
Numerical Analysis Modern College of ACS(Autonomous), Pune

Numerical Analysis
By Krishna Shinde

Department of Mathematics
Modern College of Arts, Science and Commerce(Autonomous)

Shivajinagar, Pune - 5

CHAPTER 2

System of Equations
GAUSSIAN ELIMINATION
In this chapter we study techniques for the solutions of the system of linear algebraic
equations. The general system of n linear equations in n unknowns can be written as

a11x1 + a12x2 + ... + a1nxn = b1
a21x1 + a22x2 + ... + a2nxn = b2

·
·
·

an1x1 + an2x2 + ... + annxn = bn

The aij and bi are known constants, and xi are variables. This system can be expressed
in matrix form as Ax = b, where A is the n× n matrix

a11 a12 · · · a1n
a21 a22 · · · a2n

· ·
· ·
· ·

an1 an2 · · · ann


and x and b are the n−dimensional column vector [x1 x2 · · · xn]T and [b1 b2 · · · bn]T ,
respectively. A is called coefficient matrix, x the solution vector and b the right-hand
side vector for the system.
The augmented matrix of linear equations given earlier is

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

· · ·
· · ·
· · ·

an1 an2 · · · ann bn


The object of Gaussian elimination is to transform the coefficient part of augmented ma-
trix into upper triangular form.
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Definition. A matrix U is called upper triangular if all elements below the main diago-
nal are zero; that is uij = 0, whenever i > j.
The transformation of the coefficient portion of the augmented matrix is carried out
through the following three elementary row operations(EROs).

1. ERO1 : Any two rows can be interchanged. The notation Ri ↔ Rj indicates that
row i was interchanged with row j.

2. ERO2 : Any row can be multiplied by a non-zero constant. The notation ri ← mRi

indicates that row i was multiplied by m.

3. ERO3 : Any multiple one row can be added to another row. The notation ri ←
Ri + mRj indicates that m times row j was added to row i.

Example 1. Solve the following system by Gaussian elimination process, consider the
system

x1 + x2 + x3 + x4 = 1
x1 + x2 + 2x3 + 3x4 = 2
−x1 + 2x3 + x4 = 1
3x1 + 2x2 − x3 = 1

Solution. We begin by placing the pivot in the first row, first column of the augmented
matrix. Now we have to replace each element below the pivot, within pivot column, with
zero. This can be done by performing ERO3 on the row below the pivot row, each time
adding an appropriate multiple of pivot row. The required multiple, m, is determined by
formula

m = −Element to be replaced by 0

Element in pivot
.

Therefore, the multipliers for the second, third and fourth rows are −1, 1, and −3, re-
spectively.


〈1〉 1 1 1 1
1 1 2 3 2
−1 0 2 1 1
3 2 −1 0 1


r2 ← R2 −R1

r3 ← R3 + R1

r4 ← R4 − 3R1
−−−−−−−−−−−−−→


1 1 1 1 1
0 0 1 2 1
0 1 3 2 2
0 −1 −4 −3 −2


After first elimination pass through the matrix the pivot is moved down one row and to
right one column. That is, at second row, second column position. At this point we have
0, so solve this problem by interchanging the second and third row.

1 1 1 1 1
0 〈0〉 1 2 1
0 1 3 2 2
0 −1 −4 −3 −2

 R2 ↔ R3
−−−−−−−−→


1 1 1 1 1
0 〈1〉 3 2 2
0 0 1 2 1
0 −1 −4 −3 −2


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r4 ← R4 + R2
−−−−−−−−−−−−→


1 1 1 1 1
0 1 3 2 2
0 0 1 2 1
0 0 −1 −1 0


For the third elimination pass we have pivot element is at third row, third column.

1 1 1 1 1
0 1 3 2 2
0 0 〈1〉 2 1
0 0 −1 −1 0

 r4←R4+R3−−−−−−→


1 1 1 1 1
0 1 3 2 2
0 0 1 2 1
0 0 0 1 1


Now to obtain the solution we perform the back substitution and we get x = [x1 x2 x3 x4]

T =
[−2 3 − 1 1]T .
PIVOTING STRATEGIES
Consider the system of three equations in three unknowns

2
3
x1 + 2

7
x2 + 1

5
x3 = 43

15

1
3
x1 + 1

7
x2 − 1

2
x3 = 5

6

1
5
x1 − 3

7
x2 + 2

5
x3 = −12

5

The first elimination pass of Gaussian elimination require that the elementary row oper-
ations r2 ← R2− 1

2
R1 and r3 ← R3− 3

10
R1. Applying these row operations we obtain the

equivalent system

2
3
x1 + 2

7
x2 + 1

5
x3 = 43

15

−3
5
x3 = −3

5

−36
70
x2 + 17

50
x3 = −163

50

Interchanging the second and third equations produces upper triangular matrix, from
which the exact solution x1 = 1, x2 = 7 and x3 = 1 is obtained by back substitution.
What happens when we try to solve this system by using four decimal digits ?
The above system reduces to

0.6667x1 + 0.2857x2 + 0.2000x3 = 2.8670

0.3333x1 + 0.1429x2 − 0.5000x3 = 0.8333

0.2000x1 − 0.4286x2 + 0.4000x3 = −2.4000

The first pass of Gaussian elimination produces

0.6667x1 + 0.2857x2 + 0.2000x3 = 2.8670

0.0001x2 − 0.6000x3 = −0.5997

−0.5143x2 + 0.3400x3 = −3.260
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After second elimination pass of Gaussian elimination we obtain the triangular system

0.6667x1 + 0.2857x2 + 0.2000x3 = 2.8670

0.0001x2 − 0.6000x3 = −0.5997

3086x3 = 3087

From this we obtain the solution x1 = 2.715, x2 = 3.000 and x3 = 1.000 for system by
back substitution.
The error in a calculation of x1 and x2 is nearly 200% this is because of small pivot
element 0.0001 at second elimination pass. To avoid the small pivot, we can apply
pivoting strategy.
Partial Pivoting.
Partial pivoting is systematic scheme of interchanging the rows of the coefficient matrix
to place a selected element in the pivot position. The simplest such scheme is called
partial pivoting.
The partial pivoting during the ith elimination pass of Gaussian elimination, let

Mi = max
i≤j≤n

|aji|,

and let j0 be the smallest value of j for which this maximum occurs. If j0 > i then
interchange row i and j0.
In other ward, we find the element in the pivot column, starting from the i-th row and
continuing to the bottom of the matrix, which is of largest magnitude, and then make
that element the pivot element.
Example 1. Reconsider the system

0.6667x1 + 0.2857x2 + 0.2000x3 = 2.8670

0.3333x1 + 0.1429x2 − 0.5000x3 = 0.8333

0.2000x1 − 0.4286x2 + 0.4000x3 = −2.4000

For the first elimination pass we proceed exactly same as before because the largest
element in the first column (i = 1) is initially in the first equation j0 = 1. Since j0 = i,
no interchange of equations is required. Hence after first elimination pass the system
reduces to

0.6667x1 + 0.2857x2 + 0.2000x3 = 2.8670

0.0001x2 − 0.6000x3 = −0.5997

−0.5143x2 + 0.3400x3 = −3.260

For the second elimination pass we see that the largest element in the second column
(i = 2) is located in the third equation (j0 = 3). The partial pivoting strategy therefore
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requires that second and third equations be interchanged. This yields

0.6667x1 + 0.2857x2 + 0.2000x3 = 2.8670

−0.5143x2 + 0.3400x3 = −3.260

0.0001x2 − 0.6000x3 = −0.5997

Now applying row transformation r3 ← R3 + 0.0001
0.5143

R2 the above system reduces to

0.6667x1 + 0.2857x2 + 0.2000x3 = 2.8670

−0.5143x2 + 0.3400x3 = −3.260

−0.5999x3 = −0.6003

By back substitution produces the solution x3 = 1.01, x2 = 7.000 and x1 = 1.000. To
four digits, the values of x1 and x2 are exact, while the value of x3 is in error by only
one-tenth of one percent.
In the preceding example, the necessary row interchange was carried out explicitly so as
not to draw attention away from the action of the pivoting strategy. This is accomplished
by maintaining a vector of n elements, such that ith element of the vector indicates the
row within the matrix that contains the coefficients for ith equation. Let us denote this
row vector by r. The vector is initialized to

r = [1 2 ... n]T .

Example 2. Solve the system by Gaussian elimination with partial pivoting whose
augmented matrix is 

3 1 4 −1 7
2 −2 −1 2 1
5 7 14 −8 20
1 3 2 4 −4


whose exact solution is x = [1 − 1 1 − 1]T .
Solution. Initialize the row vector to

r = [1 2 3 4]T

To determine the location of pivot, examine the values

|ar11| = 3, |ar21| = 2, |ar31| = 5 and |ar41| = 1.

The largest value in this list corresponds to row r3, so j0 = 3. Since j0 = 3 > 1 = i we
need to interchange the first and third row. After first elimination pass we have

r = [3 2 1 4]T and


0 −3.2 −4.4 3.8 −5
0 −4.8 −6.6 5.2 −7
5 7 14 −8 20
0 1.6 −0.8 5.6 −8



Prof. K. R. Shinde 5 Department of Mathematics



Numerical Analysis Modern College of ACS(Autonomous), Pune

To determine the location of second pivot, examine the values

|ar22| = 4.8, |ar32| = 3.2 and |ar42| = 1.6

The largest value in this list corresponds to row r2, so j0 = 2. Since j0 = 2 = i, no row
interchange is needed for the second pass. The second elimination pass produces

r = [3 2 1 4]T and


0 0 0 0.3330 −0.333
0 −4.8 −6.6 5.2 −7
5 7 14 −8 20
0 0 −3 7.333 −10.33


The location of final pivot is determined by examining the values

|ar33| = 0 and |ar43| = 3

The largest value here corresponds to row r4, so j0 = 4. Since j0 = 4 > 3 = i, we need to
interchange third and fourth row in the row vector, which gives

r = [3 2 4 1]T

Since the element in the ar43 = a13 position is already zero, so the third elimination
pass makes no changes to the matrix. After back substitution we get, x4 = −1, x3 =
0.9990, x2 = 0.9985, x4 = 1.
Scaled Partial Pivoting
Partial pivoting works well in many instances but does not reduce the effects of roundoff
error for all problems. Consider the system

0.7x1 + 1725x2 = 1739
0.4352x1 − 5.433x2 = 3.271

whose exact solution is x1 = 20 and x2 = 1.
After first elimination pass of partial pivoting method the above system reduces to

0.7x1 + 1725x2 = 1739
−1077x2 = −1078.

Using back substitution produces the solution x2 = 1.001 and x1 = 17.14. The value
of x2 is excellent agreement with the exact value, the value of x1 is error by more than
14%. In this case, although 0.7 is larger than 0.4352, when measured relative to the other
coefficients in each equation 0.7 is actually smaller than 0.4352; that is

0.7

1725
<

0.4352

5.433

where, 1725 and 5.433 are the absolute values of the coefficients of greatest magnitude in
the first and second equations, respectively. Here we will choose the element in the pivot
column which is largest in magnitude relative to the other coefficients in its equation,
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then we would have to switched the order of equations in this system prior to eliminate
variables:

0.4352x1 − 5.433x2 = 3.271
0.7x1 + 1725x2 = 1739

Now eliminating x1 by using Gaussian elimination method yields the equivalent system

0.4352x1 − 5.433x2 = 3.271
1734x2 = 1734

Back substitution from this set of equations yields x2 = 1 and x1 = 20 which are same
as exact answers. This pivoting strategy is known as scaled partial pivoting.
Before starting scaled partial pivoting Gaussian elimination, we construct a scaled vector
s as follows. For each 1 ≤ i ≤ n, let

si = max
1≤i≤n

|aij|

Also initialize the row vector to

r = [1 2 3 ... n]T

During ith elimination pass

Mi = max
i≤j≤n

( |arji|
srj

)
and let j0 be the smallest value of j for which maximum occurs. If j0 > i, then interchange
row i and j0.
Note that while the row vector will generally change from pass to pass, then scale vector
is set at the beginning of the process and is not changes thereafter.
Example 1. Solve the system using scaled partial pivoting method whose augmented
matrix is given by 

3 1 4 −1 7
2 −2 −1 2 1
5 7 14 −8 20
1 3 2 4 −4


and whose exact solution is

x = [1 − 1 1 − 1]T

Set up the scale vector. Since

max
1≤j≤4

|a1j| = 4, max
1≤j≤4

|a2j| = 2, max
1≤j≤4

|a3j| = 14, and max
1≤j≤4

|a4j| = 4

Therefore,
s = [4 2 14 4]T

Next we initialize the row vector to

r = [1 2 3 4]T
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To determine the location of the pivot, we examine the values

|ar11|
sr1

=
3

4
,
|ar21|
sr2

=
2

2
= 1,

|ar31|
sr3

=
5

14
, and

|ar41|
sr4

=
1

4

The largest value corresponds to row r2, so j0 = 2. Since j0 = 2 > 1 = i, we need to
swap the first and second row. Thus, for the first elimination pass we have

r = [2 1 3 4]T

After the elimination pass, the matrix become
0 4 5.5 −4 5.5
2 −2 −1 2 1
0 12 16.5 −13 17.5
0 4 2.5 3 −4.5


To determine the location of the next pivot, examine the values

|ar22|
sr2

=
4

4
= 1,

|ar32|
sr3

=
12

14
, and

|ar42|
sr4

=
4

4
= 1

The largest value in this list is 1, which occurs for both row r2 and r4. Choosing the
first occurrence of the maximum value, we have j0 = 2 = i. Hence, no row interchange
required for second pass. The second elimination pass produces the matrix

0 4 5.5 −4 5.5
2 −2 −1 2 1
0 0 0 −1 1
0 0 −3 7 −10


The location of the final pivot is determined by examining the values

|ar33|
sr3

=
0

14
and

|ar43|
sr4

=
3

4

The largest value here corresponds to row r4, so j0 = 4 > 3 = i. We therefore need to
swap the third and fourth rows, which gives the row vector

r = [2 1 4 3]T

Since the element in ar43 = a33 position is already zero, the third elimination pass makes
no change to the matrix. Back substitution yields x4 = −1, x3 = 1, x2 = −1, x1 = 1
which is same as exact solution.
LU Decomposition.
Definition. The matrix L is called lower triangular if all the elements above the main
diagonal are zero. That is, if lij = 0, whenever i < j.
Definition. Given a matrix A, a lower triangular matrix L and an upper triangular
matrix U for which LU = A are said to form an LU decomposition of A.
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Example. If A =

1 4 3
2 7 9
5 8 −2

 then U =

1 4 3
0 −1 3
0 0 −53

 and L =

1 0 0
2 1 0
5 12 1

 form an

LU decomposition for the matrix A.
Not every matrix has LU decomposition but it is possible to rearrange the rows of any
non-singular matrix so that the resulting matrix does have an LU decomposition.
When a matrix has an LU decomposition, that decomposition is not unique.

For example U1 =

1 4 3
0 1 −3
0 0 1

 and L1 =

1 0 0
2 −1 0
5 −12 −53

, U2 =

2 8 6
0 3 −9
0 0 −1

 and L2 =1/2 0 0
1 −1/3 0

5/2 −4 53

 forms an LU decomposition for the matrix A =

1 4 3
2 7 9
5 8 −2

.

Suppose a matrix A has two different LU decompositions A = L1U1 and A = L2U2.
=⇒ L1U1 = L2U2.
=⇒ L−12 L1 = U2U

−1
1 .

The matrix on left hand side of this equation is lower triangular, while the matrix on the
right hand side is upper triangular. For these two matrices to be equal, they must be
diagonal matrix, call it D. Therefore, L1 = L2D and U2 = DU1, for some diagonal matrix
D. Hence we say an LU decomposition is unique up to scaling by a diagonal matrix.
Determining an LU Decomposition

Example. Determine an LU decomposition for the matrix A =

1 4 3
2 7 9
5 8 −2

 using

Gaussian elimination with scaled partial pivoting.
Solution. The scaled vector associated with the matrix A is given by

s = [4 7 8]T

and we initialize the row vector

r = [1 2 3]T

Now examine the ratios

|ar11|
sr1

=
1

4
,
|ar21|
sr2

=
2

9
, and

|ar13|
sr3

=
5

8
.

we find the largest value corresponds to row r3, so we need to swap the first and third
row. Thus after first elimination pass we have

r = [3 2 1]T

After first elimination pass, the contents of the matrix are

A =

(1/2) 12/5 17/5
(2/5) 19/5 49/5

5 8 −2


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Note that the opposite of each multiplier overwrites the elements which is being set to
zero. To distinguish the multipliers from the other elements in the matrix, the multipliers
are displayed within parenthesis.
To determine the location of second pivot, we examine the ratios

|ar22|
sr2

=
19/5

9
=

19

45
, and

|ar32|
sr3

=
12/5

4
=

3

4
.

The largest of these corresponds to row r3, so we swap second and third rows, which
becomes

r = [3 1 2]T

After second elimination pass the contents of matrix are

A =

(1/2) 12/5 17/5
(2/5) (19/12) 265/60

5 8 −2


Rewriting the matrix according to the rows from row vector

A =

 5 8 −2
(1/2) 12/5 17/5
(2/5) (19/12) 265/60


The upper triangular matrix in the decomposition is then obtained by setting the elements
below the main diagonal to zero. The lower triangular matrix is obtained by setting the
elements along the main diagonal to 1 and the elements above the diagonal to zero.

Therefore U =

5 8 −2
0 12/5 17/5
0 0 265/60

 and L =

 1 0 0
1/5 1 0
2/5 19/12 1

.

If we multiply the matrices L and U we obtain

LU =

5 8 −2
1 4 3
2 7 9


Which is not equal to A. The rows of LU are the rows of A, but listed in different order.
Observe, in particular, that the rows of LU are the rows of A listed in the order indicated
by the final row vector.

Let P =

0 0 1
1 0 0
0 1 0

 be a matrix obtained by taking 3× 3 identity matrix and reordering

the rows according to the contents of the row vector r = [3 1 2]T . If we now multiply
P into the matrix A, we obtain

PA =

5 8 −2
1 4 3
2 7 9



Prof. K. R. Shinde 10 Department of Mathematics



Numerical Analysis Modern College of ACS(Autonomous), Pune

which is equal to product LU calculated above. Hence with row interchanges, we have
found an LU decomposition for the matrix PA.
Solving a Linear System using an LU Decomposition
Suppose we need to solve the linear system Ax = b, and we have already found lower
triangular matrix L and upper triangular matrix U such that LU = PA for some per-
mutation matrix P . If we multiply the linear system by P and then substitute LU for
PA, we find that solving the original system is equivalent to solving LUx = Pb, or
L(Ux) = Pb. Now, let z = Ux. Solve Lz = Pb for z and then solve Ux = z for x. These
two substitution problems are easy to solve. Forward substitution applied to Lz = Pb
produce the vector z, and then back substitution applied to Ux = z gives the solution
vector x.
Example. Consider the linear system

1 4 3
2 7 9
5 8 −2

x =

 −4
−10

9

 .

Solution. Consider the system Ax = b, where A =

1 4 3
2 7 9
5 8 −2

 and b =

 −4
−10

9

 .

Multiplying both side of given system by P , where P =

0 0 1
1 0 0
0 1 0

 we get new system

PAx = Pb. When LU decomposition process applied to the coefficient matrix for this
system produces the matrices

U =

5 8 −2
0 12/5 17/5
0 0 265/60

 and L =

 1 0 0
1/5 1 0
2/5 19/12 1


Substituting LU for PA in new system obtained above we get LUx = Pb. Again substi-
tute Ux = z then the system LUx = Pb reduces to Lz = Pb.

=⇒

 1 0 0
1/5 1 0
2/5 19/12 1

z1z2
z3

 =

0 0 1
1 0 0
0 1 0

 −4
−10

9



=⇒

 1 0 0
1/5 1 0
2/5 19/12 1

z1z2
z3

 =

 9
−4
−10


Using forward substitution we obtain z1 = 9, z2 = −29

5
and z3 = −265

60
. Now substituting

Prof. K. R. Shinde 11 Department of Mathematics



Numerical Analysis Modern College of ACS(Autonomous), Pune

z =

[
9 − 29

5
− 265

60

]T
in Ux = z we get,

5 8 −2
0 12/5 17/5
0 0 265/60

x1

x2

x3

 =


9

−29

5

−265

60


Using back substitution we obtain x3 = −1, x2 = −1 and x1 = 3. Hence x = [3 − 1 − 1]T

is a solution of given system.
DIRECT FACTORIZATION
Given a matrix A, the objective of an LU de composition is to determine a lower triangu-
lar matrix L and an upper triangular matrix U such that LU = A. LU decomposition are
determined only up to a scaling by a diagonal matrix. Therefore, different factorizations
may be viewed as resulting from different choices for the diagonal elements of either L or
U . The two most common choices for the diagonal entries are

lii = 1 for each i = 1, 2, ..., n; and

uii = 1 for each i = 1, 2, ..., n,

This gives rise to what are known as Doolittle decomposition and Crout decomposition
respectively.
Crout decomposition
Let A be an n× n matrix. To obtain the Crout decomposition of A we must determine
the entries lij(i ≥ j) and uij(i < j) such that

l11 0 · · · 0
l21 l22 · · · 0
· · ·
· · ·
· · ·
ln1 ln2 · · · lnn




1 u12 · · · u1n

0 1 · · · u2n

· · ·
· · ·
· · ·
0 0 · · · 1

 =


a11 a12 · · · a1n
a21 a22 · · · a2n
· · ·
· · ·
· · ·

an1 an2 · · · ann


Note that first column of U contains a single non-zero entry 1 in the firs row. Therefore,
the product of ith row of L(for i = 1, 2, ..., n) with the first column of U is simply the
element li1. The decomposition equation requires that this value be equated to ai1; that
is,

li1 = ai1

This equation determines the first column of L. Now the l11 entry is known multiplying
the first row of L with the jth column of U(i = 1, 2, ..., n) and equating the result to a1j
produces the equation l11u1j = aij. Dividing by l11 we find

u1j =
a1j
l11
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this determines the first row of U .
Similarly, applying the same process for other rows and columns in L and U matrices
respectively and equating to corresponding entries in matrix A we obtain the entries in
the matrices L and U .
Example. Compute the Crout decomposition of following matrix

A =

1 4 3
2 7 9
5 8 −2


Solution. The Crout decomposition of the matrix will consist of matrices

L =

l11 0 0
l21 l22 0
l31 l32 l33

 and U =

1 u12 u13

0 1 u23

0 0 1


Forming the product of first each row of L with first column of U and equating the result
with the corresponding elements from A determine the elements in the first column of L:

l11 = 1 l21 = 2 and l31 = 5.

The first row of U is obtained by multiplying the first row of L with the second and
third column of U and then equating the corresponding elements from A. This yields the
equation

l11u12 = 4 and l11u13 = 3,

whose solutions are
u12 = 4 and u13 = 3,

Now multiply the second and third row of L with the second column of U . Equating each
product with the corresponding elements from A generates the equations

l21u12 + l22 = 7 and l31u12 + l32 = 8.

Substituting the values determined before and solving for the elements in the second
column of L gives

l22 = −1 and l32 = −12

Next we multiply the second row of L into the third column of U to derive the equation

l21u13 + l22u23 = 9 =⇒ u23 = −3

Multiplying the third row of L and the third column of U generates the equation

l31u13 + l32u23 + l33 = −2 =⇒ l33 = −53.

Therefore,

L =

1 0 0
2 −1 0
5 −12 −53

 and U =

1 4 3
0 1 −3
0 0 1

 .
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SPLITTING METHOD
Definition. Let A be a given n × n matrix. If M and N are n × n matrices with M
non-singular and A = M −N , then pair (M,N) is called a splitting of the matrix A.
Suppose that (M,N) forms a splitting of the matrix A. Then

Ax = b is equivalent to (M −N)x = b

=⇒Mx = Nx + b.

Pre-multiplying both side by M−1 produces

x = M−1Nx + M−1b.

Hence the splitting A = M − N determines the fixed point problem x = Tx + c and
associated iteration scheme x(k+1) = Tx(k) + c, where

T = M−1N and c = M−1b.

To establish that splitting method is always consistent, first note that with T = M−1N

I − T = I −M−1N

= M−1(M −N)

= M−1A

Therefore, (I − T )−1 = A−1M . Finally, with c = M−1b

(I − T )−1c = (M−1A)−1(M−1)b

= A−1MM−1b

= A−1b

as required.
Jacobi Method
To identify the splitting associated with the Jacobi method, first we express A in the
form

A = D − L− U

Here, D is diagonal part of A, −L is strictly lower triangular part of A, and −U is the
strictly upper triangular part.
For example, suppose

A =

 5 1 2
−3 9 4
1 2 −7

 .

Then

D =

5 0 0
0 9 0
0 0 −7

 , L =

 0 0 0
3 0 0
−1 −2 0

 and

0 −1 −2
0 0 −4
0 0 0

 .
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Jacobi method is based on the splitting M = D and N = L + D. In order for M to be
nonsingular, it must be the case that, for each i, dii = aii 6= 0. If this relationship does
not holds for even a single value of i, then the equations in the system must be reordered
before the Jacobi method can be applied. The specific choice of splitting indicated above,
the iteration scheme for the Jacobi method is defined by

x(k+1) = Tjacx
(k) + cjac

where
Tjac = D−1(L + U) and cjac = D−1b.

If 
a11 a12 · · · a1n
a21 a22 · · · a2n
· · ·
· · ·
· · ·

an1 an2 · · · ann


Then

D =


a11 0 · · · 0
0 a22 · · · 0
· · ·
· · ·
· · ·
0 0 · · · ann

 , L =


0 0 · · · 0
−a21 0 · · · 0
−a31 0 0
· · ·
· · ·
−an1 −an2 · · −an(n−1) 0

 and

U =


0 −a12 · · · −a1n
0 0 −a23 · · −a2n
· · ·
· · ·
· · −a(n−1)n
0 0 · · · 0


Substituting these values in iteration scheme we obtain the components of iteration
scheme can be written as

x
(k+1)
i =

1

aii

[
bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k)
j

]

Hence the Jacobi method is equivalent to solving the ith equation in the system for the
unknown xi.
Example. Solve the following system by using Jacobi method and starting with x(0) =
[0 0 0]T and which has exact solution x = [1 − 3 4]T

5x1 + x2 + 2x3 = 10
−3x1 + 9x2 + 4x3 = −14
x1 + 2x2 − 7x3 = −33.
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Solution. The Jacobi method, when applied to this system, will produce the sequence
of approximations

{
x(k)
}

according to the rule

x
(k+1)
1 =

1

5

[
10− x

(k)
2 − 2x

(k)
3

]
x
(k+1)
2 =

1

9

[
−14 + 3x

(k)
1 − 4x

(k)
3

]
x
(k+1)
3 =

1

−7

[
−33− x

(k)
1 − 2x

(k)
2

]
The component of x(1) can be obtained by substituting 0 for k in above system

x
(1)
1 =

1

5

[
10− x

(0)
2 − 2x

(0)
3

]
= 2

x
(1)
2 =

1

9

[
−14 + 3x

(0)
1 − 4x

(0)
3

]
= −14

3

x
(1)
3 =

1

−7

[
−33− x

(0)
1 − 2x

(0)
2

]
=

33

7

Therefore, x(1) = [2 − 1.555556 4.714286]T . Applying the similar process the following
table summarizes the 14 iterations of the Jacobi method.

k x(k)

0 [0.000000 0.000000 0.000000]T

1 [2.000000 − 1.555556 4.714286]T

2 [0.425397 − 2.984127 4.555556]T

3 [0.774603 − 3.438448 3.922449]T

4 [1.118710 − 3.040665 3.842530]T

5 [1.071121 − 2.890443 4.005340]T

6 [0.975953 − 2.978666 4.041462]T

7 [0.979148 − 3.026443 4.002660]T

8 [1.004225 − 3.008133 3.989466]T

9 [1.005840 − 2.993910 3.998280]T

10 [0.999470 − 2.997289 4.002574]T

11 [0.998428 − 3.001321 4.000699]T

12 [0.999985 − 3.000835 3.999398]T

13 [1.000408 − 2.999738 3.999759]T

14 [1.000044 − 2.999757 4.000133]T

The error between 13th and 14th iteration falls below 5× 10−4 which can be calculated
by using the formula ‖x(k+1) − x(k)‖∞.
Gauss-Seidel Method
An obvious improvement that can be made to the Jacobi method is to use the values of
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x
(k+1)
i as soon as it has been calculated in the computation of all the subsequent entries in

the vector x(k+1), rather than writing until the next iteration. After all x
(k+1)
i is supposed

to be a better approximation to xi than x
(k)
i . This modification amounts changing the

iteration scheme to

x
(k+1)
i =

1

aii

[
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

]
Working back we find that the splitting upon which the Gauss-Seidel method is based is

M = D − L and N = U

Thus the iteration matrix for the Gauss-Seidel method is given by

Tgs = (D − L)−1U,

and the vector c is given by
cgs = (D − L)−1b.

The necessary condition for the matrix M to be invertible is the same as previous method:
for each i, we must have dii = aii 6= 0.
Example. Solve the following system by using Gauss-Seidel method and starting with
x(0) = [0 0 0]T and which has exact solution x(0) = [1 − 3 4]T

5x1 + x2 + 2x3 = 10
−3x1 + 9x2 + 4x3 = −14
x1 + 2x2 − 7x3 = −33.

Solution. The Gauss-Seidel method, when applied to this system, will produce the
sequence of approximations

{
x(k)
}

according to the rule

x
(k+1)
1 =

1

5

[
10− x

(k)
2 − 2x

(k)
3

]
x
(k+1)
2 =

1

9

[
−14 + 3x

(k+1)
1 − 4x

(k)
3

]
x
(k+1)
3 =

1

−7

[
−33− x

(k+1)
1 − 2x

(k+1)
2

]
The component of x(1) can be obtained by substituting 0 for k in above system

x
(1)
1 =

1

5

[
10− x

(0)
2 − 2x

(0)
3

]
= 2

x
(1)
2 =

1

9

[
−14 + 3x

(1)
1 − 4x

(0)
3

]
= −8

9

x
(1)
3 =

1

−7

[
−33− x

(1)
1 − 2x

(1)
2

]
=

299

63

Therefore, x(1) = [2 − 0.888889 4.746032]T . Applying the similar process the following
table summarizes the 10 iterations of the Gauss-Seidel method.
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k x(k)

0 [0.000000 0.000000 0.000000]T

1 [2.000000 − 0.888889 4.746032]T

2 [0.279365 − 3.571781 3.733686]T

3 [1.220882 − 2.808011 4.086409]T

4 [0.927039 − 3.062724 3.971656]T

5 [1.023883 − 2.979442 4.009286]T

6 [0.992174 − 3.006736 3.996958]T

7 [1.002564 − 2.997793 4.000997]T

8 [0.999160 − 3.000723 3.999673]T

9 [1.000275 − 2.999763 4.000107]T

10 [0.999910 − 3.000078 3.999965]T

The error between 9th and 10th iteration falls below 5× 10−4 which can be calculated by
using the formula ‖x(k+1)− x(k)‖∞. Note that convergence is obtained with Gauss-Seidel
method in roughly 30% fewer iterations than the Jacobi method.
SOR Method.
This method attempts to improve upon the convergence of the Gauss-Seidel method by
computing xk+1

i as a weighted average of xk
i and the value produced by Gauss-Seidel

method. Let the weighting parameter also known as relaxation parameter, be denoted
by w. Then the scheme for SOR method is given by

x
(k+1)
i = (1− w)x

(k)
i +

w

aii

[
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

]

Note that when w = 1, the SOR method reduces to the Gauss-Seidel method. The
splitting associated with the SOR method is

M =
1

w
D − L and N =

(
1

w
− 1

)
D + U.

Therefore,

Tsor =

(
1

w
D − L

)−1 [(
1

w
− 1

)
D + U

]
and

csor =

(
1

w
D − L

)−1
b

Example. Solve the following system by using SOR method with w = 0.9 and initial
approximation x(0) = [0 0 0]T

5x1 + x2 + 2x3 = 10
−3x1 + 9x2 + 4x3 = −14
x1 + 2x2 − 7x3 = −33.
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Solution. The SOR method, when applied to this system, will produce the sequence of
approximations

{
x(k)
}

according to the rule

x
(k+1)
1 = 0.1x

(k)
1 +

0.9

5

[
10− x

(k)
2 − 2x

(k)
3

]
x
(k+1)
2 = 0.1x

(k)
2 +

0.9

9

[
−14 + 3x

(k+1)
1 − 4x

(k)
3

]
x
(k+1)
3 = 0.1x

(k)
3 +

0.9

−7

[
−33− x

(k+1)
1 − 2x

(k+1)
2

]
Then the components of x(1) are

x
(k+1)
1 = 0.1x

(0)
1 +

0.9

5

[
10− x

(0)
2 − 2x

(0)
3

]
= 1.8

x
(k+1)
2 = 0.1x

(0)
2 +

0.9

9

[
−14 + 3x

(1)
1 − 4x

(0)
3

]
= −0.86

x
(k+1)
3 = 0.1x

(0)
3 +

0.9

−7

[
−33− x

(1)
1 − 2x

(1)
2

]
= 4.253143

Therefore, x(1) = [1.8 − 0.86 4.253143]T . Applying the similar process the following
table summarizes the 6 iterations of the SOR method.

k x(k)

0 [0.000000 0.000000 0.000000]T

1 [1.800000 − 0.860000 4.253143]T

2 [0.603669 − 3.006157 3.972774]T

3 [0.971276 − 2.998342 3.994011]T

4 [0.998985 − 2.997743 3.999851]T

5 [0.999546 − 2.999851 3.999965]T

6 [0.999940 − 2.999989 3.999992]T

The error between 5th and 6th iteration falls below 5× 10−4 which can be calculated by
using the formula ‖x(k+1) − x(k)‖∞ = 6× 10−5.
NON-LINEAR SYSTEM OF EQUATIONS
Suppose we need to solve the system of three equations

x3
1 − 2x2 − 2 = 0

x3
1 − 5x2

3 + 7 = 0

x2x
2
3 − 1 = 0.

We cannot express this system in matrix notation because the equations are nonlinear,
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we can express the system in vector notation. First, define the functions

f1(x1, x2, x3) = x3
1 − 2x2 − 2

f2(x1, x2, x3) = x3
1 − 5x2

3 + 7

f3(x1, x2, x3) = x2x
2
3 − 1

Note that each of these functions represent the left-hand side of one of the equations from
the non-linear system. Let x = [x1 x2 x3]

T , and construct the vector-valued function

F (x) =

f1(x1, x2, x3)
f2(x1, x2, x3)
f3(x1, x2, x3)


In terms of this vector-valued function, the original system of three nonlinear equations
can be expressed concisely as the single vector equation F (x) = 0. The problem of finding
a vector x for which the vector-valued function F evaluates to 0 is generalization of the
rootfinding problem which was investigated in Chapter 1.
Newton’s Method for System of Non-linear Equations
Given a scalar function, f , of a single scalar argument and given an initial approxima-
tion, x0, for a root of the function, Newton’s method computes a sequence of improved
approximations to the root according to the rule

xn+1 = xn −
f(xn)

f ′(xn)

Now, let F be a vector-valued function of argument x, assuming that both vectors contain
m components. To apply Newton’s method to the problem of approximating a solution
of F (x) = 0, we would like to write

x(n+1) = x(n) − F (x(n))

F ′(x(n))
.

Here, F ′(x(n)) must include the derivative of each scalar component function with respect
to each component of argument vector. That’s m2 individual partial derivatives. These
partial derivatives should be organized so that dF = F ′(x(n))∆x provides an estimate for
the change in F (x) when the argument changes from x to x + ∆x. From multivariable
calculus we know that

df =
∂f

∂x1

∆x1 +
∂f

∂x2

∆x2 + ... +
∂f

∂xm

∆xm

for a scalar function of m arguments, which suggests that the partial derivatives in F ′(x)
be organized into matrix form as follows:

F ′(x) =


∂f1/∂x1 ∂f1/∂x2 . . . ∂f1/∂xm

∂f2/∂x1 ∂f2/∂x2 . . . ∂f2/∂xm

. . . . . .

. . . . . .

. . . . . .
∂fm/∂x1 ∂fm/∂x2 . . . ∂fm/∂xm


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This matrix is known as the Jacobian matrix for the system and is typically denoted by
J(x). Having established that F ′(x) is a matrix, this brings up a second question: how
do we divide by a matrix? We multiply by its inverse. Thus, inverse method for a system
of equations takes the form

x(n+1) = x(n) −
[
J(x(n))

]−1
F (x(n)).

When implementing this scheme, we will not actually compute the inverse of the Jacobian
matrix. Instead, we define

v(n) = −
[
J(x(n))

]−1
F (x(n)),

and then solve the linear system of equations.

v(n)
[
J(x(n))

]
= −F (x(n))

for v(n). Once v(n) is known, the next iterate is computed according to the rule
x(n+1) = x(n) + v(n).
Example. Let us apply Newton’s method to the system of three nonlinear algebraic
equations

x3
1 − 2x2 − 2 = 0

x3
1 − 5x2

3 + 7 = 0

x2x
2
3 − 1 = 0.

This system is equivalent to the vector equation F (x) = 0, where

F (x) =


f1(x1, x2, x3)

f2(x1, x2, x3)

f3(x1, x2, x3)

 =

x3
1 − 2x2 − 2

x3
1 − 5x2

3 + 7
x2x

2
3 − 1


The Jacobian matrix associated with F (x) is easily found to be

J(x) =

3x2
1 −2 0

3x2
1 0 −10x3

0 x2
3 2x2x3


Starting from the initial vector x(0) = [1 1 1]T , we compute

F (x(0)) = [−3 3 0]T

and

J(x(0)) =

3 −2 0
3 0 −10
0 1 2


Solving the linear system

[
J(x(0))

]
v(0) = −F (x(0)) yields the update vector v(0) =

[3/7 − 6/7 3/7]T , and then x(1) = x(0) + v(0) = [10/7 1/7 10/7]T . Continuing to
iterate until the maximum norm of v(n) is less than 5× 10−4, we obtain the result listed
below.
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n x(n)T

0 [1.00000000000000 1.00000000000000 1.00000000000000]T

1 [1.42857142857143 0.14285714285714 1.42857142857143]T

2 [1.44011117287382 0.49305169538633 1.41331295163980]T

3 [1.44225533875822 0.50000806218205 1.41421499021415]T

4 [1.44224957033522 0.50000000001480 1.41421356237591]T

The exact solution to this system, in the neighbourhood of the initial vector x(0) =

[1 1 1]T is x =
[

3
√

3 1/2
√

2
]T

. Thus four iterations of Newton’s method have produced
results that are correct to eight decimal places.

♣♣♣
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