Progressive Education Society's

Seat No.

Modern College of Arts, Science and Commerce (Autonomous)

Shivajinagar, Pune -5

[Total no. of questions:04]

[Total number of pages:02]

First Year B.Sc. Computer Science (Mar-2020)
End Semester Backlog Examination, (2019 Pattern) Semester – ICourse Code: 19CsMatU102Course Name: AlgebraDate: 17-03-2020Time: 10.00 a.m. to 12.00 p.m.[Time: 2 Hours][Max Marks: 60]

N.B. 1. All questions are compulsory.2. Figures to the right indicate full marks.

Q.1) Attempt any five of the following:

[5x2=10]

[3x5 = 15]

- a) On Z, the set of integers, define * as $a * b = a^b$. Justify whether * is binary operation or not.
- b) Let G be a group with identity element e. Show that if $a^2 = e$ for all $a \in G$, then G is an abelian group.
- c) Let a,b,c be integers. If a|b and a|c then a|b+c.
- d) Find the elements (if any) in \mathbb{Z}_6 that satisfy $x^2 = x$.
- e) Find the value of $(-\overline{3} +_{11} \overline{5})$.
- f) Reduce the following matrix to row echelon form.

$$A = \left[\begin{array}{rrrr} 1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5 \end{array} \right]$$

- g) Write the solution set for the system x + y 2z w = 0.
- Q.2) Attempt any three of the following:
 - a) Solve the following system of linear equations by Gaussian Elimination method

$$2x + 2y + 2z = 0$$

$$-2x + 5y + 2z = 1$$

$$8x + y + 4z = -1$$

b) Prove that integers 361 and 420 are relatively prime.

c) If $a \equiv b \pmod{n}$, $c \equiv d \pmod{n}$ then prove that $(a + c) \equiv (b + d) \pmod{n}$.

d) Let

σ =	($\frac{1}{2}$	$\frac{2}{3}$	$\frac{3}{4}$	4 1	5 6	6 5)
au =								
	1	2	4	1	5	3	6	Ϊ

be permutations in S_6 .

- i) σ and τ is even or odd .
- ii) Find $O(\sigma)$, $O(\tau)$
- iii) Express σ as a product of disjoint cycles.

Q.3) Attempt **any three** of the following:

a) Find rank of the following matrix A.

$$A = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 4 & 3 & 1 & 5 \\ 0 & -1 & 3 & 2 \\ -1 & 5 & 1 & 0 \end{bmatrix}$$

b) Solve the following system by LU decomposition method.

$$-3 x_1 + 12x_2 - 6x_3 = -33 x_1 - 2x_2 + 2x_3 = 7 x_2 + x_3 = -1$$

- c) Write addition and multiplication tables of residue classes modulo 7. Hence find $(\overline{6})^{-1}$ with respect to \times_7 and $(\overline{3})^{-1}, (\overline{4})^{-1}$ with respect to $+_7$.
- d) Find remainder when 17^{1402} is divided by 13.

Q.4) Attempt any two of the following:

- a) Define * on Q^+ (set of positive rational numbers) as $a * b = \frac{ab}{7}$. Then show that $(Q^+, *)$ is an ablian group.
- b) Find GCD of 7677 and 4647. Also, find integers m and n such that 7677 m + 4647 n = gcd(7677, 4647).
- c) For which values of λ does the following system of equations have (i) no solutions (ii) exactly one solution (iii) infinitely many solutions.

$$\begin{aligned} x+2y-3z &= 4\\ 3x-y+5z &= 2\\ 4x+y+(\lambda^2-14)z &= \lambda+2 \end{aligned}$$

[10x2=20]