acn + 86}, {m})

o0

n=1
[eS)

= aZan”yn—i-ﬁZﬁn%
= au({an} {%})+5U({5n} {7})

u(a{on} +B{Bn}  {m}) = au{an}, {m}) + Bu({Bn}, {1m})
(b) Consider,

u({an}, BB} +7{Mm})

uog{an} ABBr + 7))

= > (BB + 1)

= Z Qn (Bﬁ_n + f_YfY_n)

= Z (B&ngn + ’_Yanffn)

= Bzangn "’WZO‘TJ%

— Bu({an} {B}) +7u ({an} , {7})

icu ({qg} BB} + 7 {m}) = Bu({an} {Ba}) + 7u({an}  {m})

u({an}, {an}) = Zandn
= Z’an‘Q >0

u({an} {an}) 20
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(d) Consider,

u(fan}, {Bn})

= u({an}, {Bn}) = u({Bn} {an})
(e) Consider,

u({an} {an)
< Zandn
— Z |an|2

n=1
= || + |ag* +

— =0
— {a,}

u({an} {om}) = 0= {an} =0
Therefore, (X, u) is inner product space.

(ii) Suppose u is defined as u ({a,},{6.})

= u({Bn} {an})

I
o

I
o

I
Q
no
|

Z a2nﬁ2n

For any sequences {a,},{fn},{m} € X and a, ﬁ,’y € F.

(a) Consider,

u (a {O‘n} + B {ﬁn} ] {Pyn}) =

u ({aay, + BBu} s {m})

o0

Z (aa2n + /85271) ’7271

n=1
9]

Z (aa2n’_y2n + ﬁﬂQn’?Qn)
n=1

Z ao@nﬁ@n + Z ﬁﬁZnﬁQn

0 Z 042n72n + 5 Z ﬁQn’}/Zn
o ({an}  {3h) 4 Bu (18, )

ula{an} +B{Bn}  {m}) = au{an}, {m}) + Bu({Bu}, {m})
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(b) Consider,

u(fant, B{Bnt +7{m}) = w({an} {680 +77m})

o

= Z O‘2n(562n + ’7’72n)
n=1

= Z Qop (/BBQTL + 77/'7271)
n=1

(BQZnﬁ_Qn + /7042n/72n>
n=1

= B Z a2n52n +7 Z Q2 V2n

= Fu({an} {B]) 470 (o} {})

ﬁcu ({O_ég} BB} + 7 {m}) = Bu({an} {Ba}) + 7u({an} {m})

WE

u({an}, {oan}) = Za2n@2n

1
[eS)

= Z |052n|2 >0
n=1

= u({an}t, {an}) =20
(d) Consider,

U({Oén},{ﬂn}) - Za2n62n
= 2@2715271

&S
= Z /8271@271

n=1

= u({Ban},{a2.})

= u({om}, {fn}) = u({Pn}, {an})

—> u is semi-inner product on X.
(e) Consider,

J
N

n=1
— |042|2+|CY4|2+... = 0
:>042 :0 = g4 =
# {a,} =0
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Because, if we take {a,} = {1,0,1,0,...} # 0, then u ({a,},{an}) = Zagndgn =0
=1

Therefore, u is not inner product on X.

Example 2:

Let (X,Q, 1) be a measure space consisting of a set X a o—algebra 2 of subsets of X,
and a countably additive measure p defined on € as p: Q — [0, 00).
o—algebra

() is a collection of subsets of X then € is called o—algebra on X if

(i) X € Q.

(ii) If A € Q then A° € Q.

(iii) If Ay, Ag, ... € Q then U2, A; € Q.

Measure

A function p: Q — [0,00) is called a measure if p (U2 A4;) = >"°, u(4;).
Measurable function

A function f: X — [0,00) is measurable if f~ ((a, 00)) is measurable.

L% () =L? (X,Q,p) {f/ (JIf @) |2du)% < oo}, where f is measurable function and
[ 1f (t)|?dp < oo is square integrable function.
Define a mapping (-,-) on L*(p) by (f,g)=[ 1)
For f,g € L* (n) = ([ |/ (?) 2d,u) < 0o and (f\g |2du)
L J1f () |du < (15 () Pdp)* ([ 19 (1) Pdu)* <

Therefore our definition of function is well defined.
Now for any f,g,h € L? () and a, 8 € F,
(a) Consider,

(af + Bg.h) =

= (af + Bg,h) = o(f, h) + 5(g, h).
(b) Consider,

(f,ag+Bh) =

= (f,ag + Bh) = a(f,g) + B(f. ).
(c) Consider,
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(f, f) >0. (d) Consider,

(f,9) = (g, f). (e) Consider,

(f.f/)=0=f=0.

(f,.fy = JF@®)f®)du
= [If () [*du
> 0
(f,9) = ff(t)ﬁdu
fg(t)ﬂdu
= Jg)f(t)dp
(9, f)
(f, ) L 0
= [f(t)f(t)dp = 0
= [Ift)Pdp = 0
= |f (t)]? =0
= f=0

Therefore, (-, -) is inner product on L? (p).
Therefore,(L? (i), (-, +)) is inner product space.

The Cauchy-Bunyakowski-Schwarz Inequality: If (-,

X, then

[z, )PP < (z,2)(y, v)

) is a semi-inner product on

for all x,y € X. Moreover, equality occurs if and only if there are scalars a and 3, both
not 0, such that {ax + By, ax + By) = 0.
PROOF. For any z,y € X and a € F

te™ t € R.

0

[ IA

(
(
(
(
(

xr —

ay,x — ay)

T, % —ay) + (—ay,z — ay)

I?
x?
x,T

Then above inequality become

0

I IA

(z, —ay) — [{oay, z) —
afy, z) + aa(y, y)

) +
r) —afz,y) —
) —

(oy, ay)]

< > - a<y7$> + |Oé|2<y,y>
Suppose (y,x) = be? b > 0,= (z,y) = be ¥ (v,2) = ¢,(y,y) = a, and let a =

¢ — e Wthet? — Wthe=0 4+ qt?

c — 20t + at?
2 =20t +c=q(t).

Thus ¢ (t) is quadratic polynomial in real variable ¢ and ¢ (t) > 0 for all ¢ € R.
= The equation ¢ (t) = 0 has at most one real solution ¢. But quadratic equation must
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have two roots and complex roots appear in pair. Therefore, ¢ () must has no real root.
— discriminant of ¢ () is not positive.

= 4b*> —4dac < 0

= b —-ac < 0

= b < ac

= [(z,y)P < (v,2)(y,)-

Now we have to show equality holds if and only if there are scalars o, 5 € F both not
zero, such that (ax + By, ax + fy) =0
Suppose there are scalars «, 5 € F' both not zero, such that (az + By, ax + Sy) = 0.

Take 3 = (y,y),« = —(x,y) then, z = (y,y)x — (v,y)y

Consider,
(z,2) = ((y,9)r —(z,9)y, (v, y)x — (T, 9)y)
= ((wy)z, (v, v)r —(x,9)y) — (2,9, (¥, y)r — (z,9)y)
= (W, )z, (y.y)z) — (v, y)z, (@, 9)y) — (&, 9y, Y, v)z) + (2, 9)y, (,9)y)
= (v vz z) = (y,9){z,y) (@ 9) — {z,9){y, y) (¥, 2) + (€, y)(z,9) (¥, y)
= W)y v, 2) = (2,9)(y y){y, 7).
y,_y> (y, y)(z,z) — (z,y)(z,9)
= (v, 9) [{y, y){z,2) — [(2, 9)|"]
Now, if
(Bx + ay, B + ay) =0
#M =0
= (v, v) [y, y)(x, 2) = [(z,9)[)] = 0
= (y, y)(z, ) — [(z, y) | =0
= [(z, ) = (z,2){(y,9)-
Conversely, Suppose |[{x,y)|* = (z,z){y,y)
= (y,9)(z, ) — [(z,9)[? 0
= (W, y) [y, ) (2, ) = [{z, »)P] = 0
= (z,2) =0
= (fx + ay, Br + ay) = 0
where 8 = (y,y) and o = —(x,y). [ |

Corollary. If (-,-) is a semi-inner product on X and ||z|| = (z,2)'/? for all z € X, then
() [l +yll < llzll + llyll for all z,y € X.
(b) ||ax|| = |a|||z|| for all x € X and o € F.
If (-,-) is inner product, then
(¢) ||z]| =0 implies x = 0.
PROOF.
(a) For z,y € X
lz+yll* = (e+yz+y)
= (z,2) + (z,9) + (v, 2) + {4, 9)
= |zl + (z,y) + (z,9) + Iyl
= |lz|* + 2Re(z,y) + [lylI*.
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We know that Re(z,y) < |[{x,y)| and by CBS inequality we have |(z,y)| < ||z||||ly||. Hence

lz+yl* <l l® + 20|z iyl + lyI1*
(Ul + i)™

= llz+yll < llzll + vl

(b) For v € Frand x € X

lox|* = (oz,ax)
= aa(x,x)
= |of?||=[?
= [laz]| = |af|z]
(c) Suppose (-, -} is inner product on X.
1 =0
— (z,z) = 0
— = 0

[ |
If (-,-) is a semi-inner product on X and if z,y € X, then ||z + y||* = ||z|* + 2 Re
(z,y) + ||y||? is called as polar identity.
Let X be a vector space over F. Then the function || - || : X — F from X to F is called
norm if it satisfies following conditions.
(i) Forall z € X, ||z|| > 0 and ||z|| =0 < 2 = 0.
(ii) For all x € X and a € F, |Jaz| = |af||z].
(iii) For any =,y € X, ||z +y| < ||z|| + ||y|l. The quantity ||x||* = (x,z)'/? is called the
norm of x induced by inner product.

If X is vector space together with || - || is called normed linear space.
Note

(1) A sequence {x,} in X converges to  in normed linear space means
|z, — || = 0 as n — oo or nll_{{.lo |zn, — 2| = 0.

(2) A sequence {x,} is said to be a Cauchy sequence in X if for given € > 0,3IN € N
such that

|zn — x| < 0,¥Ym,n > N.

Given a normed linear space X, define metric on X as d(z,y) = ||z — y||.

(i) d(z,y) = ||z —yl[ > 0

= d(z,y) > 0.

(ii) d(z,y) = [z —yl| = |ly — z|| = d(y, z)

= d(z,y) = d(y,z)

(i) d(z,y) = 0

& |lz -yl =0

Sr—y=0

Sr=y

(iv) d(z,y) = lz —yll = [z — 2 = (y = )| < [z — 2| + [|[z —y|l = d(z,2) + d(z,y)
= d(z,y) < d(z,2) +d(z,y).
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Definition. A Hilbert space is a vector space H over F' together with an inner product
(-, -) such that relative to the metric d(x,y) = ||z —y|| induced by the norm, H is complete
metric space.

Fatou’s Lemma: If f, : X — [0,00) is measurable for each positive integer n. Then

i (lim inf fn> dp < lim mf/fnd,u
Example 1. The measure space H = L? (u) = L? (X, i) is Hilbert space.

PROOF. We have L? (u {f/ (J1f @ |2d/1)1/2 < oo} where f is measurable function.

Then for f,g € L? (1) define a metric on L? (i) by d(f,g) = ||f — gll2-
Suppose {f,} be Cauchy sequence in L? (u).

It is sufficient to prove that one of the subsequence of {f,} is convergent.
Let {f,,} be a subsequence of given sequence such that

ani+1 fnz

2<2“ i:1,2,3,...

then

k [e%S)
Define gk:Z|fni+1_fni andg:Z|fm+1_fm )
i=1 =1

lgells = ([ lgel2dp)'”
1/2
2Idu>

k
= (f‘ZUmH _fni
=1

% 1/2
< (fZ|fni+1_fm|2d:u>
i=1
k 1/2
< Z(/lfni+1_fni|2dlu)
Zil
- Z||fm+1_fm 2
i=1
< k L
=1 QZ
_ 1 1 1 1
R ITAT ST
- gty teten)
< §(§+2—2+2—3+..—|—2k_1+2—k+ )
_ 1 1
= ()
= 1

gkl <1

1/2
= ([l <1
= [g¢ < [lonl* <1
Now applying Fatou’s lemma to g7 we get:

i (]}1_{{)10 inf g,%) dp < kh_)rgo inf/g,%du <1
= [¢*dp <1
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= (ngdM)l/2 <1
=gl <1< o0
= g must converges a. e.

= Z (f niy1 fni) converges absolutely a. e.
=1

= fo, + Z (faiss — fn) converges absolutely a. e.

Let f(x) = fu, + Z (faiys — fn;) for those z € X for which above series converges

i=1
absolutely and denote f (z) = 0 for those # € X for which above series is not absolutely
converging.

k
Suppose fn1 + Z (fni+1 - fnz) == fnk
i, (2) —f(2) ae.

. {fn} converges pointwise to f

Given a Cauchy sequence {f,} and € > 0, there exist N € N such that
| fo — fmll <€ Vn,m > N.

For m > N

[ lim inf | f,, — finldp = / |f — fl?dp < lim inf/ | fr, — fonl?dp < €
11— 00 1—00

(S 1 = falPd)? < e

= |If = full2 < e<oo

S f =t L ()

1fllz = 1f = fou + frllz S (If = frmllz + | fmll2 < 00

= feL*(n)

SN = fmll2 = 0asm — oo

= {fn} converges to f and f € L*(u).

Therefore, L? () is complete with respect to metric induced by inner product.
Therefore, L? () is Hilbert space. [ ]
Note

(1) Every Cauchy sequence is bounded.(Exercise)

(2) Minkowski Inequality: For 1 < p < oo and for any complex numbers zy, y, € C,

Z 21+ el Z ) 4+ (3 [yil?) 7
k=1

Example 2. Let I be any set and let (2 (I) denote the set of all functions z : I — F

such that z (i) = 0 for all but a countable number of 7 and Z 2 (i) | < 0.
i€l

For x and y in % (I) define
(wy) = D x(i)y()

i
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Then (2 (1) is Hilbert space.
Note: If I is countable then [? (1) is denoted by 2.
PROOF: Clearly [? is inner product space(Exercise for you).

Since (z,y) = Zx () y (¢) is inner product on 2.
i=1

= (z,z) = Zx(i)m.
= le(m2

=1
el = (z,2)'?
0o 1/2
= lzl = (Do lz(®)P
i=1
=d(z,y) = |z—yl

~ 1/2
= (Xl@-v0) !2>

Let {z,} be a Cauchy sequence in [°.
That is, for given € > 0, there exists N € N such that

d(zp, ) < € Vn,m>N.
o 1/2

= (Z |2 () — T (4) |2> < ¢ Yn,m>N

:>Z|xn ) — 2 (1) 2 < €, VYnm>N

Consider,

[ (i) = 2 (1) |

IA

<Z |20 () = @m (9) 2>1/2

= d(zp,xm) <€, VYn,m>N
= |z, (1) —xm (i) < € Vn,m> N.

. {x,(i)} is Cauchy sequence in F.
= 2, (1) = = (i) as n — 00
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Consider,

x | o = (x(1),2(2),2(3),...)
$<Z\x(j>\2> =

j=1

IN

i 1/2
:><Z\a:(i)|2) <

j=1

Now as ¢ — 00, then we have

s 1/2
= <Z|x(i)|2> <00

=z €[’

~ 1/2
Already we have, <Z |2, (1) — T, (7) |2> <€

P
Fix n, taking limit as m — oo

1/2
_ 2
%&(Zmn T, )|) <€
1/2
(Z |y, (1) — 2 (7) | ) <€
1/2
Now as n — oo, (Z |z, (1) — x (7) |2> —0

=1
= d(x,,x) — 0 and n — oo
= {r,} - xasn — oo and z € [%.
[? is complete metric space with respect to above defined metric.
. 12 is Hilbert space. [ |
Example 3. Show that H = R* = {(x (1) ,2(2),...,x (k) /z(i) € R} is Hilbert space.
PROOF. Define an inner product on R” as,
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(x,y) = ix(l)y@)
el = (o0
= (e
- éw)?)m
The metric induced by above inner produczils given by,
o) = llo =]
= (Sl v

Suppose {x,} be Cauchy sequence in R*,
Therefore, for given € > 0, there exists N € N such that
d(zp, ) <€ VYn,m >N

- (Z[x”(i) — 2 (D)])? <€
Conéi:(ier,
2, (1) — 2 (i) < (Z 120 (3) — 2 ()]2) V2
= dl(?tm,xn)

< € Ynm>N

= {z,(i)} is Cauchy sequence in R.

We know that R is complete.

x,(i) = x(i) in R as n — oo.

Consider, z = (z(1),z(2), ..., z(k)) then x € R* because each z(i) € R.
Since,

k

O ea()) —zm(D))? <

i=1

For fix n and taking m — oo.

(Zliﬂn(i)—96‘(@')|2)1/2 < €
:Z;cli(xn,:c) < €

That is d(x,,z) — 0 as n — oo.
= {z,} — 2 as n — oo and x € R
. R¥ is complete.
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. R¥ is Hilbert space. [
ORTHOGONALITY

Definition. If H is Hilbert space and f,g € H, then f and g are orthogonal if (f, g) = 0.
In symbols, f L g.

If AABC H,then A L Bif f 1 gforevery f € Aand g € B.

If H = R? then two non-zero vectors in R? are orthogonal precisely when the angle be-
tween them is 7.

Pythagorean Theorem. If fi, fo, ..., f. are pairwise orthogonal vectors in H, then

Lo+ fot ot full? = NAIP+ P+ -+ [l

PROOF. We will prove this theorem by induction.
If f1 1 fg, then

i+ P = (fi+ fo, fi + fo)
= (f1, f1) + (f1, fo) + (fo, f1) + (fo, f2)
= [AIP+ [ fI?

Therefore, result is true for n = 2.

Now assume that the result is true for n = k. That is if fi, fo, ..., fr are pairwise orthog-
onal then [ + fo + . & fell? = LAl + [ fall? + .+ Ll

Now we have to show the result is true for n = k + 1.

Suppose f1, fo, ..., frs1 are pairwise orthogonal vectorsin H = h = fi1+ fo+...+ fr € H.
Consider,

|fid fot o+ fo+ fosal? = B+ fosa?

IR0+ [ fesa ll?

1 fr+ fo+ o4 fill? + | frral?
2| o Y S o 7| o e |

Therefore, by mathematical induction
If f1, fo, ..., fn are pairwise orthogonal vectors in H, then

Ifr+ fot o fallP = AP+ LI+ -+ ([ fal® u
Parallelogram Law: If H is Hilbert space and f and g € H, then

L+ gl + 11 = gl* = 201LF1* + lgl*)-

PROOF. For any f,g € H the polar identity implies,

1f+ 9l = IIfII*+2Re(f. g) + [lgll*,
If=gl> = IIfII> = 2Re(f,9) + llgll*

Adding both identities we get,

Lf+ gl + 11 =gl = 201/ + llgl*).

|
Result 1: Suppose X is vector space and (-, -) is an inner product on X. If ||z, —z| — 0
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as n — oo and ||y, — y|| = 0 as n — oo, then show that (z,,y,) — (z,y) as n — 0.
PROOF. Consider,

= [(@n,yn) = (@0, y) + (@0, y) — (2, 9)]
< [Zn, Yn) = (@0, )|+ (20, y) — (2,9)]
= [0, Yn — |+ (20 — 2,9)|
< N@allllyn =yl + |2, — 2[|ly|l
= (@ yn) — (@0 < N 2allllyn =yl + (|20 — 2[||yll

As n — oo RHS of above inequality tend to 0.

Therefore, (x,,y,) — (x,y) as n — oo. [ |
Result 2: Subspace of Hilbert space is Hilbert space iff it is closed.

PROOF. Exercise.

Result 3: Among all norms || - ||,,1 < p < co only || - ||2 is a norm coming from inner
product. That is only || - [|2 induced from inner product.

PROOF. For z = (2(1),2(2), ..., z(k)) € FF,

Il = E:M (@)

Choose = = (1,0,0,...,0) and y = (0, 1,0, ...,0)
By Parallelogram law we have ||z + y|2 + ||z — y|2 = 2([|=|? + [|y]2)-

(@0, Yn) — (,9)|

LHS :|M+yW+Hx—MP

k
= Zu Ty + (3 J2(0) - y(i)P)?

1=

1
= u+1+0+ +0F@+u+1+0+ 4 0)r

= 922/p 4 92/p
— 9l+2/p
RHS = 2(|J=l7 + llylI3)
k k
= 2[Q_ [=@OP)¥7 + (D ly(@)")*7]
i=1 i=1
= 201+1]
= 922
LHS = RHS
& 212/ = 22
S1+2=2
& p=2.
*. Only, || - ||2 induced from inner product. |

Result 4: Show that among all L?([0,1]) only L?([0,2]) is an inner product space.
PROOF. Exercise.

Result 5: Show that Cyoy = {z : I — F'} such that z(i) = 0 for all but finitely many 1,
is not Hilbert space.

PROOF. Clearly Cy is a subspace of [2.
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It is sufficient to show there exists one Cauchy sequence which is not convergent in Cy.
Suppose {z,} ={1,1/2,1/3,...,1/n,0,0,0,...}.

Since finitely many terms of this sequence are non-zero therefore {z,} € Cy.

Then, {x,} is Cauchy but it is not convergent in Cyy.

Hence, Cy is not Hilbert space. |
Definition. If X is any vector space over F' and A C H, then A is convex set if for any
ryyeAand 0 <t <1 tx+ (1 —t)y € A.

Remark 1: Any linear subspace of X is convex(Check).

Remark 2: If H is Hilbert space, then show that every open ball B(f;r) ={g € H/||f —g|| <r}
is convex.

PROOF. Let g,h € B(f;r).

To show: tg + (1 —t)h € B(f;7).

Consider,

If = (tg + (1 =1)h)]| If —tg+tf —tf — (1 —1)h|
If —tf —tg+tf —(1—1)h|
(X =2)f = (1 =t)h+t(f = g)ll

(X =) (f = h) +t(f =gl

< =00 =M+ tf = 9)ll
= (=D =M+ =9l
< (I—=t)r+tr
= r—tir4ir
= If = (tg+ A =)h)|| <r
Therefore, Every open ball in H is convex set. |

Theorem. If H is Hilbert space, K is a closed conver non-empty subset of H, and
h € H, then there is a unique point ko in K such that

1h — ko|| = dist(h, K) = inf {||h — k|| /k € K}.

PROOF. Let d = dist(h, K) = inf {||h — k|| /k € K}.
Therefore, 3{k, } from K such that ||h — k|| — d as n — oc.
That is, lim ||h — kn|| = d.
n—oo
Let k,, and k,, be two elements from the sequence {k,}.
Then fatkn ¢ K (" K is convex)
o e >
= |12k — (kn + k)| > 2d.
Also, lim ||h — k|| =d and lim ||k — k,|| = d.
m—0o0 n—oo
Now, For any € > 0, choose N such that for m,n > N € N, then
[k — kaQ = |lkn—h+h-— kaQ

= 2(|h = ku|l* + | = kinl®) = |h = Ko + b = K |1?
201 = kall® 4 1h = k[12) = 1 = o+ h = ke[ |* + €

A\

= ||km — kn]| < e
= {k,} is a Cauchy sequence.
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Since K is closed subset of Hilbert space H hence it is Hilbert space.
= K is complete.

= {k,} must converges to some point in K.

That is, 7}1&12@ k, =ky € K.

=Kol = b= lim
= | Jim (h— k)|
= Tim b~ k|

n—oo

d
= dist(h, K).

Uniqueness:

Let, k1 and ks be two points from K such that ||h — k;|| = dist(h, K) and ||h — ko|| =
dist(h, K).

stk e K

=B > d

12k = (R + ko)l = 2d

Now,

[1k1 — ko[ = |lks ="+ h =kl

| = (7= k) + (h = ko)|?

2([[h = Fa || + |lh = Ka[|*) = |h = ka + h — ko?
2([|h — Eal|* + ([P = Ka|?) — (122 — (k1 + Ko) 12
2d? + 2d* — 4d?

0

A

= ||k1 — k2| <0.

But we know that norm is always greater equal to 0. That is, ||k; — ko|| > 0

= ||k1 — k2| =0

= ]{71 — kQ =0

=k = ]{32. [ |
Note: The above theorem also holds, if we replace convex set by closed linear subspace
of H.

Theorem. If M is a closed linear subspace of H, h € H, and fy is unique element of
M such that ||h — fo|| = dist(h, M), then h — fo L M. Conversely, if fo € M such that
h—fo L M, then ||h — fol| = dist(h, M) .

PROOF. Given f; unique element from M such that ||h — fo|| = dist(h, M).

Let feM = fo+feM . M 1is linear subspace = closed under addition.
We know that

1= foll* < Nk =(fo+ NI
= |h=fo—fI?
lh = foll* = 2Re(h — fo. ) + I fII?

= b= foll* < Ih = fol> = 2Reh — fo, f) + I fI”
= —2Re(h — fo, [) + I f[* = 0
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= 2Re(h — fo, ) < {f.f), YfeM

Now fix f in M and substitute te? f for f in preceding inequality,
= 2Re(h — fo,te? f) < (tef te? f),t € R

= 2Re {te=(h — fo, [)} <t¥{f. f),t ER

Now put (h — fo, f) = re?® where r > 0.

= 2Re {te"re= 0} < 12| ]2

= 2tr < ?| f|?

Fort#0andt— 0= 1r <0

=r=0
= (h — fo, f) = 0 for arbitrary f € M

Conversely, suppose fo € M such that h — fy L M.
Consider, f € M, then fo — f € M.

Sh—=folLl fo—f
Ih—fIP = [Ih—fo+ fo— flI?
= b= fol®+lIfo— fII?
> ||h— foll?

b= P> = folP. VS € M.

b= foll = it {5~ fII/f € M}, .
Result. If A C H, then At ={f e H/f 1L g, Vg¢& A} is closed linear subspace of H.
PROOF. Let fi, fo € At = (f1,9) =0 and (f5,9) =0, Vge A.

cAfi T+ fa,9) = (fi,9) + (f2,9) =0, VgeA

At fe e AL,

Also, for any ae € F and f € A+

(af,9) =alf,9) =0.

saf € At

= A" is linear subspace of H.

Suppose z is limit point of A+, then there exists a sequence {2, } in A+ such that {z,} — 2.
s Az, 9) =0, VgeA

Consider,
(z,9) = (lim 2,,g9)

n—o0

lim (2, g)

n—oo

= 0, VgeA.

= zc At
Therefore, A+ is closed linear subspace of H. [ |

Projection theorem. Let H be a Hilbert space and M be a closed linear subspace of H
then H =M & M~.

PROOF. Suppose h € M N M-+.

= héeMand he M.

= (h,h) = 0.

= h =0.

.MMt ={0}.
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Since M is closed linear subspace of H and M 1 M*.
SN =M + M+ is closed .
M cC N and M+ C N. if §; € Sy = Sy C St
= N+ Cc Mt and N+t Cc M++.
o Nt c M+n M ={0}.

= Nt ={0}.
= N+t = {0}".

= N+ =H. {0}y =H .
= N=H. . N is closed linear subspace of Hilbert space H.
H=M+ M*.
S H=M&M™*. [ |

Note. In previous two theorems we have proved that, if M is closed linear subspace of
H and h € H, then there exist unique point fy in M such that h — f; € M*. Thus we
can define a mapping P : H — M by Ph = f,.

Theorem. If M is closed linear subspace of H and h € H, let Ph be the unique point in
M such that h — Ph L. M. Then

(a) P is a linear transformation on H,

(b) [|PR]] < [[A]] for every h € H,

(c) P? = P(here P? is composition of P with itself),

(d) ker P = M+ and ranP = M.

PROOF. (a) Suppose P : H — M is a function defined by h +— Ph.

Let hi,ho € H,f € M and o, € F.

We want to show P(ahy + She) = aP(hy) + P (hs).

Consider,

(Bhy — BP(ha), f)

(ahy + Bhy — (aP(h1) + BP(hy)), f) = (ahy —aP(hy), f) +
)+ Blhe = P(ha), f)

<h1 ( )7
a(0) — B(0)
= 0

" <Oéh1 —+ ﬁhg — (Oép<h1> -+ BP(hQ)), f> =0.

Given that, Vh € H h — Ph 1 M.

= ahy + Bhe — P(ahy + Bhy) L M and P(ahy + Bhs) is unique.
.. P is linear transformation.

(b) Given h — Ph L M,Vh € H.

Ihl|* = ||h— Ph+ Ph|?
= ||h = Ph|[* + || Ph]?*
> ||Ph|?
PR < Rl
(c) Consider, P?(h) = P(P(h)) = Ph. ~Phe M C H= PheH.
S P?=P.

(d) ker P = {h € H/Ph = 0}.
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Let h € ker P = Ph = 0.
h=h—0=h—Phec M.

= he M.

— ker P C M*.

Now, Let h € M+,

= h—-0€ M.

Also we know that h — Ph € M+ and Ph is unique.

= Ph =0.
= h € ker P. = M* C ker P.
s ker P = M*.

If M is closed linear subspace of H then H = M & M~ and we know that P : H — M
is a linear transformation such that P2 = P. Then H = ker P® ranP.

= ker P+ ranP = H = M + M*.

— ranP = M.

DEFINITION. If M is closed linear subspace of H and P is linear transformation from
H to M, then P is called as Orthogonal projection of H onto M.

Result. If P is orthogonal projection onto M, then I — P is orthogonal projection onto
M.

PROOF. Let f € M+,

Consider,

(h— (I —P)h,f) = (h—h+ Ph,f)

(Ph, f)
0, VfeM:- feM*+and Phe M.= f L Ph.

ch— (I P)h L M-,
Suppose g € M+,

—h—(I—P)hL(I-P)h—g o h— (I —P)h L M*.
cAh=gl? = |h=(I—=P)h+ (I = P)h—g|?*
|h— (I — P)h||*>+ |[(I — P)h —g]]? " By Pythagorean theorem.

> |h—(I = P)h|?

s =gl = |[h— (I —P)h||, Vg€ M.
= ||h — (I — P)h| = dist(h, M*).
. (I = P)h is unique.
. I — P is orthogonal projection onto M.
Corollary. If M is closed linear subspace of H(M < H), then (M*)* .
PROOF. Let P be orthogonal projection onto M, then I — P is orthogonal projection
onto M.
Also,
ker(I — P) = {he H/(I - P)h=0}

= {he€ H/h— Ph=0}

= {h € H/h= Ph}

= ranP

= M
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For I — P orthogonal projection of M*.

ker(I — P) = (M*)*.

— ker(I — P) = (M*)*.

= (M)t =M. [ ]
DEFINITION. If A C H, let VA = the intersection of all closed linear subspace of H
that contains A. VA is called closed linear span of A.

Corollary. If A C H, then (A1)t is closed linear span of A in H.

PROOF. By definition of closed linear space VA = [A], where [A] is linear span of A.

For any subset A C H, A C (A*)™. " (A1)+ is closed linear subspace of H.
= [A] C (A1) (1) . [A] is smallest closed set which contains
A

Also, A C [A] — A c [A].
— [A] c A*.

— (A A =T 2)
From (1) and (2) we get, [A] = (A+)+.
.. Closed linear span of A is (A1)*+. [

Definition. Y is called linear manifold if Y is linear subspace of H and Y may not be
closed.

Corollary. IfY is linear manifold in H, then'Y is dense in H iff Y+ = (0).

PROOF. Suppose Y is dense in H.

— Y = H.

— Y =H'={0}.

— YV ={0}.

= Y+ ={0}.

Conversely, suppose Y+ = {0}.

We know that (Y+)+ =Y. .Y is linear space hence (Y )+ =Y.
— Y = {0}".

=Y =H.

—> Y is dense in H. ]
Proposition. Let H be a Hilbert space and L : H — F be a linear functional. Then
following statements are equivalent.

(a) L is continuous.

(b) L is continuous at 0.

(c) L is continuous at some point.

(d) There exist a constant ¢ > 0 such that |[L(h)| < c||h|| for every h in H.

PROOF. Clearly, (a) = (b) = ().

(d) = (b)

Suppose there exists a constant ¢ > 0 such that |L(h)| < ¢||h|| for every h in H.

Now for given € > 0, choose § = ¢/c such that |h — 0| < ¢/c.

= |L(h)| < c||h|| < c-€/c=ce.

= |L(h) — L(0)| < e.

— L is continuous at 0.

() = (d)

Suppose L is continuous at 0.
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— For given ¢ = 1, there exists 6 > 0 such that

B(0,6) C L '({a/|a| < 1}). *.* Inverse image of open set is open.
— For h e H and ||h|| < 6 = |L(h)| < 1.
ces s
Choose, HhH+ € B(0,9). : 5—5-1>||”h}|‘?\|.
ol ||h||+5|| <0 = ‘L( )| <1
— \hH+e|L( )| < 1.

= |L(h)] < 5(18]l +¢).
Let, ¢ — 0 in above inequality,
— |L(W)] < YAl
Choose, ¢ = &
— |L(h)| < c[|A].
(¢) = (a)
Let L be continuous at some point hg € H.
Let h € H be any arbitrary point and consider {h,} — h as n — 0.
= {hy, — h+ho} = hy as n — oc.
= lim L(h, — h+ ho) = L(ho). " L is continuous at hy.
n—oo
— 1i_>m [L(hy) — L(h) + L(ho)] = L(hy).
— lim L(h,) — L(h) + L(ho) = L(ho).
n—oo
—> lim L(h,) = L(h).
n—oo
— L is continuous at h € H.
Therefore, L is continuous on H. [ |
Definition. A bounded linear functional L on H is a linear functional for which there
is a constant ¢ > 0 such that |L(h)| < c||h|| for all h € H.
Note. By preceding proposition, a linear functional is bounded if and only if it is
continuous.
For a bounded linear functional L : H — F, define || L|| = sup {|L(h)|/||h]] < 1}.
By definition ||L|| < oo and ||L|| is called the norm of L.
Proposition. If L is a bounded linear functional, then

L] = sup{[L(h)|: [IA]] =1}
= sup{[L(R)|/||h]| : h € H,h # 0}
= inf{c>0: |L(h)| < c|h|,h € H}.

PROOF. Let o = inf {¢ > 0 : |L(h)| < c||h||,h € H}. (1)
By definition of norm L,

|L|| = sup{|L(h)| : ||h]]| < 1}. For a given € > 0, |L<Hh\}\l+
— b |L()| < L.

= |L(A)] < (Al + )L

Taking € — 0,

[L(h)| < [IL[]|R]].

= a <||L]. (*)
Let [L(h)| < c[A].

If ||h|| < 1.

L) < e

I <L
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= ||L]| < e " by definition of ||L]|.
Taking infimum on both side = ||L|| < a. (**)
Soa=|| L] -~ from (*) and (**).
Let § = sup {[L(h)[ - [[A]| <1}
Clearly, 5 < ||L]|. " by definition of ||L||.
Consider,
L) = |55 (1]l

— LG - I

< sup{|L(z)|: |zl = 1,z € H} - [[n]|.
L(h)] < BRIl
— a < [. *.* by definition of «
= ||LII < 5.

o

ﬂiwww

p{‘“”| he Hh#0}-|h].
h||.

— a < 7. *.* by definition of «
— [|L]| <.
Clearly, v < ||L]|.
sy =1L u
Fix an hy in H and define L : H — F by L(h) = (h, ho).
For hi,hs € H and o € F.
Consider,
L(hl + Oéhg) = <h1 + Oéhg, h0>

= <h1, ho) + <Oéh2, h0>

(h1, ho) + a(ha, ho)
= L(hy) + aL(hs)

— L is linear.

Also, by CBS inequality |L(h)| = [(h, ho)| < ||A||||7o]]-
— L is bounded.

= [|L]| < HhoH

Now for ”h 0 € H.
h
L<Hh3u> (fip» ho)-
||ho|\ (o ho)-
_ lhol
lholl
= L(”h ||) = ”hOH-
= ||L|| = [|ho]-

The Riesz Representation Theorem. If L : H — F is a bounded linear functional,
then there is a unique vector hg € H such that L(h) = (h, ho) for every h € H. Moreover,
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L1 = kol

PROOF. Let M = ker L.

Let hi,hy € ker L and o € F.

Consider, L(hy + ahy) = L(hy) + aL(hg) = 0.  * hy,hy € ker L = L(hy) = 0 = L(hy).
— ker L is linear subspace of H.

Let x € H be a limit point of ker L.

— 3{z,} of points from ker L such that {z,} — x.

= nh_)rrolo L({z,}) = L(z). " L is linear and bounded=- L is continuous.

= 0= L(x). .y, € ker L for all n.
=z € ker L.

— ker L is closed linear subspace of H.

.. M 1is closed linear subspace of H.

case(i) If M = H = M+ = (0).

Then, simply choose L(h) = (h,0) = ||L|| = ||hol|, where ho = 0.

case(ii) If M # H = M~ # (0).

= J some non-zero fy € M=+ such that L(fy) = 1.

Now if h € H and o = L(h), then L(h — afy) = L(h) — aL(fo) = L(h) — L(h) = 0.

— h—afy € ker L =M.

= h—afy e M.

— (h — afy, fo) = 0. " foe Mt
= (h, fo) — a{fo, fo) = 0.

= (h, fo) — all fol* = 0.

— a = (h, ”Jf#>

= L(h) = (h, 7).

Choose, hy = ”ff#

= L(h) = (h, ho).

Uniqueness, Suppose there are two hy, hy € H such that L(h) = (h, hy) and L(h) = (h, hs)
for all h € H.
= <h7 h1> = <
= (h,hn) =
— <h, hy — h2>
= hy — hy = 0.
< hl = hs.
Also, we have proved ||L|| = ||ho]|- [ |
Corollary. If (X,Q,p) is a measure space and F : L*(u) — F is bounded linear func-
tional, then there is unique ho in L*(u) such that F(h) = [ hhodp, for every h in L*(p).
PROOF. Choose, H = L*(u) and L = F, then by Riesz representation theorem there
exists hg € H such that,

L(h) = (h, ho).
— L(h) = [ hhodp.
— F(h) = [ hhody. n

ORTHOGONAL SET OF VECTORS AND BASES
Definition. An orthonormal subset of a Hilbert space H is subset £ having the proper-
ties:
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(a) For e € &, |le]| = 1.

(b) If 1,65 € € and e # es, then ey L es.

Definition. A basis for H is a maximal orthonormal set. Also called as Hamal basis.
Note. The concept of basis is different from Hamal basis because for an infinite dimen-
sional Hilbert space, basis is not Hamal basis.

Proposition. Fvery Hilbert space has an orthonormal basis.

PROOF. Let > be the collection of all orthonormal subsets of H ordered by inclusion.

We know that 0 # h € H, then the singleton set { } is orthonormal and hence )

(Il
is non-empty. If we take C': B} C Ey C ... be chain in ), then UE;,i = 1,2, ... is or-
thonormal set which is upper bound. Therefore by Zorn’s Lemma there exists a maximal
element £ € ) which is required maximal orthonormal set in H. |
Example 1. Let H = L4[0,27] and for n in Z define e, € H by e,(t) = \/%emt. Then
{e, : n € Z} is an orthogonal set in H.
Solution. Let e,(t) = \/%emt then,
llen ()l = {en, en)'’?
= 07T 6n_ndt)1/2
= (Jy leal?dt)
= f% 1 dt 1/2
- L
= 7=
1
= |len]| = 1.
Now if n # m, then
<€n7 €m> = 0271' en%dt
27r

int 1 efzmtdt

f(] z(n—m)tdt

——¢C

. {e, :n € Z} is orthogonal.

Example 2. If H = F? and for 1 < k < d, e, = the d-tuple with 1 in the &' place and
zeros elsewhere, then {ej, e, ..., e4} is a basis for H.

Solution. Exercise.

Example 3. Let H = [?(I). For each i € I define ¢; in H by e;(i) = 1 and ¢;(j) = 0 for
all i # j. Then {e; : i € I} is a basis.

Solution. Exercise.

The Gram-Schmidt Orthogonalization Process. If H is a Hilbert space and {h,, : n € N}
is a linearly independent subset of H, then there is an orthonormal set {e, : n € N} such
that for every n, the linear space of {ey, ey, ..., €, } equals the linear span of {hy, ha, ..., h,, }.
Proposition. Let {ey, ey, ...,e,} be an orthonormal set in H and let M =V {eq, e, ...,e,}.
If P is the orthogonal projection on H onto M, then

n

Ph = Y (h.epex

k=1
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for all h in H.
PROOF. Let Qh =Y (h, ex)ex

3

<Qh761> = <Z h ek’ ek7el

k=1
(h,er)er + (h,ez)es + ... + (h, en)en, e1)
h,er){er,e1) + (h,ea)(ea, e1) + ... + (h,en){(en, €1)
h‘7€1>

Consider, (h — Qh,e1) = (h,e1) — (Qh,e1) =

= h—Qh L e;.

Similarly, h — Qh Le; V1 <j<mn.

— h—Qh 1L M, VheH.

But we know that P is orthogonal projection of H on M, then h — Ph L M and Ph is
unique.

{
{
{

= Ph = Qh.
:>Ph:z<h, 6k>€k¢- |
k=1

Bessel’s Inequality. If {e, : n € N} is an orthonormal set and h € H, then

o

D [hea) < |hl*
n=1

PROOF. For any fixed n, let h,, = h — Z(h, ex)Eer

. k=1
Consider,

n

(hoyer) = (h=Y (her)ex, er)

n=1
= (he)) = O _(h,en)er,er)
n=1
= (h,e1) — (h,er){e1,e1) — (h,ea){ea,e1) — ... — (h,en){en, €1)
= (he1) — (h,e1)
=0
- hn 1 €1.
Similarly, h,, L e;, V1< j<n.
Also,

n

(hn, (h,eryer) = (hy,(h,e1)er + (h,es)es + ...+ (h,e,)e,)

k=1

= (()h, e1)(hn,e1) + (h,e)(hn,e2) + ... + (h, en) (hn, €n)
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Since, h = h,, + Z(h, ex)ex

k=1

= HhH2 = ||hn+ ZUL, €k>€kH2 *. By Pythagorean theorem

= [1hnll? + HZ (hyex)er? e LY (henen
k=1
> | Z hew)ex]’ (1)

Now consider,

n

1> (b enenl? =
k=1

h, :el)(h, e1)(e1,e1) + (h,ea)(h,es){ea,ea) + ... + (h,en)(h, en){en, en)
(hyer)]? + [{h,e)|? + ... + [{h, en)|?

Therefore, inequality (1)
= B> =Y [(hen)’, Vhe H.

k=1
:>Z| (h,er)|? < ||h||%. [

Proposﬂzlon If € is an orthonormal set in H and h € H, then (h,e) # 0 for at most a

countable number of vectors e € £.
PROOF. Let E, = {e € £/|(h,e)| > L}.

k k
Z <> lhe)l’ < [nl.
=1

n=1

. B, must be finite.
U, E, is countable union of finite set and hence countable.
*. (h,€) # 0 for countable number of e € £. [ |

Corollary. Let £ be an orthonormal set, then Z [(h,e)|? < ||n|.

ec&
PROOQOF. Proof of this corollary follows from Bassel’s inequality and above corollary. W

Result. Show that Z| (hye,)|> = ||h||? iff h = Z (h,en)en.

n=1 n=1
m

PROOF. Let, hy, = Y (h.eq)e,

n=1
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| — 2

(hpn — hy hyy, — D)

| l* = (P 1) = (R ) =+ || 2|2

m m

ol = (B enens h) = (R, (hsenden) + IR

n=1 n=1

| hml)> — ((h,e1)er + (h,ea)es + ... + (b, ) em, h)

—(h,(h,e1)er + (h,ea)es + ... + (h, em)em) + ||h]?

= |lhml* = (b er){er, h) = (hoea)(ez, h) — ... —

—<h, 61><h, 61> - <h, 62><h, 62> -

= [hnl® = (b, e1)(h, e1) — (h,e2)(h,e2) — ... —

—<h, 61><h, 61> - <h, 62><h, 62> -

= [lhmll® = 2(h, e1)(h, e1) = 2(h, e2)(h, €2) —

=l =2 1R ea) P+ 122

n=1

= [Inll* - Z B, en)|?

N e el e Z\hen

Now taking m — Q.

= ||h— Z (b, en)enl|* = ||B))* — Z| (h, en)|

n 1

= ||h - Zhen Yeul® = [IR[I* = lI2]*.

n=1

= [|h =) (hen)en|® = 0.

Converse is left for exercise.

Prof. K. R. Shinde 28

(h,em){(em, h)

= (b, em)(h, em) + |22

(h, em)(h,en)

= (b, em) (R em) + || 2]

2(h, em)(h, €m) + [|1||?

b = Z\hen B
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If I is an infinite uncountable set. Then consider F be collection of all finite subset
of I. Define order on F by inclusion, then define hp = > {h;/i € F,F € F}. Then
{hp/F € F} is called as net in H.

Definition. The sum ) {h;/i € I} is convergent if then net {hp/F € F} converges; the
value of sum is the limit of the net.

Result. If [ is countable, then Y {h;/i € I} converges implies Z h,, converges.
n=1

PROOF. Let |F| = n for each F € F.
Then hF = hl + hg + ...+ hn

— Z h,, converges.
n=1
Converse is not true.
That is, convergence of Z h, does not implies convergence of > {h;/i € I}.

n=1

Lemma. If € is an orthonormal set and h € H, then Y {(h,e)e/e € E} converges in H.
PROOF. We have seen that {e € £/(h,e) # 0} is countable.

Therefore, {e € £/(h,e) # 0} = {e1,eq,...}.

From Bessel’s inequality we have,

> (b, en) P < Al
n=1

.3 some N € N such that » _ [(h,e,)|* <.
n=N
Fo = {61, €9, ...y eN—l}.
Define, hp =Y {(h,e)e/e € F'}, where F' € F and F is collection of all finite subsets of
E.
Let F' and G be two members of F such that Fy C F and Fy C G.

Consider,
lhr = hel?* = X AKh.e)f?re€ (F-G)U (G- F)}
< > Khen)
n=N
< €
. A{hp : F € F} is Cauchy net and hence convergent and converges to Z(h, enye,. M
n=1

Theorem. If £ is an orthonormal set in H, then following statements are equivalent.
(a) & is a basis for H.

(b) Ifhe€ H and h L &, then h = 0.

(c) V€ =H.

(d) If h € H, then h =) {(h,e)e:e € &}.

(e) If h,g € H, then (g,h) =>_{{(g,e){e,h):e € E}.

(f) If h € H, then ||h|)> = >_{|(h,e)|* : e € E} (Parseval’s Inequality).
PROOF. (a) = (b)

Suppose £ is basis for H.
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= £ is maximal orthonormal set in H.
If he Hand h L € then h = 0.
R

Because if h # 0 then & =& U {W} become orthonormal set containing £.

—<¢— to maximality of £.

(b) <= ()

Suppose, if h € H and h 1L &, then h = 0.

— &+ ={0}.

— (&Lt = {0}

<~ VE&=H.

For he€ Hh=>Y {(h,e)e:ec&}.

(b) = (d)

If he Hand h L € then h = 0.

To show: If h € H then h =) {(h,e)e:e € &}.

Suppose f =h —>_ {(h,e)e: e € E}.

— If ey € &, then (f,e1) = (h,e1) = > {(h,e){e,e1) : e € E}.
= (fe1) = (h,e1) — (h,e1) = 0.
= (f,e1) = 0.

— f € &t hence f = 0.

—= h=)> {(h,e)e:ec&}.

(d) = (e)

Suppose h,g € H then h =) {(h,e)e:e € E} and g => {(g,e)e: e € E}.

Consider,

(g, h) = (3_(g,€)e, 2 o(h, e)e)

= (g,h) = {(g,e)(h, e){e,e) e € 5}
= (9,h) =>_{{g.e){e,h) e € &}

(e) = (f)

Suppose h,g € H, then (g,h) = > {{(g,e){e,h) : e € £}.

Consider, ||hH2 (h, h).

— Bl = S {{he) (e, by e € £},

— Bl = S () e € £},

() — (o)

Suppose £ is orthonormal set in H.

To show: £ is maximal orthonormal set in H.

On contrary assume that £ is not maximal orthonormal set.

— 3 orthonormal set &£ such that £ C &;.

= There is unit vector ey € & such that |leg|| = 1,e9 L &.

But by our assumption, ||eo]|? = > {|{eg,e)|* : e € £} = 0.

——.

Therefore, £ is maximal orthonormal set in H and hence basis. [ |
Proposition. If H is a Hilbert space, any two bases have same cardinality.
PROOF. Let H be Hilbert space.

Consider, £ and F be two bases for H.

case(i) If |€] = m and |F| = n2, where 7,72 both are infinite.

For each e € &, consider, F, = {f € F/(f,e) # 0}.
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— F. is countable.
Each f € F must belongs to one of the F..
If fe Fand f ¢ F.forallee€ €.
— (f,e) =0, Veel.
— f[LE = f=0—¢.
oo F = UgeeFe.
= |FI<) |7l
ecf
= 12 < - N =11
oM < .
Similarly, 7, < 7.
== 1M = 12.
case(ii) If |£| = my and |F| = 12, where 1y, 72 both are finite.
If £ is basis for H and F is orthonormal set in H.

= M2 < M- *.» £ is maximal orthonomal set.
Similarly, if F is basis of H and & is orthonormal set in H.

= m < N *.» F is maximal orthonomal set.
SoMm = e, |

Definition. The dimension of a Hilbert space is cardinality of a basis and denoted by
dim H.

Result. If (X,d) is a metric space that is separable and {B; = B(x;,¢;) :i € I} is a
collection of pairwise disjoint open balls in X, then I must be countable.

PROOF. Let D be countable dense set in X.

Then for each B(z;,¢€;), B(x;,€;) N D # ¢.

Let y; € Bz, ¢;) N D.

{yi/i € I} is countable. " y; € D and D is countable.
— [ is countable. [ |
Proposition. If H is infinite dimensional Hilbert space, then H is separable if and only
if dim H = N,.

PROOF. Suppose H is separable Hilbert space.

Let &€ be a basis for H.

For ey, es € €, |ler — ea]? = |ler])* + ||e2||*.

= [ler — eaf| = V2.

Hence, {B (e, \/LE) ceef } is collection of pairwise disjoint open balls in H.
— & is countable.

Conversely, suppose dim H = N,.

That is, H has countable basis. Say £ = {e, es, ...}.

If H is Hilbert space over R, then D,, = Z gei - € Qforl1 <i< n} are countable
i=1

for 1 <n < .

— D = U2, D, is countable and dense in H.

The closure of each D, is seen to be the linear span of {ey, e, ...,¢e,} and so the closure
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of D includes all finite linear combinations Z h;e;. But, each h € H is a limit of such

finite linear combinations. Hence the closurle lof D is all of H. As D is countable, this
shows that H must be separable.

If H is Hilbert space over C. Then we take ¢; € Q + iQ, so that we can get all finite
linear combinations of e; in the closure of D. [ |
ISOMORPHIC HILBERT SPACES

Definition. If H and K are Hilbert spaces, an isomorphism between H and K is a linear
surjection U : H — K such that

(Uh,Ug) = (h,g) for all h,g € H. In this case H and K are said to be isomorphic.
Definition. An isometry between metric spaces is a map that preserves distance.

That is, Amap T : X — Y iscalled an isometry if dy (1, x2) = dy (T(x1),T(x2)) Vi, 29 €
X.

Theorem. IfV : H — K 1is a linear map between Hilbert spaces, then V is isometry if
and only if (Vh,Vg) =(h,g) Vh,g € H.

PROOF. Let V : H — K is an isometry.

That is, V preserves distance.

s.Forh,ge Hand A € F, ||h+ Ag|]? = ||[V(h + Ag)|*.

— (h+ g, h+ \g) = (Vh+ AV, Vh+ A\Vg).
— (h, h)+(h, Ag)+(Ag, h)+(Ag, Ag) = (VR VRY+(Vh, AV g)+(A\Vg, Vh)+(A\Vg, AVg).

= [[2I1? + AR, ) + Mg, h) + Mgl? = [VAI? + MVA, V) + MVg, Vh) + AVl

— Mh,g) + Xh,g) = XVh,Vg)+ XMVh,Vg).
— 2ReM(h, g) = 2ReA(V h,Vg).

Case (i) f F =R.
— ReA(h, g) = ReA(Vh,Vg).
= (h,g) = (Vh,Vg).
Case (ii) If F = C.
A =1= Re(h,g) = Re(Vh,Vyg). (1)
A =1i= —Rei(h,g) = —Re i(Vh,Vg). (2)
Equation (1) and (2) = (h,g) = (Vh,Vg).
Conversely, suppose (h,g) = (Vh,Vg), Vh,g € H.
.. In particular, (h,h) = (Vh,Vh).
= [[h]|* = |[VA]*.
= ||h|| = ||Vh|, Vhe€ H.
Consider,
du(h,g) = |lh—gll

= [V(h =gl

= [[Vh=Vy|

= dg(Vh,Vyg)
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..V is an isometry. [ |
Example. Define S : I? — [ by S(ay,as,...) = (0,1, as,...). Then S is an isometry
that is not surjective.

PROOF. Consider, S : [? — [* defined by S(ay,qs,...) = (0,a,as,...), then S is
not onto because (1,0,0,...) € [*> but there does not exists (ay,as,...) € S such that
S(ay, ag,...) = (1,0,0,...).

Let a = (ay,an,...) and = (B4, Ba, ...) € [*. Then

(S(a),S(B)) = (0,1, 09,...),(0, b1, P2, ...))

= ((a,q,...), (01, Bay-..))

.S is an isometry but not surjective. |
Theorem. If H is Hilbert space and £ is a basis for H, then H is isomorphic
to 1?(€).

PROOF. Let U : H — [%(€) be a map defined by Uh = h, where h : € — F defined by

h(e) = (h,e) and > |h(e)|* < oo
ec&

To show U is linear: Let hy,hy € H and o € F'.
Consider, U(hy + ahs) = hl/—i—Ehg.
Claim: h@hg = fil + OZ}ZQ.

For e € &,

(hy + ahs)(e) = (hy + athy, )
= (hy,e) + (ahy,e)
= (hi,e) + alhs,e)
= h](e) + ozhAg(e), Ve € &
hl/—i-Ehg = hy + ahy
S U(hy + ahy) = hy + ahy = Iy + ahs.

= U(hy + ahy) = U(hy) + aU(hy).
To show U is isometry:
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Consider,
TRl = A

=k - By Parseval’s Identity.

= U is isometry.

To show: U is surjective.

I2(€) contains all functions f : £ — F such that f(e) = 0 for all but finitely many e € &.
S () CIm(D).

= [2(&) C Im(U).

= Im(U) = I*(&).

= Im(U) is dense in *(£). *.» It contains all indicators ¢, for e € €
. Im(U) is complete. - Im(U) is image of complete space under isometry.
= Im(U) is closed.

= Im(U) = I*(€).

—> U is surjective.

..U is an isomorphism.

. H is isomorphic to I*(£). ]
Theorem. Two Hilbert spaces are isomorphic if and only if they have the same dimen-
S10M.

PROOF. Let H and K are Hilbert spaces such that H and K are isomorphic to each
other.

.3U : H — K is an isomorphism.

Let &£ is basis for H.

— U(E) ={U(e)/e € £} is basis for K.

E=1UE)].

c.dim H = dim K.

Conversely, suppose dim H = dim K.

Let £ be basis for H and F be a basis for K.

= |&] = |F|.

.. 3 an isomorphism T : I?(&) — I2(F).

= T(es) = fa, Where e, € 1*(£) and f, € I*(F). el = |F).
SHEPE)2P(F)EK.

— H = K.

.. H and K are isomorphic to each other. |
Corollary. All separable infinite dimensional Hilbert spaces are isomorphic.
PROOQF. If Hilbert spaces H and K are infinite dimensional and separable, then dim H =
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No and dim K = V.

c.dim H = dim K.
— H =K.
Therefore, all separable infinite dimensional Hilbert spaces are isomorphic. [ |

Theorem. If f: 0D — C, where 9D = {z € C/|z| = 1} is a continuous function, then
there is a sequence {p,(z,2)} of polynomials in z and z such that p,(z,2) — f(2) uni-
formly on 0D.

Note that if z € 9D,z = z~!. Thus a polynomial in z and z~! on D become a function

of the form Z a2,

k=—m
If we put 2z = e, this become function of the form Z e
k=—m
such functions are called as trigonometric polynomials.
Theorem. If for each n € Z,¢,(t) = \/%ei”t, then {e, : n € Z} is a basis for L2[0, 27].
PROOF. Already we have shown £ = {e,, : n € Z} is orthonormal set.

We want to show VE = LZ[0, 27].

k=—n
Also consider, C = {f € Cc[0,27]/f(0) = f(27)}.
To show uniform closure of 7 is C.
That is to show, T = &.
Let f € C = f(0) = f(2m).
For any h € T, h(0) = h(27).
Now define F': 9D — C, where 0D = {z € C/|z| = 1} by F(e?) = f(0).

For this consider, 7 = Z aer/ay, € Con > 0}7 where ey (t) = —Leikt,

Then F is continuous function on 9. *.» [ is continuous.
. pa(€?, e7?) converges uniformly to F(e%).
=T =C. pn(e? e e T

Also, we know that C = L]0, 27].

= T =C = L]0, 27].

— T = L2[0, 27].

= VE =T = L]0, 27].

o VE = L0, 27].

. & is a basis for L4[0, 27]. [ ]
Remark 1. If f € L2[0,27], then h(n) = (f, e,) = = o% f(t)e~™dt is called n'* Fourier
coefficient of f.

Consider, f € L2[0,2n] and € = {e,/n € Z} is basis for L[0, 27].

Therefore, f = Z (f,en)en = Z f(n)ey, is called Fourier series corresponding to f.

n=—oo n=—oo

Remark 2. If f € L2[0,27], then
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1712 = (79 )
= (Y fmen Y flme
= e+ f@ea fDer+ f@es)  Forn=12
= FOFW e e) + FOFR) e e+ FRIF D er,en) + O F@ea )
FOF + )P

. For f € LA[0, 27T].

I£11? = Z |f(n

n=—oo

The Reimann-Lebesgue Lemma. If f € LZ[0,27], then 2” fte ™dt — 0 as
n — *oo.

PROOF. From result 2. we have Z |f(n)]? < co.

— lim |f(n)]> = 0.

n—oo

— lim |f(n)| = 0.

n—oo

— lim f(n) = 0.

n—oo

— = 0% f(t)em™ — 0 and n — oo.

— 0% f(t)e™™ — 0 and n — oo.

Note. For f in LZ[0,27], the function f : Z — C is called the Fourier transform of f.
That is, the map U : L2[0, 2x] — [2(Z) defined by Uf = f is the Fourier transform.
Theorem. The Fourier transform is a linear isometry from L%[0,27] onto [*(Z).
PROOF. Let U : L2 2[0,27] — [2(Z) is Fourier transform defined by Uf = f, where

f(n) = (f,ea) = 02” F(t)e~mtdt.

To show U is hnear

Let f1, f» € LA[0,27] and « € F.

To show U( f1 +O‘@iU(f1) + aU(fs).
That is, to show f1 + afs = fi + afe.
For e,, € £ consider,

fi+afz(n) = (fi+afsen)
<f17€n>+04<f27€n>
fi(n) + afo(n)
= (fi+af)(n)

:>f1+04f2=f1+04f2

To show U is isometry:
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Consider, )
s = 1P
~ 1.9

= > Ifm)r

n=—oo

= |IfII? *.» Parsevals identity

.. U is isometry.

To show U is onto:

Let {{a,} € I’(Z) /v, = 0 for all but finitely many n € Z}
Then clearly T is dense in [*(Z).

Now we want to show that range(U) = T.

Take {o,,} € T.

o0
Consider, f = E p €,

Here, nz*OO
1712 = (f. )
= <Z O, Z Qp€n)
= Z |O‘n|2
< o0
- f € L0, 27].
U(f(n) = f(n)
= <fao‘in>
= (Z €, €n)
= U(f) = {ant.

= T C range(U)

= T C range(U) C I%(Z).

= [*(Z) C range(U) C I*(Z).

But range(U) is closed being image of complete space under isometry.
. 3(Z) Crange(U) C I2(Z).

= range(U) = I*(Z).

Therefore, U is onto map.

Therefore, U is linear isometry map from LZ[0, 27] to I*(Z).

THE DIRECT SUM OF HILBERT SPACES
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Suppose H and K are Hilbert space, then H & K ={h® k:h € H, k € K}.

If hy @ ki, ho ® ke € H® K, then (hy @ k1) + (he @ ko) = (hy + ha) & (k1 + ko).
Definition. If H and K are Hilbert spaces then (hy & ki, ha @ ko) = (hq, ho) + (k1, ko).
H @& K is complete inner product space with respect to above inner product hence it is
Hilbert space.

Proposition. If Hy, Hs, ... are Hilbert spaces, let H = {(h,)>2, : h, € H,} for alln and
Z |hnl|* < 00. For h = (hy,) and g = (g,) in H, define (h,g) = Z(hn,gn>. Then (-, -)
n=1 n=1

18 an inner product on H. With this inner product H is Hilbert space.

PROOF. Exercise.

Definition. Hi, Ho, ... are Hilbert spaces, the Hilbert space H in previous preposition is
called direct sum of Hy, Hs, ... and it is denoted by H = H; ® Hy & ....

Sodhd
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CHAPTER 2

Operators on Hilbert Spaces

ELEMENTARY PROPERTIES AND EXAMPLES

Proposition. Let H and K be Hilbert spaces and A : H — K a linear transformation.
The following statements are equivalent.

(a) A is continuous.

(b) A is continuous at 0.

(c) A is continuous at some point.

(d) There is a constant ¢ > 0 such that ||Ah|| < c||h|| for all h € H.

PROOF. Already done. [ ]
If
[All = sup{l|Ar][ - h e H,||h]| <1},
then
JAll = sup{||An| : [[A]] =1}

= sup {[[AA[|/|[A] : h # O}
— inf{c>0:||AR| < c|n|,h € H}.

Also [|AR|| < [|A|lIIRl- ||A]l is called the norm of A and a linear transformation with
finite norm is called bounded. Let B(H, K) be the set of bounded linear transformations
from H to K. For H = K,B(H, H) = B(H). Note that B(H,F) = all the bounded linear
functionals on H.
Proposition. (a) If A and B € B(H,K), then A+ B € B(H,K), and ||A+ B| <
A+ 1Bl
(b) If« € F and A € B(H, K), then «A € B(H, K) and ||cA|| = |af||A]|.
(¢) If Ae B(H,K) and B € B(K, L), then BA € B(H, L) and | BA| < || B||||A]-
PROOF. (a) Let A, B € B(H, K).
..A+ B: H — K is a linear transformation.

I(A+ B)h| AR + Bh||
AR + || BA|
AR+ (| BI1[ 7]
(WAl +IBIDIRI, - vh e H

IAIAINA I

— A+ B e B(H,K).
Also, ||[A+ B|| =inf{c>0:|[(A+ B)h| < c||h|}.
= ||[A+ Bl < [|A]| + || BI|
(b) Clearly, «A : H — K is a linear transformation.
Consider,

leA(R)[| = |a[| ARl
< |all[A[l[[p]l, Vh e H.

.. aA is bounded and it is bounded by |«|||A]l.
By definition of ||aA|l,
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laAll = sup {[aA(n)] - [|n] <1}
= la|sup {[[An]| - [[n]| <1}
= laf[[A]

(c) Clearly, BA is a linear transformation from H to L.

[(BA)A]] I B(A(R))]]
IBI[[|An]

IBI[I[A[lllA]

.. BA is a bounded operator with upper bound as || B||||A]|.

1BA| < B Al .
Definition. If H and K are Hilbert spaces, a function v : H x K — [ is sesquilinear
form if for h,g, f € H and o, B € F.

(a) u(ah + Bg, k) = au(h, k) + Bu(g, k);

(b) u(h, ak + Bf) = au(h, k) + Fu(h, f).

A sesquilinear form is bounded if there is constant M such that |u(h, k)| < M||h|||| k]|, Vh €
H and k € K. The constant M is called a bound for wu.

Result. Given A € B(H, K) we can construct a sesquilinear form u(h, k) = (Ah, k).
Solution: For hy,he € H, ki, ky € K and o, 8 € F. Then

<
<

U(Oéhl + ﬁhg, k) = <A(Oéh1 + ﬁhg), k>
= (aA(h) + BA(hy), k)
= Oé<A(h1>’k> +6<A(h2)7k>
= au(hy, k) + Pu(hs, k)

Similarly, u(h, aky + Bks) = au(h, ki) + Bu(h, ks).
Now boundedness,

|u(h, k)| |(Ah, k)|
| AR ||| " By CBS inequality.

[A[[[[R[IE], Vh e H,k € K.

Theorem. If u: H x K — F is bounded sesquilinear form with bound M, then there is
a unique operator A € B(H, K) and B € B(K, H) such that u(h, k) = (Ah, k) = (h, Bk)
for all h € H and k € K and ||A|, || B| < M.

PROOQOF. Define L, : K — F by,

Lp(k) = u(h, k).

Claim: Ly, is linear functional.

Consider, ki, ky € K and «a € F.

IAIA

Lh(kl + Oékg) = u(h, kl + Oékg)

u(h, k1) + u(h, aks)
u(h, ki) + au(h, ks)
= Lh(kl) + aLh(kQ)

. Ly, is linear functional.

Consider, [Ly(k)| = |u(h, k)| = u(h, k)] < M||A][|[F]l, Yk € K.
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.. Ly, is a bounded linear functional with upper bound M||h||.

ALl < M|R].

. Lp : K — F is a bounded linear functional, hence by Riesz Representation theorem,
there is some k; € K such that

La(k) = (k,kr), Yk € K and |y = [l

Put, k; = Ah.

Claim: A is linear.

Consider, (k, ki) = (k, Ah).

Let hy,hy € Hia € F.

</{7, A(hl + ah2)> = U(hl + ahz, k’)

u(hy, k) + u(ahs, k)

(k, Ahy) + (k, aAhs)

= (k, Al + aAhy), VkeK

— A(hl + (Ihg) = Ahl + O./Ahg.

Also, (Ah, k) = (k, Ah) = (k, k1) = u(h, k).

Sou(h k) = (Ah k).

We know, || L[| = [k

— || ]| < M||A|

= ||kl < M]|R]|

— ||Ah|| < M||h||, Vhe€ H.

Uniqueness:

If possible, there exists A; € B(H, K) such that
u(h, k) = (A1h, k).

— (Ah,k) = (A1h,k), Vhe H and k € K.

—> (Ah, k) — (A1h, k) = 0.

— (Ah — A1h, k) = 0.

— ((A—Ay)h, k) =0, VheH.

Definition. If A € B(H, K), then the unique operator B € B(K, H) such that (Ah, k) =
(h, Bk) is called adjoint of A and denoted by A*.
Proposition. If U € B(H), then U is an isomorphism if and only if U is invertible and
Ut =0~

PROOF. Let U : H — K is an isomorphism.

That is, U is linear, surjective isometry.

Since U is isometry,

— (Uh,Ug) = (h,g), Vh,g€ H.

In particular, (Uh, Uh) = (h, h).

IfUh=0= (h,h) =0 = h =0. = ker U = {0}.
—> U is injective.

= U is bijective and hence invertible.

For hy,hy € H,(Uhy,Uhg) = (hy, hs).

Also, (Uhy,Uhsg) = (hy,U*Uhsy).
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— <h1,U*Uh2> = <h1,h2>, Vhl,hQEH.

- <h1, U*Uh2> — <h1,h2> =0.

—> (h1,U*Uhy — hy) = 0.

= (hy1,(U*U — I)hy) = 0.

— U'U—-1=0.

— U"'U = 1.

— U ' =U"

Conversely, suppose U is invertible and U* = U~!.
Clearly, U is linear, surjective mapping.

Consider,

<Uh1,Uh2> - <h1,U*Uh2>
= <h1,—7h2>
= <h’17 h2>

.U is an isometry.

.. U is an isomorphism. [ |
Proposition. If A, B € B(H,K) and o € F, then:

(a)(aA+ B)* = aA* + B*

(b )( B)* = B*A*

( ) IfA is mvertzble in B(H) and A" is its inverse, then A* is invertible and (A*)~! =
(A7)~

PROOF. (a) If A € B(H) then aA € B(H). Also, for aA, B € B(H).

Consider, ((«A + B)hy, ha) = (h1, (€A + B)*hs).

Now,

(hi, (@A + B)*hs) = ((aA+ B)hy,hg)
= <OéAh1, h2> <Bh1, h2>
= Oé<Ah1, h2> <Bh1, h2>
= Oz(hh A*h2> + <h1, B*h2>
= (h1,aA*hy) + (hy, B*hs)
= (hy, (@A* + B*)hs)

(h1, (€A + B)*hg) — (hy, (@A* + B*)hy) = 0.

(h1, [(0A+ B)* — (aA* + B*)|hg) =0, Vhy,hy € H.

— [(0A+ B)* — (@dA* + B*)|ha =0, VYhy € H.

— (a¢A+ B)* — (@A* + B*) = 0.

— (A + B)" = aA* + B*.

(b) Suppose A, B € B(H).

Consider,

((AB)hq,hs) = (A(Bhy),hs)

= ((Bhy), A*hy)
= (hy, B*A*hy)

= ((AB)hi, ha) — (hy, B*A*hy) = 0.
= (h1, (AB)*hy) — (hy, B*A*hy) = 0.
= (h1, (AB)*hy — B*A*hy) = 0.
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(h1, A*hg)
((A*)*h, ha)

— <h1, [(AB) B*A*]h > = O, hl, ho € H.
— [(AB)* — B*A*]hy =0, hy € H.
— (AB)* = B*A*.
(c) Let A € B(H).
Consider,
<Ah1,h2> ==
eSS <Ah1, h2> <(A*)*h1, h2> =0.
= ((A—(A*))h1, ho) =0, hi,ho € H.
— (A— (A")")hy =0, hy € H.
— A— (A")*=0.

— A= (AT = A"

(d) Suppose A € B(H) and A is invertible.

Let A~! is inverse of A.

Clearly, A* is surjective mapping.
Let A*h = 0.

Consider, (hy, A*h) = (Ahy, h).
— (Ahy,h) =0, Vhy,he€ H.
In particular, (h,h) = 0.

— h=0.

= ker A* = {0}.

—> A* is injective.

.. A* is invertible.

Consider, (hy, hy) = (A*(A*) " hy, ho).
— <h1,h2> = <(A*)_1h1,Ah2>.
AISO, <h1, h2> = <h1,A71Ah2>.

- hl,h2> = <(A_1)*h1,Ah2>, Vhl,hg € H.

(
—> ((A™1)*hy, Ahs) = ((A*) " hy, Ahy).
=

= ([(A™1)* — (A*)1hy, Ahg) = 0.

In particular, ([(A™1)* — (A*) Ay, [(A7H)*

— [(A)* — (A*)"|hy =0, Vhy € H.
— (A7) = (477!

Proposition. If A € B(H), || Al = ||A*|| =

PROOF. Let h € H and ||h| < 1.

Consider,

| AR

VANVANRVANI

= SupgllAhH2 IRl < 1) < [[ATA]].
= [[A]" < [|AAll < LA}l All
= [[AlI* < [[AT][[[A]l
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(A_l)*hl,Ah2> - <(A*>_1h1,Ah2> = 0

— (A)7'h1) = 0.

| A*AJl*2.

(Ah, Ah)
(A*Ah, h)

| A= Ah|| |||

[ A= All[[][|| Al
[A*A|

(1)
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= [|A*[[| Al — | AI* = 0.
= ([lIA*] = [[AIDIIA]] = 0.
= || A" = ||A]l. (2)
For A € B(H) we have A* € B(H).
Replacing A by A* we get, ||A*] > ||A*|.
— 4] > 4. ) A=A
- By (2) and (3) 4] = | 4°].
Put || A*|| = ||A]| in inequality (1).
[A]* < JA*A] < || Al*.
— | AA] = A
— [[AvAf = 4],
- Al = 4] = AT Al .
Proposition. If S : [2 — 1% is defined by S(aq, s, ...) = (0, a1, g, ...), then S is isometry
and S*(aq, as, ...) = (g, as, ....).
PROOF. Let a = (&1,0&2, ),ﬂ = (61,52, ) S l2.
Consider,
<SOZ,Sﬂ> = <S(O[1,O./2,...),S(ﬁl,ﬂg,...»
= <(O, a1, A9, ), (0, 61, /82, )>
= 0-0+ 1B +asBa+ ...

0
= Z Oénﬁn
n=1

(Oél, g, ), (51, B27 ))

= S is isometry.
Now, to show: S*(ay,ag,...) = (a2, as, ....).

Consider,
<S*Oé,ﬁ> = <S*<a17a2a"')>(ﬁl>ﬁ2>"')>

= <(05170527"')7S</817527"'>>
- <(05170527"‘)_7<07617627 )>
= 041'04—0(2514—...
= Zan—&—lm
== Z(_Oég,ag,...),(51,52,...)>
= <(0527053,...),5>

> <S*Oé,6> = <(O[2,(I3, ),5>

> <S*<051,0Z2, ),ﬁ> — <(OZ2,0,/3, ),6) = 0.

= (S*(ay,an,...) — (ag,a3,...),8) =0, VB el

— S*(aq, ag, ...) — (g, as, ...) = 0.

:>S*(Oél,0627...) = (042,043,...). |
Note. The operator S is called unilateral shift and the operator S* is called backward
shift.

Definition. If A € B(H), then: (a) A is hermitian or self-adjoint if A* = A; (b) A is
normal if AA* = A*A.
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Proposition. If H is C-Hilbert space and A € B(H), then A is hermitian if and only if
(Ah,h) € R for all h in H.
PROOF. Suppose A is hermitian.

= A* = A.
Consider,
(Ah,h) = (h, A*h)
= (h, Ah)
(Ah, by
= (Ah,h) € R.

Conversely, suppose (Ah,h) € R, Vh € H.
To show: A is hermitian.

That is to show: A* = A.

For h,ge Handa e F = h+ag € H.

S (A(h+ ag),h+ ag) € R.

— (A(h+ ag),h + ag) = (A(h + ag), h + ag).

= (Ah, h)+a(Ah, g)+a(Ag, h)+|al*(Ag, g) = (Ah, h) + a(Ah, g) + a{Ag, h) + |a|*(Ag, g).

—
(Ah, h) +a(Ah, g) +alAg, h) + |a|*(Ag, g) = (Ah, h) +a(Ah, g) + a{Ag, h) + |a|*(Ag, g).

— a(Ah, g) + a(Ag, h) = a(Ah, g) + a(Ag, h).

= a(Ah, g) +a(Ag, h) = a(A*g, h) + a(A*h, g).

Fora=1

= (Ah, g) + (Ag, h) = (A%g, h) + (A"h, g). (1)
For a =

— —i(Ah,g) +i(Ag, h) = i(A*g,h) — i(A*h, g)

Subtracting (2) from (1) we get,

2(Ag, hy = 2(A*g, h)

— (Ag,h) = (A"g, )

— (Ag — A*g,h), Vh,g€ H.

= Ag— A*g=0, VgeH.

= A= A*.

.. A is hermitian. |
Remark. If H is R—Hilbert space, then above proposition may not be true.

Counter example:
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. 10 1 M
Consider, A = {_1 0} and h = L@} , Then

AR
= ((hg, =ha), (h1; h2))
- hghl—hlhg
=0

= (Ah,h) =0 € R.
Here A* is conjugate transpose of matrix A.
« 10 =1
= A* = L 0 # A.
— A is not hermitian. |

Proposition. If A = A*, then

[All = sup {[{(AR, )| - [[n]| = 1}.
PROOF. Suppose M = sup {|(Ah, h)| : ||h|| = 1}.
If ||h]| = 1, then
[(Ah,h)| < || Ah||||;|| " By CBS inequality.
< [LALIRIA]
< Al el =1

= [(Ah, h)| < || A]|.

= sup {[{(Ah, )| - [|p]] = 1} < [|A]]

M < Al 1)
If h,g € H and ||h|| = ||g]| = 1, then

(A(hE+g),hE+g) = (Ah,h) £ (Ah,g) £ (Ag,h) + (Ag,g)
= (Ah,h) £ (Ah, g) £ (g9, A*h) + (Ag, 9)
= (Ah,h) £ (Ah,g) £ (g, Ah) + (Ag, g) A=A
= (Ah,h) £ (Ah,g) £ (Ah, g) + (Ag, g)
= (Ah,h) & 2Re(Ah, g) + (Ag, g)
S (A(h+g),h+ g) = (Ah, h) + 2Re(Ah, g) + (Ag, g) (2)
and (A(h — g),h — g) = (Ah, h) — 2Re(Ah, g) + (Ag, g) (3)

Subtracting equation (3) from equation (2) we get,

(A(h+g),h +g) —(A(h —g),h —g) = 4Re(Ah,g).
= 4Re(Ah, g) < [(A(h+g), h + g)| + [(A(h — g),h — g)|. (4)

Now for any u

[(Au,u)] = (A, )]
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~

= oel(Af, £ = {Au, u)| < M.

— (Af, )l < MIfIP. VfeH.

- ARe(Ah, g) < [(A(h +g), h + g) + [(A(h = g), h = g)].

- 4Re(Ah,g) < M(I|A+glI> + . — gI1>).

= 4Re(Ah, g) < 2M (||1[I* + [l9]]*)-

— 4Re(Ah, g) < 2M(1 + 1).

= 4Re(Ah, g) < 4M.

. Re(Ah,g) < M, Vh,g € H such that ||| = ||g]| = 1.

Now suppose (Ah, g) = e?|(Ah, g)|.

Replacing h in above inequality by e *h gives,

Re(Ae ?h, g) < M.

= [(Ah,g)| < M, Vg € H such that ||g|| = 1. . (Ah,g) = e“|(Ah, g)|.
Taking supremum over all g € H such that ||g|| = 1 on both side,
|AR|| < M, Vh € H such that ||h]| = 1.

— sup (|| AR : || = 1} < M.

[y

= [|A| < M. (4)
.. from equation (1) and (4).

[l = M.

= [|All = sup {[{AR, )| - [[A]| = 1}. u

Proposition. If A = A* and (Ah,h) =0 for all h in H, then A = 0.
PROOF. Suppose A = A* and (Ah,h) =0, Vh € H.
.". By previous proposition ||A| = {|(Ah, k)| : ||h|| =1} = 0.

Al = 0.
— A=0. [ |
Proposition. If H is C— Hilbert space and A € B(H) such that (Ah,h) =0, VYh € H,
then A = 0.

PROOF. If (Ah,h) =0, VYhe H.
That is, (Ah,h) € R = A = A*.
. (Ah,h) =0 and A = A*.
.". By previous corollary A = 0. [ |
Note. If H is a C—Hilbert space and A € B(H), then B = (A+ A*)/2 and C' = (A —
A*)/2i are self-adjoint and A = B + iC. The operator B and C are called, respectively,
the real and imaginary parts of A.
Proposition. If A € B(H), the following statement are equivalent.
(a) A is normal.
(b) |AR|| = ||A*h|| for all h.
If H s a C—Hilbert space, then these statements are also equivalent to:
(¢) The real and imaginary parts of A commute.
PROOF. Consider,
|Ah||? — ||A*h||> = (Ah, Ah) — (A*h, A*h)
= (A*Ah,h) — (AA*h, h)
((A*A— AA*)h,h), Yhe H

— [|AR|* = [|A"R|* = ((A*A — AA)h, h). (1)
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(a) = (b)

Let A is normal.

= AA* = A*A.

From equation (1), ||Ah|* — || A*R||* = (0, ).
—s || AB|? — | AR = 0.

— |l AR|]2 = |41

— JlAn] = AL

(b) = (a)

Let [| ARl = [[A*A]|

From (1), = ((A*A — AA*)h, h) = 0.
Let B=A*A— AA*.

B* = (A*A— AA*)
(A*A)" — (AAY)"
A*A — AA*

- B

— B = B*.

o.(Bh,h)y =0, Yhe H BecB(H)and B= B*.
— B =0.

= A*A - AA* =0 = A*A = AA*.

— A is normal.

(€) = (a)
A= AtAT L A-A

21
At A* A—A*
Let B = £58- O = 454,
Therefore, B and C' are real and imaginary parts of A.
.. By our assumption, BC' = C'B.
A= B+:C.

— A*=(B+iC)"=B*—iC* =B —iC.

A*A = (B—iC)(B+iC)
B2 +iBC —iCB + C?

AA* = (B+iC)(B—1iC)
= B?—iBC +iCB + C?
= B2+ (7 +BC =CB
— AA* = A*A.
= A is normal.
(a) = (c)

Let A is normal.

That is, A*A = AA*

— B*+iBC —iCB+ C? = B? —iBC +iCB + C?.
— iBC —iCB = —iBC +1CB

— BC -CB=-BC+(CB

— 2(BC-CB)=0
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— BC = (CB. [ |
Proposition. If A € B(H), the following statements are equivalent.

(a) A is an isometry.

(b) A*A=1.

(c) (Ah, Ag) = (h,g) for all h,g € H.

PROOF. (a) = (b)

A is isometry.

= ||Ah||? = ||h||?, Vh e H.

— (Ah, Ah) = (h,h), VYh e H.
— (A*Ah, h) = <h,h>, Vh € H.
= (A*Ah,h) — (h,h) =0, Vhe H.
— (A*Ah — h,h) =0, Vhe H.
:><(A*A I)h,hy =0, Yhe H.
— (A*A—-1)h=0, VheH.
— A*A—-1=0.
— A*A=1.
(b) = (¢)
Let A*A =1
A*A =1
(h,g) = (A*Ah,g)

= (Ah,Ag), VhgeH

(c) = (b)
(Ah, Ag) = (h,g), Yh,g€ H.
(

A*Ah, gy — (h,g9) =0, Vh,g€ H.

(A*A—1)h,g) =0 VYh,g € H.

— A*A-1=0.

— A"A =1 [ |
Proposition. If A € B(H), then the following statements are equivalent.
(a) A*A = AA* = 1.

(b) A is unitary.(That is, A is a surjective isometry.)

(c) A is a normal isometry.

PROOF. (a) = (b)

Let A*A=AA*=1.

Clearly, A is linear and A is surjective.

Take, A*A = 1.

Then, (h,g) = (A*Ah, g) = (Ah, Ag), Vh,g € H.

— A is an isometry which is surjective and hence it is unitary.

(b) = (c)

Let A is unitary.

That is, A is linear, surjective isometry.

— A~ is also isometry.

— (A AT =1 (A’lh A’19> = (h,g) = ((A7")*A7 h, g) = (h, g)
s [ = (A1) A = (A LA = (A4
— AA* =]
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Also, A is an isometry = A*A = I.

SATA=T=AA"

— A*A = AA*=1.

—> A is normal isometry. |
Theorem. If A € B(H), then ker A = (ranA*)*.

PROOF. We know that (ranA*)t = {h € H : (h,y) = 0,Vy € ranA*}.
Let y € ranA* = y = A*g for some g € H.

Consider, (h,y) = (h, A*g) = (Ah,g) = (0,g9) =0, Vy € ranA*.

- h € (ranA*)t = ker A C (ranA*)*.

Conversely, let h € (ranA*)*.

—> (h,y) =0, Vy € ranA*.

— (h,A*g) =0, Vg€ H.

— (Ah,g) =0, Vg€ H.

= Ah = 0.

— h € ker A.

= (ranA*)t C ker A.

= (ranA*)t = ker A. [ |

Observation. We know for A € B(H), A* € B(H) and by replacing A by A* in previous
theorem we get,

ker A* = (ranA*)+ = (ranA)*.

Notation. Let BallH denote unit ball in H.

Definition. A linear transformation 7': H — K is compact if, cl[T'(BallH)| is compact
in K.

Notation. By(H, K) = The set of all compact operators from H to K.

Note. Let X be a complete metric space. If A is totally bounded then clA is compact.

Proposition. (a) By(H,K) C B(H, K).

(b) Bo(H,K) is a linear space and if {T,,} C Bo(H,K) and T € B(H,K) such that
T, —T|| — 0, then T € By(H, K).

(c) IfAe B(H),BeB(K), and T € By(H, K), then TA and BT € By(H, K).

PROOF. (a) Let T € B(H, K).

— cl[T'(BallH)] is compact.

— cl[T'(BallH)]| C{k € K : ||k|| < M, for some M > 0}.

— T'(BallH) C{k € K : ||k|| < M, for some M > 0}.

— If h € H, then | Th|| < M.

If |h|| < 1 and ||Th|| < M.

= [|T|| < M < o0

= T is bounded.

— T € B(H,K).

. Bo(H, K) C B(H, K).

Clearly, By(H, K) is subspace of B(H, K)(Exercise).

Suppose, {T,,} C By(H,K) and T € B(H, K) such that ||T,, — T'|| — 0.

To show: T € By(H, K).

That is, To show: cl[T(BallH)] is compact.

Here K is Hilbert space and hence it is complete.

Now, if some how we can show that, T'(BallH) is totally bounded that will prove that,
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cl[T'(BallH)] is compact.

It is given that, ||T,, — T'|| — 0 as n — 0.

That is, Ve > 0,dN € N such that

T, —T| <e€/3, ¥n>N.

Also, it is given that {7} is sequence of compact linear transformations from H to K.
— cl[T,,(BallH)] is compact for all n.

Let Uy B(T),ha,€/3) be an open covering of T'(BallH).

— cl[T,,(BallH )] C U, B(T, hq,€/3).

Since T,, is compact for all n hence, there are vectors hy, ho, ..., h,, in H such that
cl[T,(BallH)| € UM, B(T,hj,€/3).

= T,,(BallH) C UL, B(T,hj,¢/3).

So if ||| < 1, then there is an h; such that ||Th — T,,h;|| < €/3.

Consider,

|Th — Thil| \Th — T,,h + T,h — Tyhj + Tyhy — Thyl|
|Th = Toh|| + [|Thh — Tohyl| + | Tk — Thyll
(T =Tl +€/3 + [(T = T,)hy]|

|T =Tl +€/3+ T — T,

2T —T,| +¢€/3

2-€/3+¢/3

€

ANNNNNIN

= ||Th — Thy|| <e.

= Th € B(Thj,e).

— T(BallH) C U™, B(Th;,e).

— cl[T'(BallH)] is compact.

— T e B()(H, K)

To show: By(H, K) is linear space.

Let 11, T € By(H, K) = cl[T1(BallH)] and cl[T5(BallH)] are compact.
We know that,

— l[(Ty + To)(BallH)] = cl[Ty(BallH) + Ty(BallH)]
= cl[T1(BallH)] + cl[T>(BallH)]

= cl[(T} + T>)(BallH)]| is compact.

=T+ 15 € Bo(H,K)

ForaeFand T € By(H, K).

— cl[aT(BallH)]| is compact.

= ol € Bo(H, K)

(c) Let A€ B(H),B € B(K).

To show: T'A € By(H, K).

Since, A € B(H) = A(BallH) is compact. *.- BallH is closed and bounded subset of H.
—> T'A(BallH) is compact. T eByH,K)CB(H,K).
— clT'A(BallH) is compact.

— TAc Bo(H, K)

Similarly, BT € By(H, K). [ |
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Definition. An operator 7" on H has finite rank if ran7T is finite dimensional. The set
of continuous finite rank operators is denoted by By (H, K); Boo(H) = Boo(H, H).
Exercise. Show that By (H, K) C By(H, K).

Theorem. If T € B(H, K), the following statements are equivalent.

(a) T is compact.

(b) T* is compact.

(c) There is sequence {T,,} of operators of finite rank such that ||T — T,,|| — 0.

PROOF. (¢) = (a)

From part (b) of previous theorem we have {T,,} be sequence of continuous operators
with finite rank with ||T"— T,,|| — 0 then, T' € By(H, K).

— T is compact.

(a) = (c)

Let T is compact operator.

— cl(7'(Ball H)) is compact.

— cl(ranT’) = L is separable subspace of K. ‘X is compact metric space then, X is
separable.

Assume that {eq, ey, ...} is basis for L.

Let M =V {e;:1<i<n} and let P, be the projection of K onto M.

Denote T,, = P,T.

Claim: For h € H,||T,h — Th|| — 0.

Consider, k € K,k = Z(k:, ei)e;.

i

Also, any element P,k € M can be written as P,k = Z(k, ei)e;.
i=1
— ||Pk — k|| = 0 as n — oo.
In particular, ||P,Th — Th|| — 0. Hence claim.
It is given that T is compact.
— cl(T'(Ball H)) is compact.
We know that every compact space is complete and totally bounded.
— cl(T'(Ball H)) is totally bounded.
== 3hy, ha, ..., hyy € H such that cI(T(Ball H)) C UL, B(Thy,¢/3).
= ||Th — Th|| < ¢€/3.

Consider,
ITh — T,hl| = |[Th—Th; + Th; — Tuh; + Tuh; — Toh|

< N Th =Thi|l + 1 Thy = Tuhsl| + [ Tuh; — Tohl|
< | Th =Thi|| + | Thj = Tuhsl| + [P, Th; — B.Th]|
< \[Th = Thy|| + |Th; = Tuhy | + [ P,(Th, — Th)|
< NTh = Thyl| + [ Th; = Tuh|| + | Th; — Th]
< 2Th = Thy| + [ Thy — Tuhyll
< 2¢/3+¢/3

— ||[Th —T,h|| <€, Vn >ng for some ny € N. (1)

Now, ||T;, — T'|| = sup{||T.h — Th|| : ||h] < 1}.
From (1) |7, — T'|| — 0. Also, T,, = P,T.
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— T,, has finite rank.
. {T,} is sequence of finite rank operators such that ||7,, — T'|| — 0.

(c) = (b)
Let {T},} is a sequence in Byy(H, K') such that ||T,, — T'|| — 0.
Consider,
1Ty =T = (T = T)
= T, =T

ST =T = ([T = T — 0.

But T € Boo(K, H) and ||T* — T*| — 0.

— T € Boo(K, H) - Bo(K, H)

—> T is compact.

(b) = (a)

Apply (¢) = (b) for T™. [ |
Corollary.If T € By(H, K), then cl(ranT) is separable and if {e;} is a basis for cl(ranT)
and P, is the projection of K onto V{e; : 1 <i <n}, then |P,T —T| — 0.

PROOF. Exercise. [ |
Definition. If A € B(H), a scalar « is an eigenvalue of A if ker(A — al) # 0.

If h is non-zero vector in ker(A — «I), h is called eigenvector for a.

Notation. 0,(A) = Set of eigenvalues of A.

Proposition. If A € By(H),\ € 0,(T) and X\ # 0, then eigenspace ker(T — \I) is finite
dimensional.

PROOF. Suppose there is an infinite orthonormal sequence in {e,} in ker(T"— A\I).
Since T is compact operator.

.. there is subsequence {e,, } of {e,} such that {T'(e,, )} is convergent.

— {T'(e,, )} is Cauchy sequence.

But for ny # n;.

Consider,
IT(en, = Ten)IIP = || Ten, — Ten,|I?

= H/\enk - )‘enjHQ
— [APllen, — en, I
= 2|
> 0 T A# Q.

—<¢— to saying that ker(7T" — AI) contain an infinite orthonormal sequence {e,}.

. ker(T — AI) must be finite dimensional. [ |

Result. If T is a compact self-adjoint operator, then there is a sequence {u,} of real
numbers and an orthonormal basis {e,} for (kerT))* such that for all h,

Th = Zun<h,en>en.
n=1

Proposition. If T € By(H), T =T* and ker T' = (0), then H is separable.
PROOQOF. Suppose T' is compact self adjoint operator.

= ker T = (ranT)*.

Given that ker T = (0).

= (ker T)* = (0)* = H.
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= (ranT) = H. kerT = (ranT*)* and T = T* = ker T = (ranT)*. (1)
Also, if T is compact self adjoint operator on H, then there is sequence of {u,} of real
numbers and orthonormal basis {e,} for (ker T')* such that for all h,

Th= Z Mn(ha en>€n‘ (2)
n=1

From (1) and (2) we can say that ranT is a countable dense subset of H.

—> H is separable. [ |

Proposition. If A is normal operator and A € F, then ker(A — ) = ker(A — \)* and
ker(A — \) is a reducing subspace for A.

PROOF. Suppose A is normal operator.

Consider,

(A=N(A=XN* = (A=)N)(A*=))
= AA* — AN — AN+ A\

= A*A— A\N— AN+ *.» A is normal operator.
= A (A=) = AA-))

= (A" =) (A=)

= (A=A)(A4-1)

— (A — \) is normal operator.
SA[(A=XNA] = |[(A—=X)*h||. - If Ais normal operator if and only if ||Ah|| = ||A*A]|.
Now, h € ker(A —\) <= (A — \)h =0.
= (A= | =0.

< [[(A=A)hl[ = 0.

<~ (A=)N)*h=0.

<= h € ker(A — \)*.

o ker(A — A) = ker(A — A\)*.

If h € ker(A — \) = ker(A — \)*.

= h € ker(A — \)*.

— h € ker(A* — ).

— A*h = \h.
(A* = X)(Ah) = A*Xh— (\)?h
= M*h— (N\)?h
= (N\)2h—(\)%h
=0

. For h € ker(A — \); Ah € ker(A — \)* = ker(A — \).

. ker(A — \) reduces a subspace for A. [ |
Proposition. If A is normal operator and p, A are distinct eigenvalues of A, then
ker(A — \) L ker(A — p).

PROOF. Let h € ker(A — \) and g € ker(A — p) = ker(A — p)*.

= Ah = Mh, g € ker(A* — 1) = A*g = jg.
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Consider,

= (4h,g)
= <h7 A*g>
= (h, fig)
= H( 7g>
— (A= p){h,g9) = 0.
— (h,g) = 0. AN FE
S.hLg, Vheéeker(A—N),Vg € ker(A—p).
= ker(A — \) L ker(A — p). |

Proposition. If A= A* and X € 0,(A), then X is real number.

PROOF. Let h € ker(A — ).

— Ah = M. (1)
Also, h € ker(A — \)*.

— h € ker(A* — \).

= A*h = \h. (2)
It is given that A* = A.

From (1) and (2) we can write,

Ah = \h.

— \h — A\ = 0.

— (A= ANh=0, VheH.

= \— ): = 0.
== A=\
.. A 1s real number. ]

Result. If T is a compact operator on H, A # 0, and inf {||(T"— N)h| : [|h|| =1} = 0,
then A € 0,(T).

Lemma. If T is compact self-adjoint operator, then either £||T|| is an eigenvalue of T .
PROOF. We know that for self-adjoint operator T,

I = sup {I(Th, )| : [4l] = 1}

— J a sequence {h,} of units vectors such that

[(Tha, hd] — 1T

Let [A| = ||T].

So (Thy, ha)| — A

Claim: X € 0,(T).
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VA VAR VAN VAN VANR VANR VAN VANR VANR VAN VAN

(T = A)ha|?

I Th, — M2

(Thy, — M, Thy — M)

(Thy, Thy) — (Thy, M) — (M, Thy) + (A, Ay

| Th||> — MThp, hy) — Mg, Thy) + N2 (o, by .+ A = A for self-adjoint operator.
| Th,|I?2 = MThp, b — MT*hy, hy) + N2 |2
| Th,|I?2 = MThp, b)) — MThy, hy) + N2 el =1

I Tha||2 = 2M(Thu, h) + A2
IT|1* = 2MThp, h) + N
A2 — 2\(Thy, hy) + N2

A2 — 2\(Thy, hy)

— 0 < (T — N)ha|? < 202 — 2X(Thy,, hy,).

But (Thn, hy) — .

— (T = M\)hy,||> =0 and n — oo.

Also, we know that for compact operator if inf {||(7"— A)h|| : ||h]| =1} =0,

then A € 0,(T).

— inf {||[(T"— N)A| : |h]| = 1} = 0. (T = AN)hy|| =0 as n — .
= X € g,(T). [ |

hodd
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CHAPTER 3
Banach Spaces

ELEMENTARY PROPERTIES AND EXAMPLES

Definition. If X is vector space over F, a seminorm is function p : X — [0, c0) having
the properties:

(a) p(z +y) = p(x) + p(y) for all z,y € X.

(b) p(ax) = |a|p(x) for all « € F and = € X.

A norm is seminorm p such that

(¢) p(z) =0 =2 =0.

Notation. Usually norm is denoted by || - ||.

Normed space. A vector space X together with some norm is called normed space.
That is, A normed space is pair (X, | - ||), where X is vector space and || - || is norm on
X.

Banach space. Banach space is a normed space which is complete with respect to the
metric defined by norm.

NORMED SPACES

Let X be metric space.

(1) The set of all bounded continuous F—valued functions on X is denoted by C(X).
That is, C(X) ={f : X — F : f is bounded and continuous}

This is linear space w.r.t pointwise addition and scalar multiplication and

I = sup {[f(2)]: z € X}

defines norm on C'(X).
(2) The set of all functions f € C(X) satisfying the property: For every ¢ > 0 there is
compact set S of X, depending on f and e such that

lf(z)] < € Vxégs.

is denoted by Cy(X). Then Cy(X) is subspace of C'(X) and hence normed space.

That is, Co(X) is set consisting of functions f € C'(X) such that,

for given € >0, S ={z € X :|f(z)| > €} is compact set in X.

(3) The set of all functions f € C'(X) with the property: There is compact set S of X,
depending on f, such that f(z) =0 for all x ¢ S is denoted by C.(X).

That is, C.(X) is set consisting of functions f € C'(X) such that, S = {x € X : f(z) # 0}
is compact set in X.

(4) Let X be the set of natural numbers with the discrete metric. Then C(X) is the set
of all bounded sequences z(n) in F. This space is denoted by [*°, and the norm is given by

|lz|| = sup{|z(n)|:n e N}, zel.
The subspace Cy(X) becomes

o = {xelooz limx(n):()},

n—oo
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and C.(X) becomes

coo = {x€l®:x(n)=0 for all but finitely many n € N}.

(5) Let X be measure space with measure pu. If 1 < p < oo, then set of all measurable
functions f with [ |f[Pdu < oo is denoted by LP(X) or LP(p). This is linear space and

1fll, = (fylflPdp)r, fe LP(X),

defines a norm on LP(X).
(6) The set of all essentially bounded measurable functions is denoted by L>(X) or
L*> (). This also is linear space, and

Ifllce = ess.sup{|f(z)]:x€ X}, xe€l>®X),

defines a norm on L*°(X). The spaces LP(X), with 1 < p < oo, are called Lebesgue
spaces.

(7) Let X be the set of all natural numbers with counting measure. If 1 < p < oo, then
LP(X) becomes the set [P of all scalar sequences {z(n)} with

lzl, = O lam)P)r < .

(8) The space L*(X) become the sequence space [*°.
(9) If X = {1,2,...,n} with counting measure, then L?(X) become F" with norm | - ||,
given by

- Ny
lzll, = Q_lz()I")7, if 1 <p< oo,
j=1
[#llee = sup {lz()[}, if p = oo
1<j<n

(10) If X and Y are normed spaces, then X x Y is linear space with addition and scalar
multiplication defined coordinatewise and

Izl = Nzl +lyl,z € X,y €Y,

defines a norm on it.
Examples. (1) [? is Banach space for 1 < p < 0.
(2) L?(F) is Banach space, where E is measurable subset of F and 1 < p < oo.
(3) 1> = {x :N—=F: sup |z(7)] < oo} is Banach space.
i=1,2,...
PROOQOF. Clearly, [* is vector space over F.
Define norm on I°° as ||z = sup [z(i)].

Let {z,} be a cauchy sequence from [*°.
Therefore, for given € > 0, there exists N € N such that
|zn — zm|| <€, VYn,m > N.
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= sup |z, (i) — xn(i)| <€, Vn,m > N.

= |2, (1) — zm(i)| <€, Vn,m > N.

— {z,,(7)} is a cauchy sequence in F and we know that [ is complete.
= {x,(i)} — x(i) for some z(i) € F.

Now for fixed n > N and taking m — oo we get,

i [i,(3) — ()] = |, (3) — 23] < c

= sup |z, (1) — z(i)] < e.

= ||z, —z|| <€, Vn>N.

= {z,} =z el z:N—>TF.
*. [*° complete normed space.

—> [* is Banach space.

(4) Show that Cyp = {x € [P} such that z(i) = 0 for all but finitely many ¢, is not Banach
space.

PROOQF. Clearly Cy is a subspace of [*°.

Claim: Cyy is not closed.

It is sufficient to show there exists a sequence which is not convergent in Cjyj.

Suppose {z,} = {1, 55 3,. ,711,0 0,0,. }

Since finitely many terms of this sequence are non-zero therefore {z,} € Coo.

Then, {z,} is Cauchy but it is not convergent in Coo

Because as n — oo the sequence {z,} — {1 } but {1, 35 3, . %, } ¢ Coo.
Hence, Cjy is not closed.

= Cy is not Banach space. [ |
Proposition. If X is a normed space, then

(a) the function X x X — X defined by (x,y) = x + y is continuous;

(b) the function F x X — X defined by (o, z) = ax is continuous.

PROOF. (a) Let f: X x X — X defined by f(z,y) =z + .

To show: f is continuous.

Suppose {z,} — x and {y,} — y be any sequences in X.

That is, = ||z,, — z|]| — 0 and ||y, — y|| — 0 as n — oc.

Then, ({z,},{yn}) = (z,v).

Consider,

) 9 37"’7

[(zn = 2) + (yn = y)

(@0 +yn) — (@ +y)|| =
< lww = 2| + |lyn — vl

Asn — oo = |[(z, +yn) — (x+y)|| = 0.

— {r,+ys} > r+yasn— oc.

— f({zn} {un}) = f2,9).

= [ is continuous.

(b) Let g : F x X — X defined by g(«, ) = au.

To show: g is continuous.

Suppose {z,} — x be any sequence in X and {a,,} — « be any sequence in F.
— ||z, — z|| = 0 and |, — @] = 0 as n — oc.
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Consider,
lonz, —azx|| = |ant, — ant + apr — ax|
= |lon(zn — ) + z(an — )|
< awlllzn = 2l + |[z]ljan — o

Asn — 0o = ||z, — az|| — 0.

= {2, } — ax.

= g({an},{zn}) = g(a,x) as n — 0.

= ¢ is continuous. |
Lemma. If p and q are seminorms on a vector space X, then following statements are
equivalent.

(a) p(x) < q(x) for all .

(b)) {xre X :qx)<1} C{zre X :plx) <1}

(V') p(z) < 1 whenever q(z) < 1.

(c) {z: q(z) <1} C {z plx) < 1.

(c) p(z) <1 whenever q(z) < 1.

(d) {z:q(x) <1} C{x:p(x) < 1}.

(d') p(z) <1 whenever q(x) < 1.

PROOF. (b) and (V'), (¢) and (), (d) and (d') are equivalent.

Also (a) implies all the remaining conditions and that both (b) and (¢) implies (d).

It remains to show (d) = (a).
Given, {z: q(z) <1} C {x: p(x) < 1}.
Let g(v) = a. If € > 0, then ¢(;3;) =
r(G) =1

- aiep(x) < 1.

— p(z) < a+e

Letting € - 0 = p(x) < a.

= p(z) < q(x), VreX. [ |
Definition. Let || - ||; and || - |2 are two norms on X. They are said to be equivalent
norms if they define same topology.

That is, Let 7; be the topology induced by || - ||; and 75 is a topology induced by || - ||2-
Then, || - ||; and || - ||2 are said to be equivalent if and only if 77 = Ts.

Proposition. If || - ||y and || - ||2 are two norms on X, then these norms are equivalent
if and only if there are positive constants ¢ and C such that

cl -l < |- [la < Clf - [y for all w in X.

PROOF. Suppose || - |1 and || - ||2 are equivalent.

Let 71 be the topology induced by || - |1 and 73 be the topology induced by || - ||2.

[0

1 _
a+eq('r) T ate <L

~Ti="Ts. “|I-|lx and || - ||2 are equivalent.
Let B;(0,1) be an open ball in 7; centred at 0 and has radius 1.
— Jr; > 0 such that By(0,71) C B4(0,1) " Ti=Th=TCT

= {reX:|lz—0<rm}C{reX:|z—-0| <1}

—= {reX izl <1} C{z e X : |zl <1}.

— {rc X :qx) <1} C{z € X :p(x) <1}, where q(x) = r{*|z|2 and p(x) = ||z|;.
Sop(r) <g(x) Vee X. " by previous lemma.
= Jlzfls < vl
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= ] < lzflz.

Choose ¢ =1 = cllz||; < ||z]]2. (1)
Similarly, B2(0, 1) is open ball in 75 centred at 0 and has radius 1.
— Jry > 0 such that B;(0,7r2) C By(0,1). T =T =T CT.

= {reX:|lzr—0]i<r} C{reX:|z—0]<1}.

— {zeX )|zl <1} C{z e X : ||zf]s < 1}.

¢(x) =1y |[z]l1 and p(z) = [|zl2.

= p(z) < q(x) Vre X.

= ||zl < 75|z

— ||z||2 < C||z||1, where C = r;*. (2)
From (1) and (2) we have, c||z||; < [|z]ls < C|lz||;.

Conversely, suppose there exists constants ¢ and C' such that ¢||z|[; < ||z]2 < C||z|;.(1)
Let 71 and 73 are the topologies given by || - ||; and || - ||2 respectively.

Let BQ(I’(),C) € 75

Now, By(zg,€) = {x € X : ||z — zo|]2 < €}.

From (1) we have ||z||s < C||z||1.

= {reX: ||z -1 <€/C} C{zr € X : ||z —x]2 < €}

= Bi(xg,€/C) C Ba(xo,€).

.. Ba(xg, €) is open in 7.

T CTh (2)
Let Bi(yo,€) be an open set in 7.

Now, B1(yo,€) = {x € X : ||yo — z||1 < €}.

From (1) we have c||z||; < ||z]|2.

Az e X ilyo—zlla <cel C{r e Xt |lyo— |1 < €}

= B2(y07€) C Bl<y0a€)'

.. B1(yo, €) is open in 7.

Ti C T (3)
From (2) and (3) 71 = Ta.

ol |l and || - ||z are equivalent. [ |
Result 1. Define an relation ~ on set of all norms on a normed linear space X by
| |ls ~ || - |l2 of and only if || - ||1 and || - || are equivalent, then ~ is equivalence relation.
PROOF. Let T'= {|| - || : (X, ]| - ||) is normed linear space}.

(i) For || - || € T. Since ||z|| = ||z|| = ||=],, where ¢ =1 = C.

= -l ~ -l

(i) Let || - |li ~ || - ll2 =1 - |l is equivalent to || - ||2.

. de, C such that cl|z]l; < ||zl < C|lz|ly Vx € X. (1)

From (1) we have c||z||; < ||z]|2.

— |zl < Yalls

= ||z[|; < C'||z]|2, where £ = C".
Also from (1) we have, ||z]ls < C||z]||; -
— Sllzll2 < [lz])s.

= ||z||2 < ||z]|1, where % =C.
szl <zl < Cfllo

— || - ||z is equivalent to || - ||;.

(iii) Similarly transitivity holds.
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..~ is equivalence relation on 7'. [ |
Remark 2. There are two properties on a norm linear space one is topological property
and another is metric property. The metric property depends on the precise norm but
topological property depends only on the equivalence class of norms.

Example. Let X be any Hausdorff space and let Cy(X) = all continuous functions
f + X — F such that ||f|| = sup{|f(z)|:2x € X} < oo. For f,g € Cy(X), define
f+g: X —=>Fby (f+9)(z) = f(z)+ g(z); for « € F define (af)(z) = af(x). Then
Cy(X) is Banach space.

PROOF. Clearly Cy,(X) is vector space over [F(Exercise).

To show: || - || : Cp(X) — F defined by ||f|| = sup{|f(z)| : € X'} is norm.

() IIf] = 0.

Il = 0= sup{|f(z)| : x € X} =0.

= sup [f(z)| = 0.
zeX

= |f(x)| =0, VzelX.
— f(z) =0, VzelX.
— f=0.
(i) For f,g € Cy(X).
Consider,
15 +gll = supdl(f + )@)€ X)

= swp{|f() +g(@)]:z € X}

IA

sup {|f(2)[ +lg(z)] : = € X}

= sup{|f(z)] : 2 € X} +sup{lg(a)] : v € X}

=[£Il + gl
S +gll < A+ gl
(iii) For any f € Cp(X),a € F
et = Slip{|(04f)(9€)|3$€X}
— swp{Jaf(a)] € X}
= |a|sup{|f(z)|: >z € X}
= |al[|f]
Sl = Talll £

.. Cp(X) is normed linear space.
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Let {f,} be Cauchy sequence in Cy(X).
—> Ve > 0,3dN € N such that

”fn_me < € Vn,mzN

— sup |(fn = fm)(@)] < €

:>Sl€l)lg‘fn($)—fm($)‘ < €

= | fu(z) — fr(2)] < ¢ Vn,m>N
For fixed z € X,
= |fu(z) — f(2)] <€, VYn,m > N.
— {f.(z)} is a Cauchy sequence in F and F is complete.
o fa(x) = f(x) as n — oo.
= f@) = lim (@)

[ful2) = @) = [fal) = finl@) + fin(z) = f(2)]

< (@) = fn(@)] + [fm(2) = ()]
< swp|fulz) = (@) + [fm(@) = f(2)]
< @) = fl@) |+ (@) = f(2)]

< e+ [fm(x) = f(2)], Vn,m =N

As m — o0

|f(z) — fu(x)] <€, Vn,m > N.

This is true for all z € X.

cosup | fu(z) — f(2)| <€, VYn,m > N.
zeX

= ||fo— fll <€, Vn,m>N.

o fn — [ uniformly. *.* N is independent of x.
.. f must be continuous.
Now,
Il = |lf = fat fall
< f = fall + 11l

< et |lfall <00

Therefore, f, — f and f € Cy(X).

.. Cp(X) is Banach space. [ |
Proposition. If X is locally compact space and Co(X) = all continuous functions
f X — F such that for all € > 0,{x € X :|f(z)| > €} is compact, then Co(X) is
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closed subspace of Cy(X) and hence Banach space.

PROOF. To show : Cy(X) is subspace of Cj(X).

It is given that for f € Cy(X), f is continuous. If we can show f is bounded that will
prove f € Cy(X).

It is given that {x € X : |f(x)| > €} is compact and we know that continuous image of
compact space is compact.

— {f(z) : |f(x)] > €} is compact.

= {f(z) : |f(x)| > €} is bounded.

Suppose |f(z)] <m, Ve X.

= e < |f(z)| < m.

Choose M = max {e, m}.

— [f(x)] < M.

— f is bounded.

— f e Ob(X)

= Cy(x) is subspace of Cy(X)(Exercise).

Let f be limit point of Cy(X).

= F{fn} C Co(X) such that f, — f.

That is, for all € > 0,3N € N such that || f, — f|| <€/2, Vn,m > N.

= sup [ fu(2) — f(2)] < /2.

— (o) — f()] < /2.
W= 1F = fut full

— A < IF = Full + £l
Let € > 0 and |f(z)| > .

e < |f(2)]
= |f(z) = fal2) + ful2)]
< |f(@) = fa(@)] + | fal(®)]
= 6/2 + ‘fn(x ‘

— e —¢/2 < |fu(z)].

= ¢/2 < | fu(2)]:

Therefore, If € > f
)

(z) = [fu(2)] = €/2.
= {reX:|f(x)|>e C{x e X :|fulx)] >¢€/2}.
— {z € X :|f(x)| > €} is compact. " each f, € Cp(X).
f € Co(X).
— Cy(X) is closed subspace of Banach space and hence Banach space. [ |

Proposition. If p is a seminorm on X, |p(x) —p(y)| < p(x —y) for allx,y € X. If || - ||
is a norm, then |||z|| — ||ly||| < ||z —y|| for all x,y € X.

PROOQOF. For any z,y € X, then

p(z) =plz —y+y) < plx —y) +p(y).

= p(z) —p(y) < p(z —y).

Similarly, p(y) — p(z) < p(z —y).

= —(p(z) — p(y)) < plz —y).

— —p(z —y) < p(r) = p(y).

= —p(z —y) < p(z) —ply) <ple—y).
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Sp(x) = p(y)| < p(z —y).

I£ |- | s norm then [z — lylll < o — yll, ¥a,y € X. .
Definition. If X and Y are normed spaces, X and Y are said to be isometrically iso-
morphic if there is surjective linear isometry from X onto Y.

LINEAR OPERATORS ON NORMED SPACES

Let B(X,Y) = all continuous linear transformations from X to Y.

Proposition. If X and Y are normed spaces and A : X — Y is a linear transformation,
the following statements are equivalent.

(a) A e B(X,Y).

(b) A is continuous at 0.

(c) A is continuous at some point.

(d) There is a positive constant ¢ such that Ax < c||z|| for all x € X.

If Ae B(X,Y) and

[A]] = sup {[|Az]| : [lz]} <1},

then

[Al = sup{[[Az] : [l«] =1}
= sup {||Az|/[|z]| : = # O}
= inf{c>0:|Az| < ¢c|lz| for x € X}

||z|| is called the norm of A and B(X,Y’) become normed space if addition and scalar
multiplication are defined pointwise.
Result. B(X,Y) is Banach space, if Y is Banach space.
PROOF. To show: B(X,Y) is Banach space.
Let {T,} be a cauchy sequence in B(X,Y).
Then, for every € > 0,3N € N such that
|1, — Tl <€, Vn,m>N.
Now,
| T () — Ton () (T — T) ()|

(T — T 2]
ez, VYn,m >N

ANRVANI

For a fixed x and = # 0,

Choose €; = €|z]|.

Then ||T,(x) — T,n(x)|| < €1, Vn,m > N.

= {T,(x)} is cauchy sequence in Y and Y is Banach and hence complete.
S AT(2)} = T(x).

That is, 7}1_)120 T.(z) =T(x).

We have, ||T,,(z) — T, (x)|| < €1, Vn,m > N.

Asm — oo

IT(2) = T(x)|| <ellzl, ¥n=N.

— Sl;p{HTn(fL“) —T()} <e Ll <1

= sup {[[(To = T)(@)[[} <e.
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= |1, - T| <€, VYn>N.

—= {T,} - T asn — 0.

To show: T € B(X,Y).

That is, To show T is continuous linear transformation.

Clearly, T is continuous.

Because T;, is sequence of continuous functions and converges to T hence T' is continuous.
For any z,y € X and a € F.

Tx+ay) = lim T,(z+ ay)

n—o0

= lim (T, (z) + aTp(y))

n—o0

= lim T, (2) + a lim T,(y)

n—oo n—o0

= T(x)+ aT(y)
= T is continuous linear transformation.
— T € B(X,Y).
. B(X,Y) is Banach space. [ |
Note. A continuous linear operator is also called bounded linear operator.
Example 1. If (X,Q, ) is o—finite measure space and ¢ € L¥(X, 2, ), define
My LP(X,Q, p) — LP(X,Q, 1), 1 <p < oo, by Mpf =¢f forall f e LP(X,Q, ). Then
My € B(LP(X,Q, 1)) and | My] = 6]
Result 1. Let X and Y be normed linear spaces. A linear mapping T : X — Y
1s said to be homeomorphism if and only if there exists constant o, > 0 such that
aflzl| < ||T(2)] < Bljz]]. VreX.
PROOF. Suppose T': X — Y is homeomorphism.
To prove: Ja, 8 such that aljz|| < ||T(z)|| < Bz
Since T' is homeomorphism means 7" and T~! both are continuous.
T is continuous.
= ||T'(z)|| < B|z| for some § > 0.
T is continuous.
= [T ()|l < 7|lyll for some v > 0 and T'(z) = y.
— ol <T@
— Lo < 7))
= o||z|| < ||T(x)||. where a = %
coallzf] < T ()| < Blx]].
Conversely, da, § such that of|lz|| < ||T(x)| < B|lz||.
To show: T is homeomorphism.
Suppose x € ker T

= T'(z) = 0.

= [|T(2)]| = 0.

— aljz|| = 0. 0 <alz| <||T(x)] =0 and a > 0.
= ||z[l = 0. a >0,
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— 1z =0.
= ker T' = {0}.
—> T is injective.
Now consider, T-: R(T) — X.
Clearly, T—! is bijective mapping.
Also, T7! is linear because for y;,yo € R(T).
Sy =T(21),y2 = T'(z2) for some z1, 25 € X.
Now,
Ty +ag) = TN (T(a1) +aT(es))
T HT(x1 + axs))
Ty + axg
= T7Hy) +aT ™ (y2)

Form given inequality we have ||T'(z)|| < §||z|| for some g > 0 and Vz € X.

—> T' is continuous.

Also, allz| < [|T(x)]|

= af| T ()] < |yl

= T W)l < 5yl

= T~ is continuous.

. T and T~ both are continuous.

.. T is homeomorphism. |
Result 2. Y is a subspace of a normed space X, then Y and it’s closure are normed
spaces with respect to induced norm.

PROOF. Clearly, Y is normed space means (Y, || - ||) is normed linear space, because X
is normed linear space and Y is subspace of X.

To show: Y subspace of X.

Let 7,y € Y, then there exist sequences {z,} and {y,} in Y such that {z,} — = and
{yn} — y as n — oc.

Consider,

r+y = lim {z,} + lim {y,}
n—oo n—oo
= lim {z, +y,}
n—oo
= lim {z,}. where =, + y, = 2.
n—oo
—xr+yc Y.

Now for any o € F and x € Y = 3{z,,} of points in Y such that {z,} — =.
Consider,

ar = 047}1_{1;0 {z,}
= lim {az,}
n—oo
—areY.
.Y is subspace of X.
S (Y] |]) is subspace of X. [
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Result 3. Let Y be a closed subspace of a normed space X. For x +Y in the quotient

space XY, let |||z + Y||| = inf{||x +y|/y € Y}. Then (X/Y,|| - |||) is normed space
and ||| - ||| is called quotient norm on X/Y.

PROOF. (i) |||z + Y| > 0. |z +y|>0 VyeVY.
If |||z + Y| = 0.

= [z +yll[ =0, VyeY.

= inf{|lz +y||/y e Y} =0.

.. I sequence {y, } from Y such that ||z + y,|| — 0 as n — co.

Because, if inf {a/a € S} = 0 then there exists a sequence {a, } from S such that {a,} — a
as n — oo.

= {z+y,} = 0asn— 0.

— {y} > —r €Y =Y. Y is closed.
=z cY.

—r+Y =0+Y.

e+ Y| =0=24+Y=0+Y.

(ii) Let oy + Y,z + Y € X/Y for some z1, 29 € X.

To show : [[[(z1 + ) + (22 + V)| < |21 + Y] + 22 + V]|

Consider, |||z; + Y]|| = inf {||z1 + y||/y € Y}.

. Ve/2 > 0 there exists y; € Y such that ||z1 + y1|| < [||lz1 + V|| + €/2.

Similarly, there exists yo € Y such that ||zg + ya|| < [||xe + Y ||| + €/2.

Now

< e+ Yl +e/2+ llz + Y| +€/2

= [[(z1 +22) + (y1 + )| < |[J21 + vl + [llz2 + vall| + €

Taking infimum on left hand side we get,

= inf {||(z1 + z2) + y/y € Y|} < |llz1 + vl + [[[22 + g2l + € Y=ty ey,
= |[[(z1 + 22) + Y| < |llz1 + v l] + [[[22 + g2l + €

s Ve> 0, |[[(zy +Y) + (22 + V)| < llzn + wall] + (72 + yall| + e

Now taking € — 0.

[(z1 +Y) + (22 + V)| < [z + vl + [llze + vall]-

(ii) Let a e Fand x + Y € X/Y.

(@1 +y1) + (@2 +y)ll < o+l + [lo2 + vol|

Consider,
la(z+Y)|| = inf{[la(z+y)ll/y €Y}
inf {|alllz +yl|/y € Y}
|| inf {||z + yll/y € Y}
= ledlllz + Y|
-l is norm on X /Y. [ ]

Result 4. A sequence {x, + Y} converges to x + Y if and only if 3{y,} such that
{zn +yn} — z.
PROOF. Suppose 3 {y,} such that {x, + y,} — =.

[(zn +Y) = (z+ YY) (2 — 2) + Y]
l(2n —2) + Y]
inf {||(z,, —2) +yl/y €Y}

|Zn — 2 + yal|

IA
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Now, as n — oo = RHS of above inequality goes to 0.
cAr,+Y} = x+Y asn — oo

Conversely, suppose {z, + Y} — 2 +Y as n — oo.

l@n +Y) — (2 + V)| = inf {0 — = + yll /y € V}.

ooy, € Y such that ||z, —x +y,|| = ||| (zn +Y) — (x + Y)]|].
= |20 — 2+l < (20 +Y) = (@ + V)l + 5.

Now, for n — oo.

— {x, +yn} — .

Definition. A series Z x is said to be convergent if the partial sum S of sequence {z,}
n=1
is converges in X, where S =z + x5 + ... + .

Definition. Let X is normed linear space. If z,, € X and )’ ||z,| < oo, then an is
called absolutely convergent.

Theorem. A normed space X is a Banach space if and only if every absolutely conver-
gent series in it convergent.

PROOF. Let X is Banach space.

Suppose that X is Banach space and ) x,, is absolutely convergent series in X.

oo
=)z < 0.

n=1
Let t,, = ||xy|| + |z2|| + ... + ||znl], and yn, = 21 + 22 + ... + 2.
Then, for n > m > 1,

|Tma1 + Tmao + oo + T
|Zmsall + | Zmrall + - + (2]l
t, — tm,

”yn _ymH

IIA Il

Since {t,} converges and hence it is Cauchy sequence.

=ty — bt < [tn — tml| <.

::i'Hyn _'ym“ <e€

—> {y,} is a Cauchy sequence in X and hence convergent in X. - X is Banach space.
oY @, converges.

Conversely, suppose every absolutely convergent series in X converges.
To show: X is Banach space.

Let {z,,} be Cauchy sequence in X.

ol — x|l <1, V> ng.

Choose ng, ng, ..., successively, such that n, > n,_; and

|0 — @y, || < 5 for all n > n,,r =2,3,....

Then, ||z, ., — @y, || < & for r=1,2, ...

Let z, =z, —xp,,7r=1,2,....

Then,

o0

00 o0

1
Szl =3 7n — el €30 5 < o0
—1 r—1 r=1

Thus, > 2, is absolutely converg;nt.
Suppose Y z, converges to x € X.
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— 2ttt ...+ =Ty — Ty T Thy — Ty T oon + Ty — Ty

r—1
- 5 Zj = Ty, — Tp,-
Jj=1

r—1
= ITp, = E Zj + T,
j=1

= Xp, —+ T+ Ty, ST — OO.
. {x,, } is convergent.

— {x,,} is convergent. " {z,, } is convergent subsequence of Cauchy sequence {z,}.
.. X is Banach space.
o0
Z T, is summable. ]
n=1

Corollary. T is homeomorphism from X onto Y. Then X is complete if and only
if Y is complete.
PROOFEF. Suppose T' is homeomorphism from X onto Y.

Jdar, 6 > 0 such that of|z|| < ||T(x)|| < 5|z (1)
Suppose X is complete.
To show: Y is complete.
Let {y,} be Cauchy sequence in Y.

d{x,} in X such that T'(z,) = yn.
From inequality (1) we have,
allzy — x| < T (zm) = T(2n)-
= aflzn = Tl < lym — -
= |20 — 2|l < 3 llYm — vl <€
= ||z, — zn| <€
— {x,} is a Cauchy sequence in X and X is complete.
— {2,,} — x for some z € X.
Again from inequality (1) we have, ||T(z, — z)|| < 8|z, — ||
= [|[T(x,) — T(x)|| < Bllzn —z|| < €&, Yn>N, €N.
— |[T(wa) - T(@)] < .
= |lyn — 9|l < €1, Vn > N; €N, where y = T(z).
s Ay} 2 yandy ey
— Y is complete.
Similarly converse holds so left for exercise. |
Theorem. LetY is closed subspace of X. Then X is a Banach space if and only if Y
and X/Y are Banach spaces.
PROOF. Let X is Banach space.
We know that closed subspace of Banach Space is Banach space.
—> Y is Banach space.
To show: X/Y is Banach space.
Let {x, + Y} be a absolutely convergent sequence in X/Y. That is, |||z, + Y| < oc.
To show: {z, + Y} is convergent in X/Y.
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That is we have to show an +Y < oo.

By definition of ||| - |||, 3 {7;;1} in Y such that
2+ 3l < 2 = 3l + 35 . .
1
:nz::l||xn+yn||<oo. '.';::1|||xn+Y|||<ooandnz::1ﬁ<oo.
Let ixn—l—yn =C.
Congiiller, - -
1w +Y =CH+ Yl = (1D 0 +ya—C+YI|
n=1 —

n=1
= 1D (@ +y.—C)+Y]
n=1

S H Z:En"i_yn _CH
n=1

As m — oo RHS of above inequality goes to 0.

:>H\an+Y—C’+YH\—>Oasm—>oo.

n=1

:>ixn+Y:C+Y.
n=1

.. X/Y is Banach space.

Conversely, Suppose Y and X/Y are Banach spaces.
To show: X is Banach space.

Let {z,,} be Cauchy sequence in X.

For given € > 0, dN € N such that

|Tm — znl| <€, VYn,m > N.

Consider, |||z, +Y — (m +Y)|| = ll#n — 2m + Y||| < |20 — 2| <€, VYn,m > N.
Az, + Y} is Cauchy sequence in X/Y.

SAx, +Y} = {4+ Y} for some z € X.

— Jy, € Y such that {z,, + y,} — =.

Consider,

< o + 20 — 2l + o — zoll + (|20 + ym — 2|
< ¢ VYn,m2>N.

Y — Yl

— {y,} is Cauchy sequence in Y.

Given Y is Banach space.

S Aynt — y asn — oo for some y € Y.

STy =Tt Yn — YUn-

— {z,} > —yasn— . Arn+ynt — zand {y,} — y.
{z,} 2z —yandx—y € X.
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X is Banach space. |
FINITE DIMENSIONAL NORMED SPACES
Proposition. If X is finite dimensional vector space over F, then any two norms on X
are equivalent.
PROOF. Let {ey, e, ..., e4} be a Hamal basis for X.

d

Sforany x € X,z = ijej.

j=1
Define ||z||oc = max {|z;] : 1 < j < d}, then || - || is a norm on X.
Let || - || be another norm on X.
To show: || - || and || - ||co-
Consider,
d
Izl = 1) el
j=1
d
< > el
j=1
d
< Z EFNIEn] . as are scalar.
=1
d
< A .
< max fag] 3 flesl
j=1
d
Szl < Cllllos, where C =) leg]l- (1)

j=1
Let T; be topology defined by || - || and 75 be the topology defined by || - ||

Claim: 7; D 7s.

Let By(zg,7) be an open set in 7.

S By(zo,r) ={r e X ||z — x| <7}

= {zeX:|z—xo]lw <5} C{reX:|z—azl <r}

— Bl(l‘o, %) - BQ(I‘(),T‘).

—> Bs(xg, ) is open in Ti.

=T 27T

Consider, B = {z € X : ||z||o < 1}.

Clearly, B is compact 7; compact.

Claim: B is Ty compact.

Let {U,} be open cover for B with respect to To—topology.

= {U,} be a open cover for B with respect to 7;—topology.

— {U;},_, covers B. " B is T; compact.
=—> B is 75 compact.

Let A={z € X : ||z]|o < 1}.

Clearly, A is T; open.

= A is open in (B, 7).

= Jsome U € T, such that BN U = A.
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Let r€e BNU == xc Bandz € U.

— ol < 1

c.x € U and U is open in 7s.

. 3r >0 such that {x € X : ||z]| <r} CU.

Clzllee <1 and ||zf] < 7.

= el < 1 )
Claim: ||z]] <7 = ||zl < 1.

Let ||z|| <7 and a = ||2]0c-

2l = 1.

If possible, a > 1 = é < 1.

SAEN S

S < and [l = 1.

= |5l < L. By (2).
——.

.. We must have a < 1.

= ||7]|l0o < 1.

— vl < Yzl

— ] < o).

= ¢||z]|0o < ||z]|, where r = c. (3)
. From (1) and (3) we get,

cllzfloo < flz]l < Cfl]lo-

S -] and || - || are equivalent.

Now, assume that || - ||; and || - || are any two norms on X.

Then, || - ||; equivalent to || - ||oc and || - ||2 equivalent to || - ||oo-

= || - ||1 equivalent to || - ||z [ |

Theorem. Let X be finite dimensional norm linear space and M be a linear manifold in
X. Then M 1is closed.

PROOF. Since (X, || - ||) is norm linear space.

= (M, || - ||) be normed linear space.

Let {e1, e, ..., e, } be Hamal basis for M.

s Forany x e M, xz = ijej, where z; € F'forall 1 <j <n.
j=1

Define another norm on M as ||z« = max {|z;| : 1 < j < n}.

Let {z,,} be Cauchy sequence in M.

—> For any € > 0, dN € N such that,

|Tn — Timlloo <€ Vn,m > N.

= max{\xnj — T 11 <5 < n} <€ Vn,m>N.

= |1y, — Zm,;| <€, Vn,m>N.

— {xnj} is Cauchy sequence in F.

{xn]} — x; as nj — 00, and it is true for all 1 < j < n.

Let x = x1e1 + 2260 + ... + 65,

Here {z,,} = x1,{zn,} = 22, ..., {Tpn,} — =n.

Because, ||z, — @/ = max {|z,, —2;| : 1 < j <n}.
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RHS goes to 0 and n; — oo.

— {z,} > rand x € M.

.. M is complete with respect to || - ||oc-

= M is complete with respect to || - || and hence closed. [ |
Theorem. Let X and Y are normed spaces and X is finite dimensional. Then prove

that every linear transformation T : X — 'Y s continuous.
PROOF. Let {ey, ey, ...,e4} be a Hamal basis for X.
d

. Forany x € X, x = ijej.

j=1
Define a norm on X as ||z|| = max {|z;| : 1 < j < d}.
Now,
d
17 ()] = T wje))ll
j=1
= H.I'lT(el) + I'QT(GQ) + ...+ xdT(ed)H
<zl T(e)|l + [zl [T ()l + - + |zal [ T (ea)
< maxe (1) + T (e .+ I1T(e)]
< |[#[|C; where, O = [|T(ex) || + [ T(e2)l| + . + [[T(ea)

= |T(2)|| = Cll=]]

.. T is continuous. |
QUOTIENT AND PRODUCT OF NORM LINEAR SPACES

Let X be a normed space, M be a linear manifold in X, and let @ : X — X/M be a
natural map defined by Qx =z + M. Then

e+ Ml = inf{Jlz +y] -y e M}

is norm on X /M, provided M is closed(Why?).
Theorem. If M < X and ||z + Q||| is norm on X/M, Then
(a) |Qz||| < ||z||, ¥z € X and hence Q is continuous.
(b) If X is Banach space then, X /M is Banach.
(c) A subset W of X/M is open relative to norm if and only if Q= (W) is open in X.
(d) If U is open in X, then Q(U) is open in X /M.
PROOF. (a) For all z € X,
Consider,
Q]

llz -+ M|
inf {||z +y]| -y € M}
el

IA I

(b) Already done.

(c) From part (a) we have, @ : X — X/M defined by Qx = x + M is continuous.
.. Inverse image of open set in X/M under mapping @ is open in X.

= If W is open in X/M then Q~'(W) is open in X.

Conversely, Suppose W C X/M such that Q= (W) is open in X.

To show: W is open in X /M.
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Let 2o € Q71 (W).

= Ir > 0, such that {z € X : ||z — z¢|| <r} C Q(W).
Let y = ¢ — ¢, then

{zo+y: lyll <7} € QTHW).

Let B, = {z/||z| < r}.

coxo+ B ={xo+y/|lyll <r} CQHW).

— Ty + BT - Q_I(W>

Let T'= {x + M/||x + M]|| < r}.

Claim: Q(B,) =T.

Let y € Q(B,) = Jz € B, such that Q(z) = y.
—y=ax+ M.

Now, x € B, = ||z|| < r.

Sl 4+ M| <l <

QB CT.

Suppose, t + M € T.

— ||z + M| < r.

Jy € M such that ||z + y|| < r.

Now Q(z+vy)=x+y+M=x+ M.

— 2+ M=Q(z+y) € QDB,).

- T CQ(By).

2T =Q(B,).

Already we have zo + B, C Q' (W).

= {0 +y/llyl <r} CQT'(W).

= {z/llz — x|l <7} € QT (W).

— QU{z/llz —wol <r}) S W.

= {z+ M/||z —zo+ M|| <r} CW.

= {x+ M/||(x + M) — (xo + M)|| <r} CW.
— B(xo+ M,r) CW.

.. W is open in X/M.

(d) Let U be an open set in X, QU = U/M.

~QNQU) = QUMY

{reX :QreU/M}
{feeX:o+MecU/M}
{fueU:u+MecU/M}
U+ M

= U{U+y:ye M}

= QY(QU) is open. .~ Each U + y is open in X.
.. QU is open. " By part (c). B
Proposition. If X is a normed space, M < X and N 1is a finite dimensional subspace
of X, then M + N 1s closed subspace of X.

PROOF. Consider, @ : X — X/M.

Then, QN = N/M.

dim QN =dim N/M =dim N —dim M < dim N < cc.

Prof. K. R. Shinde 75 Department of Mathematics



Functional Analysis Modern College of ASC(Autonomous), Pune

.. QN is finite dimensional.

QN is closed in X/M .- Every finite dimensional subspace of norm linear space is closed
Also, we have @ is continuous mapping from X to X/M.
= Q Y(Q(N)) is closed in X.

LQTHQN) = QTN (N/M)
= {zreX/z+M e N/M}

= N+ M
—> N + M is closed subspace in X. |
Let {X; : i € I} be collection of normed linear space. Then H X, is a vector space.
iel
Let || - || is norm on X is norm on each X;. For each 1 < p < oo, define

OpXi = {1’ e [T Ml = DD ll=lP? < OO} :

i€l %

Do X; =Lz € HXi |zl = sup lzf| < oo} ,

el

el

B X, = {x e [[Xi: lzm)] — 0} .

Then, @,X; and ©.X; are normed linear spaces and @®yX; is subspace of ®oX;.
Proposition. Let {X; :i € I} be a collection of normed spaces and let

X =@,X;, 1<p<oc.

(a) X is normed space and the projection P; : X — X; is a continuous linear map with
| Pi(x)|| < ||x|| for each x € X.

(b) X is Banach space if and only if each X; is Banach space.

(¢c) Each projection P; is open map of X onto X;.

PROOEF. We shall prove the above result for 1 < p < oo.

(a) Let z,y € X and a € F.
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(1)
]l =0

= @I = o
=Y kol =0

= [lz@)]” =0
= |lz(@)]] =0
< (i) = 0, Vi
= =0
(ii)
lz+yll = ZIISL’HJ (@)[|7)!/”

= (D lle(@) +y@)|P)"?
< Z |2(3)||P)/P + Z lly(3)||P) /P " By Minkowski’s Inequality

<l + lyll
(iii)
loz|| = (ZIW(Z’)H”)“”

= (Ialpz l(@)[[7)H?
= |04|(Z (@) 7)1/

= |af|lz]]
. X = @,X; is normed linear space.
Let P; : X — X; be projection mapping defined by P;(z) = x(7).
(i) For z,y € X.

P(z+y) = (z+y)3)

= (i) +y(i)
= Pi(z) + Pi(y)

Prof. K. R. Shinde 7 Department of Mathematics



Functional Analysis Modern College of ASC(Autonomous), Pune

(ii) For x € X and a € F.

Filax) = (ax)(i)

= ax(i)
= abP(x)
(iii) For any = € X.
1P (@) = [lz@)
< (ZH?E‘(@')H”)I/”
< |

—> P, is continuous and linear mapping.
(b) To show: X is Banach space if and only if each X; is Banach space.
Suppose X is Banach space.

- HXi is Banach space.

Let {x,(i)} be a Cauchy sequence in X.

Choose x,, = (0,0, ...,0,z,(i),0...).

— {z,,} is a Cauchy sequence in X.

— {z,} >z € X. " X is Banach space.
— {z,(1)} = (1) € X, where x = (0,0, ...,2(4),0,0,...).

= X, is Banach space for each i.

Conversely, suppose X; is Banach space for each .

Let {z,,} be Cauchy sequence in X.

For any ¢ > 0,dN € N such that,

|z — xm| <€, Vn,m > N.

(Z (2 = 2m) @|P)? <€, ¥n,m > N.

|2()) = 2@ < Q_ (@0 = 2) D)7)7 <&, Vn,m > N.

— {x,(i)} is Cauchy sequence in X;.

— {z,(1)} — z(i) € X,.

s Az} = x e X, where z = (2(1),2(2), ..., x(), ....).

.. X is Banach space.

(c) To show: Exercise. [ |
LINEAR FUNCTIONALS

Definition. Let X be vector space over a field F. The a linear mapping f : V — F is
called linear functional.

Definition. A hyperplane in X is a linear manifold M in X such that dim(X/M) = 1.
Proposition. (a) A linear manifold in X is a hyperplane if and only if it is the kernel
of a non-zero linear functional.

(b) Two linear functionals have the same kernel if and only if one is a non-zero multiple
of the other.
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PROOF. (a) Let M be a linear manifold which is hyperplane in X.

Consider, the map @ : X — X/M defined by Q(x) =z + M.

Also consider a non-zero linear isomorphism 7' : X/M — F, then f = T o @ is linear
functional from X to F.

Now,

kerf = {xeX: f(zx)=0

= {zeX:(ToQ)
= {zeX : TQ) =
= {reX : Tx+ M)
= {reX: 2+ M=DM}
= {zeX:zeM}
= M

.. M is kernel of non-zero linear functional 7T o Q).

Conversely, Assume f : X — F be a non-zero linear functional.

To show: ker f is hyperplane.

By rank nullity theorem we have,

dim X = dim(ker f) + dim(Imf).

— dim X — dim(ker f) = dim(Imf).

= dim(X/ ker f) = dim(Imf).

— dim(X/ ker f) = 1.

— ker f is a hyperplane.

(b) Let f: X — F and g : X — F be two non-zero linear functionals and assume that

ker f = ker g.

Since f is non-zero functional hence there exist some element xo € X such that f(zq) = 1.

Let 6 = g(z9) and o = f(x).

Consider, f(z — axg) = f(z) — af(zo).

= f(r —axg) =a—a=0.

= x — axg € ker f = kerg.

=z — axg € kerg.

= g(x — axgy) = 0.

= g(x) — ag(xy) = 0.

— g(x) = Bf(z), Vz e X, where g(xg) = 0.

Conversely, Suppose if g = Gf.

x € kerg.

<z € kergf.

<~ [f(x) =0.

< f(z) =0. B #0.

< x € ker f.

. kerg = ker f. |

Proposition. If X is a normed space and M is a hyperplane in X, then either M is

closed or M s dense.

PROOF. Suppose M is a hyperplane in X.

— dim(X/M) = 1.
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We know that, M C cIM.

= dim(X/clM) < dim(X/M) = 1.

— Either dim(X/clM) = 0 or dim(X/clM) = 1.

If dim(X/clM) =0 = X = cIM.

=—> M is dense in X.

If dim(X/clM) =1 = dim(X/M).

= clM = M. M C cIM.
= M is closed. ]
Theorem. If X is normed space and f : X — F s a linear functional, then f is contin-
wous if and only if ker f is closed.

PROOF. Let f : X — F be a linear functional.

Suppose f is continuous.

We know that, ker f = {z € X : f(x) = 0}.

That is, ker f = f~1({0}).

. ker f is closed. - {0} is closed in F and f is continuous.
Conversely, suppose ker f is closed.

Define @ : X — X/ker f by Q(z) = = + ker f.

QM) ==+ ker f|
= inf{||lxr+y| :x € ker f}
< =
.. Q is continuous.
Consider an isomorphism 7' : X/ker f — F, then T o @ : X — F is continuous.

kerTo@ = {re€X:(ToQ)(x)=0}
{re X T(Q() = 0}
{r e X :T(x +ker f) =0}
{r € X :x+kerf=kerf}
{r € X :x€kerf}

= kerf

Let To@Q =g.

=— ker g = ker f.

= f = (g for some scalar g € F.

— f is continuous. ".* g 1s continuous. |
THE HAHN-BANACH THEOREM

Definition. If X is a vector space, a sublinear functional is a function ¢ : X — R such
that

(a) q(z +y) < q(z) +q(y) for all z,y € X.

(b) q(ax) = aq(z) for x € X and a > 0.

The Hahn-Banach Theorem. Let X be a vector space over R and let g be a sublinear
functional on X. If M is a linear manifold in X and f : M — R is a linear functional
such that f(z) < q(x) for all x € M, then there is a linear functional F : X — R such
that F|M = f and F(x) = f(z) for allx € M.

Lemma. Let X is vector space over C.

(a) if f: X — R is an R—linear functional, then f(z) : f(z) —if(iz) is a C—linear
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functional and f = Re f.

(b) If g : X — C is C—linear, f = Re g, and f as defined in (a), then f = g.

(¢) If p is a seminorm on X and f and f are as in (a), then |f| < p(x) for all x € X if
and only if |f(z)| < p(z) for all x € X.

(d) If X is a normed space and f and f are as in (a), then ||f|| = || f].

PROOF. If we can show that f(za:) = if then our proof will be over.

flix) = f(m; —if (=)

1l
=
==
O
|
~.
~
—~
~
B

if
— [ is C—linear.
(b) We know that Re g = f = Re f.
It is sufficient to show Im ¢ = Im f.
Consider,
Im g(z) = —Reig(z)
= —Re g(ix)
= —f(ix)
I f(z)
S f=ag.
(c) Let [f(z)| <p(x) VzeX.
Choose  such that, f(z) = | f(x)|.
f@)] = e “f(z)
— f(e )
= Re f(e z)
= fle)
< ple )
< p()
f(x) =Re f(z) < |f(z)| < p(x).
—f(z) = f(-z) =Re f(-z) < |f(z)| < p(2).
S f(@)] < p(x), for all x € X.
(d) Follows from (c). [ |

Corollary 1. Let X be vector space, let M be a linear manifold in X, and let p : X —
[0,00) be a seminorm. If f : M — T is a linear functional such that |f(z)| < p(x) for all
x € M, then there is a linear functional F' : X — F such that F|M = f and |F(z)| < p(x)
forallz € X.

PROOF. Case 1: If F = R.

We have f(z) < |f(z)] < p(x), VYxe M.

= f(z) <p(z), VreM.

.. By Hahn Banach theorem there is linear functional F' : X — R such that F|M = f
and F'(z) < p(z).

Also, ~F(z) = F(—2) < |[F(~2)| < p(—2) = p(a)
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|F@)] < p(a).

Case 2: If F = C.

Let f; = Re f. Then by Case 1 there is an extension F; : X — R such that Fi|M = f;
and |Fy(z)] < p(x).

Let F' = Fi(x) —iFy(iz), Vze X.

Also, by part (c) of previous lemma we have get |F(z)| < p(x), Vxe X. [ |
Corollary 2. If X is a normed space, M is a linear manifold in X, and f : M — F is
bounded linear functional, then there is an F' in X* such that FIM = f and ||F|| = || f||-
PROOF. Let f: M — F is bounded linear functional.

£ < Il for all = € X.

Take p(z) = [[fll=].-
Clearly, p is seminorm on X.

| F(x)| < plx), VrelX.

Therefore, by corollary 1 there exist a linear functional F' : X — F such that F|M = f
and |F(z)| < p(z), Vzre X.

— [F(@)| < Ifl2]], for all = € X

Therefore, by definition of norm of function || F|| = || f]|. [ |
Corollary 3. If X is normed space, {x1,xs, ..., xq} is linearly independent subset of X,
and oy, o, ..., g are arbitrary scalars, then there is an f in X* such that f(z;) = a; for
1<j<d

PROOF. Let M = (x4, xo, ..., xq).

That is, M is generated by {z1,za, ..., x4}
d

Define, a linear functional g : M — FF such that g(z Bjx;) = Z Bjc;.
Jj=1 j=

Let z1, 20 € M = 21 = Zﬁjx],xz Z%xj and o € F.

Consider,

d d
g(z1 +axy) = g(z Bixj + o Z i%;)
j=1 j=1

= 90> _(B; + avy)z;)

j=1
d

= Z(BJ + avj)oy
s d
= D Biaj+ ) ava
= =
= 90> Bixy) +agd_vz))
=1 j=1

— g(z1) + ag(z)

.. g is linear functional from finite dimensional vector space M to F.
Therefore, g is continuous.
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.. by corollary 2, g can be extended to a linear functional f € X* such that

fIM =g and f(z;) = g(z;).

Therefore, f(z;) = g(z;) = o;. [ |
Corollary 4. If X is normed space and x € X, then

[zl = sup{[f(z)[: f e X" and [f]| <1}.

PROOF. Let o = sup {|f(z)|: f € X* and ||f|| < 1}.
For any f € X* and | f|| < 1.

Therefore, f is bounded linear functional on X.
Hence we can write,

|f(@)] < [[flllz]l, VzeX
< =l A<

Taking supremum on both side we get,
a<l|z|, VrelX.
Consider, M = {fz : p € F}
Clearly M is linear manifold in X.
Define a linear functional on M such that
9(Bz) = Alall.
lgll = sup {lg(z)| : fl2]) < 1} = 1.
.. g is bounded and ||g|| = 1.
By corollary 2, there exists a linear functional f : X — F such that f|M = g and
LFIF= Tlgll
S fll=1and fIM =g = g(x) = f(z), Vxe M.
= f(z) = ||z||, VYze M.
So we can choose, f(z) = ||z||, Vz e X.
soa=||z|. [ |
Corollary 5. If X is a normed space M < X,xy € X — M and d = dist(xg, M), then
there is an f in X* such that f(xo) =1, f(z) =0 for allx € M, and || f|| = d~ .
PROOF. Suppose @ : X — X/M defined by Q(x) =z + M.
For zy € X/M,d = dist(xg, M) = ||zo + m||.
.. By corollary 4, there exist g € (X/M)* such that g(xo + M) = d and ||g|| = 1.
Consider, f =d 'go@Q: X —TF.
.. [ is continuous linear functional.
Now,
[f(@) =1d""g o Q)]
419(Q())

d= Q)|
d=t|]

IAIA I

Therefore, by definition of || f||, [|f|| < d ™.

~. |lgll = 1 there exist a sequence {x, + M} in X/M such that |g(z,, + M)| — 1 for
lln + M| < 1.

Consider, {y,} be sequence in M such that ||z, + y,| < 1.

Prof. K. R. Shinde 83 Department of Mathematics



Functional Analysis Modern College of ASC(Autonomous), Pune

|f(z)] = d'goQ(xz)]
d=tg(x, + M)|
— d!

Therefore, || f|| = d .
Now,
f = dlgo@
s f(wo) = dgoQ(w)

Also, for x € M,

f = d'goQ

' = d'goQ()
d7rg(x + M)
d1g(0+ M)
d~'g(M)
=0

=
&
|

Theorem. If X is a normed space and M s a linear manifold in X, then

cdM = Nikerf:fe X*and M Cker f}.

PROOF. Let N =n{ker f: f € X* and M C ker f}.

For f € X* ker f is closed. *.* f is continuous linear functional.
So M C ker f.

= cl(M) C cl(ker f).

= cl(M) C ker f.

So if f € X* and M C ker f then cl(M) C ker f = cl(M) C N.

Let y ¢ cl(M).

— dist(y, M) > 0.

Let d = dist(y, M).

By corollary 5, there exists f € X* such that f(y) =1 and f(x) = 0.

— M Ckerfandy¢kerf, Vre M.

S Yy¢N= N Ccl(M).

Therefore, N = cl(M).

= clM =nN{ker f: f € X* and M C ker f}. [ |
Corollary If X is normed space and M is a linear manifold in X, then M is dense in X
if and only if the only bounded linear functional on X that annihilates M 1is zero function.
PROOQOF. Let M is dense in X.

= cl(M) = X.

— f € X* and M C ker f gives as ker f = X.

— f=0and f(M)=0.
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Only zero function annihilates M.

Conversely, suppose only bounded linear functional that annihilates M is zero function.
That is, f € X* and M C ker f.

— f=0=ker f = X.

.. By definition of cl(M).

c.cl(M) =X = M is dense in X. [ |
THE OPEN MAPPING THEOREM AND CLOSED GRAPH THEOREM

The Open Mapping Theorem: [F XY are Banach spaces and A : X — Y 1is a
continuous linear surjection, A(G) is open in'Y whenever G is open in X.

PROOQOF. [ |
The Inverse Mapping Theorem: If X and Y are Banach spaces and A : X — Y is
a bounded linear transformation that is bijective, then A~' is bounded.

PROOF. Suppose A is bounded linear transformation.

= A is continuous.

.. By open mapping theorem A is open mapping.

To show: A~! is bounded.

That is to show: A~! is bounded.

Here A=' : Y — X is linear map and for U open in X.

(A=Y)"Y(U) = A(U) is open in Y. "~ A is open map.
= A1 is continuous and hence bounded. |
The Closed Graph Theorem: If X and Y are Banach spaces and A : X — Y is a
linear transformation such that graph of A,

graA = {r@0Aze X® Y :xe X},

1s closed, then A is continuous.

PROOF. Since X and Y are Banach spaces.

= X @, Y is Banach space.

Also, graA is closed subset of X &, Y.

.. graA is Banach space.

Let G = graA. Define a mapping P : G — X by P(x & Ax) = z.
Claim 1: P is linear mapping.

For any x1 & Axy, 29 ® Axs € G.

P(l’l D Al‘l + 20 D AZL’Q) = P((J?l + ZL’Q) D A(ml + 1’2))
= I+ T2
= P(ZEl D AZL‘l) + P(l’g D AJZQ)

Also, For x & Ax € G and any scalar o € F.

Pla(z® Az)) = P(axr® Aax)
; aP(z @ Ax)

Therefore, P is linear.
Claim 2: P is bijective.
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kerP = {x® Az € G: P(z® Ax) =0}
= {r Az € G:2=0}
{0® A(0) € G}

= {0}
.. P is injective.
Clearly, for any = € X, 3z @ Az € G such that P(z & Azx) = x.
.. P is surjective.
= P is bijective.
Claim 3: P is continuous.

[Pz @ Az)]| ]
2]l + [[Az] e @ @l =l + [l

|lx ® Az|]

IANIA

S|Pz @ Az)|| < ||lx @ Az|| = P is continuous.

. By claim 1, 2, 3, P is linear, bijective and continuous(bounded) function.

So P : G — X is a bounded linear and bijective map and G and X are Banach spaces.
By Inverse mapping theorem,

P~!': X — @ is bounded.

Define a mapping 7' : G — Y by T(x & Az) = Ax.

Similarly, we can show 7' is linear, bijective and continuous(bounded).

Now, ToP~!: X — Y is linear and continuous mapping which is same as given mapping
A.

.. A is continuous. [ |
Principle of Uniform Boundedness: Let X be a Banach space and Y a normed
space. If A C B(X,Y) such that for each x in X, sup{||Az||: A€ A} < oo, then
sup {||A]| : A € A} < 0.

PROOF. Let M(z) = sup{||Az| : A € A} < occ.

— ||Az|| < M(x), Vze X.

If possible, Let sup {||A]| : A € A} is infinite.

Then, there exists a sequence {A,} C A such that |A,|| = oo as n — occ.

That is, 3{z,} C X such that ||z,|| =1 and ||Az,|| > 4™.

Let y, = 27"x,,.

Syl = 127w = 27 || = 277
1Anyall = |An27" 20| = 27" (| Ann || > 2774" = 27,
HAnynH > 2"

Claim: There exists subsequence {y,, } of {y,} such that
k

(a) ||Ank+1ynk+1” > 1 + k: + Z M(ynj)

=1

() Yy || < 275 Lsup {[| Ay, || : 1 < j < Kk}
Consider, Z HynkHH = ZZ’”’C < 0.
k k

= Z Ynyyy CONVETEES. " X is Banach space.
k
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Let y = Zynk
k

Consider,

1Ayl = 1Ay D Y
k

k [e'S)
= H ZAnk+lynj + Ank+lynk+l + Z Ank+1ynjH

J=1

k
= ||Ank+1y7’bk+l - (_ ZAnk+1yn]’ -

j=k+2

Z Ank+1 ynj ) ||

Jj= k+2
Z HAﬂkJrlynkJrl H H Z Ank+lyn] _'_ Z Ank+1yﬂj H
j= k+2
Z ||Ank+1ynk+1|| - H ZAnk+1ynj|| - || Z Ank+1yn‘j||
Jj=1 Jj=k+2
k [e's)
Z ‘|Aﬂk+1ynk+1 H - Z HAnk+1ynj H - Z HAnk+1ynj H
=1 j=k+2
k 0o
Z ||Ank+1ynk+1 || - Z ||Ank+1ynj || - Z ||Ank+1 H ||ynj || (1)
j=1

Claim 1: ZHAnHlynJH > - ZM Yns):

We know, M( ) = sup {||Az|| : A € .A}
: HAnkHynjH < M(yn,)-
_M<yn]) < _HAnkH»lynjH'
k k

£ —ZM(ynj) < — Z HAnk+1y"jH'
j=1

7=1
Hence claim 1

Claim 2: gjwmﬂw%n>—§jzﬂ

J=k+2 j=k+2
From the part (b) we have,
[y | < 27 [sup {[[ Ay, | - 1 < j < BF7
Replace k by k + 1.

[9ngall < 275 2[sup {| A, | : 1 < < k+1}]7

In particular for j =k + 1.
ol <252 A
= _Hynk+2|| > —2 ”Ank+1H_ :

S _||Ank+1 || ||ynk+2 “ > _27]672
Similarly, Replace k by k + 2.

[ymerall < 27 2[sup {[|An, || : 1 < j <k + 1}

= —[|Anc My > =277,
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Stmilarly, == =[|An ., |l |l > —27 4,

A My, I > =272, Wy =k +2,k+3, ...

=S Al > — 3 2

j=k+2 j=k+2
Hence claim 2.

From inequality (1)

Ayl =

Jj=1
k k

> 1+k5+ZMynJ Z (Yn,)

j=1
> 1+k— Z 2~

Jj= k+2
> 14+ k— Qkﬂ
> k+ (1 557)
> k

MAutll >k, VE
—<— Because, M(y) = sup{||Ay|| : A € A} < 0.
From inequality (2) as k — oo.

HATLk+1yH — O0.

But by our given condition,

[Au,yll < 00, k.

*. Our assumption was wrong,.

Therefore we must have {||A|| : A € A} < oc.

hodd
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k
|’Ank+1ynk+1H - Z “Ank+1ynj“ -

D 1 Au s, |

j= k+2

-3

j=k+2
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