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CHAPTER 1

GRAPHS AND LEVEL SETS
Definition. Given a function f : U → R, where U ⊂ Rn+1, it’s level sets are the sets
f−1(c) defined, for each real number c, by

f−1(c) = {(x1, x2, ..., xn+1) ∈ U : f(x1, x2, ..., xn+1) = c} .

The number c is called the height of the level set, and f−1(c) is called level set at height
c.
Note:
1. f−1(c) may contain one point if f is one-one.
2. f−1(c) = U if f is constant function.
3. f−1(c) = φ if c is not the point in range set of f .
Example 1. Find the level set at height 0 where f : R→ [−1, 1] defined by f(x) = sinx.
Solution. Let c = 0.

f−1(0) = {x ∈ R : f(x) = 0}

= {x ∈ R : sinx = 0}

= {· · ·,−2π,−π, 0, π, 2π, · · ·}

= {nπ : n ∈ Z}
which is level set at height 0.
Definition. The graph of function f : U → R is a subset of Rn+2 defined by

graph(f) = {(x1, x2, ..., xn+2) ∈ Rn+2 : (x1, x2, ..., xn+1) ∈ U and xn+2 = f(x1, x2, ..., xn+1)}

Example 2. Find the graph of function f : R→ R defined by f(x) = sin x.
Solution.

graph(f) = {(x1, x2) ∈ R2 : x1 ∈ R and x2 = f(x1)}

= {(x1, x2) ∈ R2 : x1 ∈ R and x2 = sinx1}

= {(x1, sinx1) ∈ R2}
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Example 3. Find the level set f−1(c) for n = 0, 1, 2 at c = 0, 1, 2, 3 and c = 4, where
f : Rn+1 → R defined by f(x1, x2, ..., xn+1) = x21 + x22 + ...+ x2n+1.
Solution. For n = 0, f : R→ R defined by f(x1) = x21.
For c = 0

f−1(0) = {x ∈ R : f(x) = 0}
= {x ∈ R : x2 = 0}
= {x ∈ R : x = 0}
= {0}

For c = 1
f−1(1) = {x ∈ R : f(x) = 1}

= {x ∈ R : x2 = 1}
= {x ∈ R : x = −1, 1}
= {−1, 1}

For c = 2
f−1(2) = {x ∈ R : f(x) = 2}

= {x ∈ R : x2 = 2}
=

{
x ∈ R : x = −

√
2,
√

2
}

=
{
−
√

2,
√

2
}

For c = 3
f−1(3) = {x ∈ R : f(x) = 3}

= {x ∈ R : x2 = 3}
=

{
x ∈ R : x = −

√
3,
√

3
}

=
{
−
√

3,
√

3
}

For c = 4
f−1(4) = {x ∈ R : f(x) = 4}

= {x ∈ R : x2 = 4}
= {x ∈ R : x = −2, 2}
= {−2, 2}

For n = 1, f : R2 → R defined by f(x1, x2) = x21 + x22.
For c = 0,

f−1(0) = {(x1, x2) ∈ R2 : f(x1, x2) = 0}
= {(x1, x2) ∈ R2 : x21 + x22 = 0}
= {(0, 0)}
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For c = 1,
f−1(1) = {(x1, x2) ∈ R2 : f(x1, x2) = 1}

= {(x1, x2) ∈ R2 : x21 + x22 = 1}
For c = 2,

f−1(2) = {(x1, x2) ∈ R2 : f(x1, x2) = 2}
= {(x1, x2) ∈ R2 : x21 + x22 = 2}

For c = 3,
f−1(3) = {(x1, x2) ∈ R2 : f(x1, x2) = 3}

= {(x1, x2) ∈ R2 : x21 + x22 = 3}
For c = 4,

f−1(4) = {(x1, x2) ∈ R2 : f(x1, x2) = 4}
= {(x1, x2) ∈ R2 : x21 + x22 = 4}

For n = 2, f : R3 → R defined by f(x1, x2, x3) = x21 + x22 + x23.

For c = 0,
f−1(0) = {(x1, x2, x3) ∈ R3 : f(x1, x2, x3) = 0}

= {(x1, x2, x3) ∈ R3 : x21 + x22 + x23 = 0}
= {(0, 0, 0)}

For c = 1,
f−1(1) = {(x1, x2, x3) ∈ R3 : f(x1, x2, x3) = 1}

= {(x1, x2, x3) ∈ R3 : x21 + x22 + x23 = 1}
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For c = 4,
f−1(4) = {(x1, x2, x3) ∈ R3 : f(x1, x2, x3) = 4}

= {(x1, x2, x3) ∈ R3 : x21 + x22 + x23 = 4}

Example 4. Find the typical level curves and the graph of f : R2 → R defined by
f(x1, x2) = −x21 + x22.
Solution. Level set:
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Graph:

Example 5. Show that the graph of any function f : Rn → R is a level set for some
function F : Rn+1 → R.
PROOF. Let f : Rn → R. Then

graph(f) = {(x1, x2, ..., xn+1) ∈ Rn+1 : (x1, x2, ..., xn) ∈ Rn and xn+1 = f(x1, x2, ..., xn)}

Now we define F : Rn+1 → R as F (x1, x2, ..., xn+1) = f(x1, x2, ..., xn)− xn+1.
Then

F−1(0) = {(x1, x2, ..., xn+1) ∈ Rn+1 : F (x1, x2, ..., xn+1) = 0}

= {(x1, x2, ..., xn+1) ∈ Rn+1 : f(x1, x2, ..., xn)− xn+1 = 0}

= {(x1, x2, ..., xn+1) ∈ Rn+1 : xn+1 = f(x1, x2, ..., xn)}

= graph(f)
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CHAPTER 2

VECTOR FIELDS

Definition. A vector at a point p ∈ Rn+1 is a pair (p, v) where v ∈ Rn+1.
Geometrically, think of v as the vector v translated so that its tail is at p rather than at
origin.

The vectors at p form a vector field Rn+1
p of dimension n + 1, with addition defined by

(p, v) + (p, w) = (p, v + w) and scalar multiplication by c(p, v) = (p, cv).

If {v1, v2, ..., vn+1} is any basis for Rn+1 then {(p, v1), (p, v2), ..., (p, vn+1)} forms a basis
for Rn+1

p .
DEFINITIONS:
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Dot product. Given two vectors (p, v) and (p, w) at p, then their dot product is defined
using standard dot product on Rn+1, by (p, v) · (p, w) = v · w.
Cross product. Given two vectors (p, v) and (p, w) ∈ R3

p, where p ∈ R3, then their
cross product is also defined, using the standard cross product on R3, by (p, v)× (p, w) =
(p, v × w).
Length of vector. The length of a vector v = (p, v) at p is

‖v‖ = (v · v)1/2

= ((p, v) · (p, v))1/2 .

Angle between two vectors. The angle between two vectors v = (p, v) and w = (p, w)
is

cos θ =
v · w
‖v‖ ‖w‖

, where 0 ≤ θ < π.

Vector field. A vector field X on U ⊂ Rn+1 is a function which assigns to each vector
of U a vector at that point, Thus

X(p) = (p,X(p)).

Example 1. The sketch of some vector fields X : R2 → R2 defined by X(x1, x2) =
(x2,−x1) and X(x1, x2) = (0, 1) are given below:

Open set. A set U ⊂ Rn+1 is open if for each point p ∈ U there is an ε > 0 such that
q ∈ U whenever ‖q − p‖ < ε.
Smooth function. A function f : U → R, where U is open subset of Rn+1 is called
smooth function if all it’s partial derivatives of all orders are exists and continuous.
A function f : U → Rk where U is open subset of Rn+1 is called smooth function if each
component function fi : U → R(f(p) = (f1(p), f2(p), ..., fn+1(p)) for p ∈ U) is smooth.
A vector field X on U is smooth if the associated function X : U → Rn+1 is smooth.
Gradient of a function. Associated with each smooth function f : U → R(U open in Rn+1)
is a smooth vector field on U called gradient of f defined by

(∇f)(p) =

(
p,
∂f

∂x1
(p),

∂f

∂x2
(p), ...,

∂f

∂xn+1

(p)

)
.
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Parametric curve. A parametric curve in Rn+1 is a smooth function α : I → Rn+1,
where I is some open interval in R. It has the form α(t) = (x1(t), x2(t), ..., xn+1(t)) where
each xi is a smooth real valued function on I.
Velocity vector. The velocity vector at time t ∈ I of parametrized curve α : I → Rn+1

is the vector at α(t) defined by

α̇(t) =

(
α(t),

dx1
dt

(t),
dx2
dt

(t), ...,
dxn+1

dt
(t)

)
.

This vector is tangent to the curve α at α(t).

Integral curve. A parametrized curve α : I → Rn+1 is said to be integral curve of the
vector field X on the open set U in Rn+1 if α(t) ∈ U and α̇(t) = X(α(t)) for all t ∈ I.

Theorem. Let X be a smooth vector field on an open set U ⊂ Rn+1 and let p ∈ U . Then
there exists an open interval I containing 0 and an integral curve α : I → U of X such
that
(i) α(0) = p.
(ii) If β : Ĩ → U is any another integral curve of X with β(0) = p, then Ĩ ⊂ I and
β(t) = α(t) for all Ĩ.
PROOF. Since X is a smooth vector field on U hence it has the form

X(p) = (p,X1(p), X2(p), ..., Xn+1(p))

where, each Xi : U → R is smooth functions on U . A parametrized curve α : I → Rn+1

has the form .
α(t) = (x1(t), x2(t), ..., xn+1(t))
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where, each xi : I → R is smooth function on I. The velocity of α is

α̇(t) =

(
α(t),

dx1
dt

(t),
dx2
dt

(t), ...,
dxn+1

dt
(t)

)
Suppose α : I → be an integral curve of a vector field X

=⇒ ˙α(t) = X(α(t))

=⇒
(
α(t),

dx1
dt

(t),
dx2
dt

(t), ...,
dxn+1

dt
(t)

)
= (α(t), X1(α(t)), X2(α(t)), ..., Xn+1(α(t)))

Equating components from both sides we get,

dx1
dt

(t) = X1(α(t))

dx2
dt

(t) = X2(α(t))

·
·
·

dxn+1

dt
(t) = Xn+1(α(t))

This is the system of n+ 1 first order ordinary differential equations in n+ 1 unknowns.
Therefore, by existence theorem for solutions of such equations there exists and open
interval I containing 0 and set xi : I1 → R of smooth functions satisfying this system
subject to initial conditions xi(0) = p for i ∈ {1, 2, ..., n+ 1}, where p = (p1, p2, ..., pn+1).
Setting β1(t) = (x1(t), x2(t), ..., xn+1(t)) for this choice of functions we get an integral
curve β1 : I1 → U of X with β1(0) = p.
Also, by uniqueness theorem for the solutions of first order ordinary differential equations,
if x̃i : I2 → R is another set of functions satisfying the given system together with the
initial conditions x̃i(0) = pi then x̃i(t) = xi(t) for all t ∈ I1 ∩ I2.
In other words, if β2 : I2 → U is another integral curve of X with β(0) = p then
β1(t) = β2(t) for all t ∈ I1 ∩ I2.
It follows from this that there is unique maximal integral curve α of X with α(0) = p and
if β : Ĩ → U is any another integral curve of X with β(0) = p then β is simply restriction
of α to the smaller interval Ĩ. �
Example. Find the integral curve of vector field X, where X(x1, x2) = (−x2, x1) through
the point (a, b).
Solution. Suppose a parametric curve α(t) = (x1(t), x2(t)) is an integral curve of X.

=⇒ α̇(t) = X(α(t))

=⇒
(
dx1
dt

(t),
dx2
dt

(t)

)
= X(x1(t), x2(t))

=⇒
(
dx1
dt

(t),
dx2
dt

(t)

)
= (−x2(t), x1(t))
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Equating components from both sides we get,

dx1
dt

(t) = −x2(t) (1)

dx2
dt

(t) = x1(t) (2)

Differentiating both the equations with respect to t we get,

d2x1
dt2

= −dx2
dt

(3)

d2x2
dt2

=
dx1
dt

(4)

From equation (1) and (3) we get,

d2x1
dt2

= −x1

=⇒ d2x1
dt2

+ x1 = 0 (5)

The auxiliary equation of differential equation (5) is,

m2 + 1 = 0
=⇒ m = ± i

Therefore, the solution of differential equation (5) is x1(t) = c1 cos t+ c2 sin t.

x2(t) = −dx1
dt

= −(−c1 sin t+ c2 cos t).

=⇒ x2(t) = c1 sin t− c2 cos t.
Since the given integral curve passes through the point (a, b).
=⇒ x1(0) = a and x2(0) = b.
Using these initial conditions we get c1 = a and c2 = −b.
Therefore, the required integral curve is α(x1, x2) = (a cos t− b sin t, a sin t+ b cos t).
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Definition. The divergence of a smooth vector fieldX on U ⊂ Rn+1, X(p) = (p,X1(p), X2(p), ..., Xn+1(p))

for p ∈ U , is the function divX : U → R defined by divX =
n+1∑
i=1

∂Xi

∂xi
.

Example 1. Find divergence of a vector field defined by X(p) = (1, 0).

Solution. divX =
∂X1

∂x1
+
∂X2

∂x2
= 0.

Example 2. Find the divergence of a vector field defined by X(p) = p.
Solution. We have X(x1, x2) = (x1, x2).

Therefore, divX =
∂X1

∂x1
+
∂X2

∂x2
= 1 + 1 = 2.

Example 3. Find and sketch the gradient field of each of the following functions:
(a) f(x1, x2) = x1 + x2

Solution. ∇f(x1, x2) =

(
∂f

∂x1
,
∂f

∂x2

)
= (1, 1).

The sketch of this gradient vector field is given below:

(b) f(x1, x2) = x1 − x22
Solution. ∇f(x1, x2) =

(
∂f

∂x1
,
∂f

∂x2

)
= (1,−2x2).

The sketch of this gradient vector field is given below:
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Example 4. Explain why an integral curve of a vector field cannot cross itself as does
the parametrized curve.
Solution. Let X be a smooth vector field on U ⊂ Rn+1.
On contrary assume that the integral curve crosses itself.
=⇒ α(t1) = α(t2), for some t1, t2 ∈ I and t1 6= t2.
Since α is integral curve of a vector field X.
=⇒ α̇(t1) = X(α(t1)) and α̇(t2) = X(α(t2)).
But then, α̇(t1) = X(α(t1)) = X(α(t2)) = α̇(t2).
=⇒ α̇(t1) = α̇(t2).
Which is not possible. Therefore, Integral curve of a smooth vector field X does not cross
itself.
Definition. A smooth vector field X on an open set U ⊂ Rn+1 is said to be complete if
for each p ∈ U the maximal integral curve of X through p has domain equal to R.
Example 5. Determine which of the following vector fields are complete.
(a) X(x1, x2) = (x1, x2, 1, 0), U = R2.
Solution. Here vector field X is defined on an open set U = R2. We define maximal
integral curve α(t) = (x1(t), x2(t)) of given vector field passing through (a, b).

=⇒ α̇(t) = X(α(t))

=⇒
(
dx1
dt
,
dx2
dt

)
= (1, 0)

=⇒ dx1
dt

= 1

dx2
dt

= 0

x1(t) = t+ c1
x2(t) = c2

Since the integral curve passes through (a, b).
Therefore, x1(0) = a and x2(0) = b.
=⇒ c1 = a and c2 = b.
Therefore, the integral curve is α(t) = (t+ a, b).
For any t ∈ R, α(t) = (a+ t, b) ∈ R2.
Therefore, domain of maximal integral curve is R.
Therefore, the given vector field is complete.
(b) X(x1, x2) = (x1, x2, 1, 0), U = R2 − {(0, 0)}.
Solution. We have maximal integral curve of given vector field is α(t) = (t+a, b), where
U = R2 − {(0, 0)}.
Now, for t = 0, α(0) = (a, b).
At the point (a, b) = (0, 0), α(0) = (0, 0).
But α(0) = (0, 0) /∈ U =⇒ 0 /∈ R.
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=⇒ Domain of α not equal to R.
Therefore, the given vector field is not complete.

Example 6. Show that α(t) =

(
cos2 t− 1

2
, sin t cos t, sin t

)
is parametrization of the

intersection of circular cylinder of radius
1

2
and axis the z-axis with the sphere of radius

1 and centre is

(
−1

2
, 0, 0

)
.

Solution. The equation of sphere whose centre at

(
−1

2
, 0, 0

)
and radius 1 is,

(
x+

1

2

)2

+ y2 + z2 = 1 (1)

The equation of circular cylinder of radius 1/2 is,

x2 + y2 =
1

4
(2)

From equation (1) we have z2 ≤ 1.
=⇒ −1 ≤ z ≤ 1.
Substitute z = sin t.
Subtracting equation (2) from equation (1) we get,

(
x+

1

2

)2

− x2 + z2 = 1− 1

4

x+
1

4
+ z2 =

3

4

x+ z2 =
1

2

x =
1

2
− z2

x =
1

2
− sin2 t ∵ z = sin t

x =
1

2
−
(
1− cos2 t

)
x = cos2 t− 1

2
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Substituting this value of x in equation (2) we get,(
cos2 t− 1

2

)2

+ y2 =
1

4

cos4 t− cos2 t+
1

4
+ y2 =

1

4

y2 = cos2 t− cos4 t

y2 = cos2 t(1− cos2 t)

y2 = cos2 t sin2 t

y = cos t sin t

Therefore, α(t) =

(
cos2 t− 1

2
, sin t cos t, sin t

)
is parametrization of the intersection cir-

cular cylinder of radius
1

2
and axis the z-axis with the sphere of radius 1 and centre is(

−1

2
, 0, 0

)
.

Example 6. Explain why an integral curve of a vector field does not cross itself as does
the parametrized curve.
Solution. Let X be a smooth vector field on U is subset of Rn+1 and α : I → U be an
integral curve of X.
On contrary assume that the integral curve α cross with itself.
That is, there exists t1 6= t2 ∈ I such that α(t1) = α(t2).
Since α is integral curve of X

=⇒ α̇(t1) = X(α(t1)) and

α̇(t2) = X(α(t2))

But then
α̇(t1) = X(α(t1)) = X(α(t2)) = α̇(t2)

=⇒ α̇(t1) = α̇(t2)

Which is not possible.
Therefore, integral curve does not cross itself.

♣♣♣
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CHAPTER 3

THE TANGENT SPACES AND SURFACE

Definition. Let f : U → R be a smooth function, where U ⊂ Rn+1 is an open set, let
c ∈ R be such that f−1(c) is non-empty, and let p ∈ f−1(c). A vector at p is said to be
tangent to the level set f−1(c) if it is velocity vector of a parametrized curve whose image
is contained in f−1(c) (see figure below).

Therefore, the tangent vector to f−1(c) is of the form α̇(t0) for some parametrized curve
α : U → Rn+1 with α(t0) = p and Im(α) ⊂ f−1(c).
Lemma. The gradient of f at p ∈ f−1(c) is orthogonal to all vectors tangent to f−1(c)
at p.
PROOF. Each vector tangent to f−1(c) is of the form α̇(t0) for some parametrized curve
α : U → Rn+1 with α(t0) = p and Im(α) ⊂ f−1(c).
But Im(α) ⊂ f−1(c) =⇒ f(α(t)) = c,∀t ∈ I.
By chain rule of derivative we have,

d

dt
(f ◦ α)(t0) = ∇f(α(t0)) · α̇(t0)

=⇒ d

dt
(c) = ∇f(p) · α̇(t0)

=⇒ ∇f(p) · α̇(t0) = 0

∴ Gradient of f at p ∈ f−1(c) is orthogonal to all vectors tangent to f−1(c) at p. �
Remark. If ∇f(p) = 0 then lemma says nothing. But if ∇f(p) 6= 0, it says that the set
of all vectors tangent to f−1(c) at p is contained in the n−dimensional vector subspace
[∇f(p)]⊥ of Rn+1

p consisting of all vectors orthogonal to ∇f(p).
Definition. A point p ∈ Rn+1 such that ∇f(p) 6= 0 is called regular point of f .
Theorem. Let U be an open set in Rn+1 and let f : U → R be smooth. Let p be a regular
point of f , and let c = f(p). Then the set of all vectors tangent to f−1(c) at p is equal to
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[∇f(p)]⊥.
PROOF. From the previous lemma we have that, every vector tangent to f−1(c) at p
is contained in [∇f(p)]⊥. Thus it suffices to show that, if v = (p, v) ∈ [∇f(p)]⊥, then
v = α̇(0) for some parametrized curve α with Im(α) ⊂ f−1(c). To construct α, consider
the constant vector field X on U defined by X(q) = (q, v). From X we can construct
another vector field Y by subtracting from X the components of X along α.

Y (q) = X(q)− X(q) · ∇f(q)

‖∇f(q)‖2
∇f(q)

The vector field Y has domain U where ∇f 6= 0. Since p is regular point of f , hence it
is in domain of Y . Moreover, since X(p) = v ∈ [∇f(p)]⊥. Therefore, X(p) = Y (p). Here
we have obtained smooth vector field Y such that Y (q) ⊥ ∇f(q),∀q ∈ domain(Y ), and
Y (p) = v.
Now let α be an integral curve of Y through p.
Then α(0) = p, α̇(0) = Y (α(0)) = Y (p) = X(p) = v and

d

dt
f(α(t)) = ∇f(α(t)) · α̇(t)

= ∇f(α(t)) · Y (α(t))

= 0

for all t ∈ domain(α), so that f(α(t)) = constant. Since f(α(0)) = f(p) = c, this means
that Image(α) ⊂ f−1(c). �
Definition. A surface of dimension n or n−surface, in Rn+1 is a non-empty subset S of
Rn+1 of the form S = f−1(c) where f : U → R, U is open in Rn+1, is a smooth function
with the property that ∇f(p) 6= 0,∀p ∈ S.
A 1-surface in R2 is called a plane curve. A 2-surface in R3 is called simply a surface. An
n−surface in Rn+1 is called a hypersurface.
By theorem in previous chapter each n−surface S in Rn+1, at each point p ∈ S has
tangent space which is n−dimensional vector surface of the space Rn+1

p . This tangent
space is denoted by Sp.
If f is smooth function and S = f−1(c) for some c ∈ R and ∇f(p) 6= 0,∀p ∈ S, then Sp

may also be described as [∇f(p)]⊥.
Example 1. Show that the unit n−sphere is a n−surface in Rn+1.
Solution. The unit n−sphere x21 + x22 + ...+ x2n+1 = 1 represent the set
S =

{
(x1, x2, ..., xn+1) ∈ Rn+1 : x21 + x22 + ...+ x2n+1 = 1

}
.

Here S = f−1(1), where f : Rn+1 → R defined by

f(x1, x2, ..., xn+1) = x21 + x22 + ...+ x2n+1

Since (1, 0, 0, ..., 0) ∈ S, hence S is non-empty subset of Rn+1. Now for any
p = (x1, x2, ..., xn+1) ∈ S

∇f(p) = (p, 2x1, 2x2, ..., 2xn+1)
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Therefore, ∇f(p) = 0⇐⇒ (2x1, 2x2, ..., 2xn+1) = 0⇐⇒ p = (0, 0, ..., 0).
But (0, 0, ..., 0) /∈ S =⇒ ∇f(p) 6= 0, ∀p ∈ S.
Therefore, S is n-surface in Rn+1.
For n = 1, S is unit circle which is 1-surface in R2, for n = 2, S is sphere which is
2-surface in R3.
Example 2. Show that for 0 6= (a1, a2, ..., an+1) ∈ Rn+1 and b ∈ R, the n-plane
a1x1 + a2x2 + ...+ an+1xn+1 = b is a n-surface in Rn+1.
Solution. The n-plane a1x1 + a2x2 + ...+ an+1xn+1 = b represent the set
S = {(x1, x2, ..., xn+1) ∈ Rn+1 : a1x1 + a2x2 + ...+ an+1xn+1 = b}.
Here, S = f−1(b) where f : Rn+1 → R defined by

f(x1, x2, ..., xn+1) = a1x1 + a2x2 + ...+ an+1xn+1

Since, (b/a1, 0, ..., 0) ∈ S hence S is non-empty subset of Rn+1. Now for any
p = (x1, x2, ..., xn+1) ∈ S.

∇f(p) = (p, a1, a2, ..., an+1)

Therefore, ∇f(p) = 0⇐⇒ (a1, a2, ..., an+1) = 0.
But (a1, a2, ..., an+1) 6= 0 =⇒ ∇f(p) 6= 0, ∀p ∈ S.
Therefore, S is n-surface in Rn+1.
1-plane is usually called line in R2, 2-plane is called simply plane in R3 and an n-plane
for n > 2 is called a hyperplane in Rn+1. Two different values of b with the same value
of (a1, a2, ..., an+1) defines parallel n-planes.
Example 3. Show that the graph of function f : U → R, where U is open subset of
Rn+1 is an n-surface in Rn+1.
Solution. Let S = graphf = {(x1, x2, ..., xn+1) ∈ Rn+1 : xn+1 = f(x1, x2, ..., xn)}.
Since graph(f) = F−1(0), for some F : Rn+1 → R defined by

F (x1, x2, ..., xn) = xn+1 − f(x1, x2, ..., xn)

Now for any p = (x1, x2, ..., xn+1) ∈ S,

∇F (p) =

(
p,− ∂f

∂x1
,− ∂f

∂x2
, ...,− ∂f

∂xn
, 1

)
∴ ∇F (p) 6= 0,∀p ∈ S.
Therefore, gr(f) is a n-surface in Rn+1.
Theorem. Let S be an n-surface in Rn+1, S = f−1(c) where f : U → R is such that
∇f(q) 6= 0 for all q ∈ S. Suppose g : U → R is a smooth function and p ∈ S is an
extreme point of g on S; i.e. either g(q) ≤ g(p) for all q ∈ S or g(q) ≥ g(p) for all q ∈ S.
Then there exists a real number λ such that ∇g(p) = λ∇f(p).(The number λ is called a
Lagrange multiplier.)
PROOF. Let S be an n-surface in Rn+1.
Therefore, S = f−1(c), for some smooth function f : U → R such that ∇f(p) 6= 0, ∀p ∈
S.
The tangent space to S at p is Sp = [∇f(p)]⊥. Hence S⊥p = [∇f(p)] is one dimensional
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vector subspace of Rn+1
p spanned by ∇f(p).

To prove: ∇g(p) = λ∇f(p).
That is, to prove ∇g(p) ∈ S⊥p .
That is, to prove ∇g(p) · v = 0, ∀v ∈ Sp.
But each v ∈ Sp is of the form v = α̇(t0) for some parametrized curve α : I → S and
t0 ∈ I with α(t0) = p. Since p = α(t0) is extreme point of g on S.
=⇒ g(q) ≤ g(p) ∀q ∈ S or g(q) ≥ g(p) ∀q ∈ S.
=⇒ g(q) ≤ g(α(t0)) ∀q ∈ S or g(q) ≥ g(α(t0)) ∀q ∈ S.
Since, α : I → S =⇒ α(t) ∈ S, ∀t ∈ I.
=⇒ g(α(t)) ≤ g(α(t0)) ∀t ∈ I or g(α(t)) ≥ g(α(t0)) ∀t ∈ I.
=⇒ (g ◦ α)(t) ≤ (g ◦ α)(t0) ∀t ∈ I or (g ◦ α)(t) ≥ (g ◦ α)(t0) ∀t ∈ I.
=⇒ t0 is an extreme point of g ◦ α on I.
Therefore,

d

dt
[(g ◦ α)(t0)] = 0

=⇒ ∇g(α(t0)) · α̇(t0) = 0

=⇒ ∇g(p) · v = 0, ∀v ∈ Sp

=⇒ ∇g(p) ∈ S⊥p = [∇f(p)]⊥

=⇒ ∇g(p) = λ∇f(p)

�
Example 4. Show that the maximum and minimum values of the function g(x1, x2) =
ax21 + 2bx1x2 + cx22, where a, b, c ∈ R on the unit circle x21 + x22 = 1 are eigenvalues of the

matrix

[
a b
b c

]
.

Solution. Here we have given S = f−1(1), where f : R2 → R defined by f(x1, x2) =
x21 + x22. Then

∇f(x1, x2) = (x1, x2, 2x1, 2x2)

and
∇g(x1, x2) = (x1, x2, 2ax1 + 2bx2, 2bx1 + 2cx2)

Let p = (x1, x2) ∈ S be extreme point of g. Therefore by Lagrange multiplier theorem,

∇g(p) = λ∇f(p)

⇐⇒
2ax1 + 2bx2 = 2λx1

2bx1 + 2cx2 = 2λx2
or [

a b
b c

] [
x1
x2

]
= λ

[
x1
x2

]
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Thus the extreme points of g on S are eigenvectors of the symmetric matrix

[
a b
b c

]
. If[

x1
x2

]
is an eigenvector of a matrix

[
a b
b c

]
then

ax21 + 2bx1x2 + cx22 = [x1 x2]

[
a b
b c

] [
x1
x2

]

= [x1 x2]λ

[
x1
x2

]
= λ(x11 + x22)

= λ

Therefore, g(p) = λ, where p = (x1, x2). Since a 2 × 2 matrix has only two eigenvalues,
these eigenvalues are the maximum and minimum values of g on the compact set S.
Example 5. If R4 can be viewed as the set of all 2 × 2 matrices with real entries by

identifying the 4-tuple (x1, x2, x3, x4) with matrix

[
x1 x2
x3 x4

]
. The subset consisting of

those matrices with determinant equal to 1 forms a group under matrix multiplication,
called the special linear group SL(2). Show that SL(2) is 3-space in R4.

Solution. Here SL(2) =

{[
x1 x2
x3 x4

]
: (x1, x2, x3, x4) ∈ R4 and

∣∣∣∣x1 x2
x3 x4

∣∣∣∣ = 1

}
. Since[

1 0
0 1

]
∈ SL(2) hence SL(2) 6= φ.

Also, S = f−1(1), where f : R4 → R defined by f(x1, x2, x3, x4) = x1x4 − x2x3 and
∇f(p) = (p, x4,−x3,−x2, x1), where p = (x1, x2, x3, x4).

∇f(p) = 0⇐⇒ (x1, x2, x3, x4) = 0

But 0 /∈ SL(2) because determinant of zero-matrix is 0.
Therefore, SL(2) is 3-surface in R4.
Example 6. Let S be an (n − 1)-surface in Rn, given by f−1(c), where f : U →
R(U open in Rn) is such that ∇f(p) 6= 0 for all p ∈ f−1(c). Let g : U1 → R, where
U1 = U × R = {(x1, x2, ..., xn+1) ∈ Rn+1 : (x1, x2, ..., xn) ∈ U} be defined by

g(x1, x2, ..., xn+1) = f(x1, x2, ..., xn).

Then g−1(c) is an n-surface in Rn+1.
Solution. Since

∇g(x1, x2, ..., xn+1) =

(
x1, x2, ..., xn+1,

∂f

∂x1
,
∂f

∂x2
, ....,

∂f

∂xn
, 0

)
and

∂f

∂x1
,
∂f

∂x2
, ....,

∂f

∂xn
cannot be simultaneously zero when g(x1, x2, ..., xn+1) = f(x1, x2, ..., xn) =

c because ∇f(x1, x2, ..., xn) 6= 0, whenever (x1, x2, ..., xn) ∈ f−1(c). The n-surface g−1(c)
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is called cylinder over S.
Example 7. The Surface of Revolution:
Let C be a curve in R2 which lies above x1-axis. Thus C = f−1(c) for some f : U → R
with ∇f(p) 6= 0 for all p ∈ C, where U is contained in the upper half plane x2 > 0.
Define S = g−1(c) where g : U × R → R by g(x1, x2, x3) = f(x1, (x

2
2 + x23)

1/2). Then S
is 2-surface. Each point (a, b) ∈ C generates a circle of point of S, namely circle in the
plane x1 = a consisting of those points (x1, x2, x3) ∈ R3 such that x1 = a, x22 + x23 = b2.
S is called surface of revolution obtained by rotating the curve C about the x1-axis.

♣♣♣
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