Linear Algebra

Dr. A. N. Bhavale

Head, Department of Mathematics, Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune-5.

 5^{th} January, 2021

A ►

< ≣ >

æ

A non-empty set V is said to be a vector space over \mathbb{R} (the set of real numbers) if there exist maps $+: V \times V \rightarrow V$, defined by $(x, y) \mapsto x + y$, called *addition*, and $\cdot: \mathbb{R} \times V \rightarrow V$, defined by $(\alpha, y) \mapsto \alpha \cdot y$,

called *scalar multiplication*,

satisfying the following **eight** properties :

•
$$x + y = y + x, \ \forall x, y \in V$$

(commutativity of addition).

Definition : Vector Space (continued...)

•
$$(x + y) + z = x + (y + z), \forall x, y, z \in V$$

(associativity of addition).

- There exists $0 \in V$ such that $x + 0 = x = 0 + x, \forall x \in V$ (existence of additive identity).
- For every x ∈ V there exists y ∈ V such that x + y = 0 = y + x, ∀ x, y ∈ V. This y is denoted by -x. (existence of additive inverse).

Definition : Vector Space (continued...)

•
$$\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y, \ \forall \ \alpha \in \mathbb{R}$$
 and $x, y \in V$.

- $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x, \forall \alpha, \beta \in \mathbb{R}$ and $x \in V$
- $(\alpha\beta) \cdot x = \alpha \cdot (\beta \cdot x), \ \forall \ \alpha, \beta \in \mathbb{R} \text{ and } x \in V.$
- For $1 \in \mathbb{R}$, $1 \cdot x = x$, $\forall x \in V$.

For example, \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 and \mathbb{C} are all vector spaces over \mathbb{R} . Note that \mathbb{Q} is not a vector space over \mathbb{R} .

- Substraction : $x y = x + (-y), \forall x, y \in V$.
- Scalar multiplication : $\alpha x = \alpha \cdot x, \ \forall \ \alpha \in \mathbb{R} \text{ and } x \in V.$
- ℝ can be replaced by any Field (F) like Q, C, etc. In that case V is called vector space over F.
- Elements of a vector space V are called vectors of V, and 0 is called the zero vector.
- Sometimes, a vector space V can also be represented as a structure < V, +, · >

Show that

 $\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{R}, \forall i, 1 \le i \le n\}$ is a vector space under the addition and the scalar multiplication defined as follows.

For $x = (x_1, x_2, \ldots, x_n), y = (y_1, y_2, \ldots, y_n) \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, $x + y = (x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n)$ and $\alpha x = (\alpha x_1, \alpha x_2, \ldots, \alpha x_n).$

Note that, the zero vector is $\mathbf{0} = (0, 0, \dots, 0)$.

Example 2 : $M_{m \times n}(\mathbb{R})$ is a vector space.

Show that $M_{m \times n}(\mathbb{R})$ is a vector space under the addition and the scalar multiplication defined as follows.

For
$$A = [a_{ij}], B = [b_{ij}] \in M_{m \times n}(\mathbb{R})$$
 and $\alpha \in \mathbb{R}$,
 $A + B = [a_{ij} + b_{ij}]$ and $\alpha A = [\alpha a_{ij}]$.

If m = n then the set $M_{m \times n}(\mathbb{R})$ is denoted by $M(n, \mathbb{R})$ or $M_n(\mathbb{R})$. Let S_n and A_n denotes the set of symmetric matrices and skew symmetric matrices respectively. Note that $M(n, \mathbb{R})$, S_n and A_n are also vector spaces. Let $S = \{(x_n) | x_n \in \mathbb{R}\}$ be the set of all real sequences.

Show that S is a vector space under the addition and the scalar multiplication defined as follows. For $(x_n), (y_n) \in S$ and $\alpha \in \mathbb{R}$, $(x_n) + (y_n) := (x_n + y_n)$ and $\alpha(x_n) := (\alpha x_n)$.

Let C be the set of all convergent sequences. Let $C_0 = \{(x_n) | \lim_{n \to \infty} x_n = 0\}$. Note that C and C_0 are also vector spaces, and $C_0 \subseteq C \subseteq S$. Example 4 : $\mathcal{F}(X,\mathbb{R}) = \{f | f : X \to \mathbb{R}\}$ is a vector space.

Let X be a non-empty set.

Let $V = \mathcal{F}(X, \mathbb{R}) = \{f | f : X \to \mathbb{R}\}$ be the set of

all real valued functions on the set X.

Show that V is a vector space under the addition and the scalar multiplication defined as follows. For $f, g \in V$ and $\alpha \in \mathbb{R}$,

$$(f+g)(x) = f(x) + g(x), \ \forall x \in X$$
, and
 $(\alpha f)(x) = \alpha f(x), \ \forall x \in X.$

Let $\mathcal{C}([a, b]), \mathcal{D}([a, b])$ and $\mathcal{R}([a, b])$ be the set of all continuous,

differentiable and Riemann integrable (real valued) functions defined on

[a, b]. Then these are subsets of $\mathcal{F}([a, b], \mathbb{R})$ and are also vector spaces.

Note that, the above Example 4 is a generalized form of Ex. 1, Ex. 2 and Ex. 3 above, as it can easily be seen respectively as follows.

• In Ex.1, take
$$X = \{1, 2, ..., n\}$$
 and define $f : X \to \mathbb{R}$ by $f(i) = x_i, \forall i, 1 \le i \le n$. Then the map $T : f \to (f(1), f(2), ..., f(n))$ is a bijection of $\mathcal{F}(X, \mathbb{R})$ and \mathbb{R}^n .

- 2 In Ex.2, take $X = \{1, 2, ..., m\} \times \{1, 2, ..., n\}$ and define $f : X \to \mathbb{R}$ by $f((i, j)) = a_{ij}, \forall i, j, 1 \le i \le m, 1 \le j \le n$. Then the map $T : f \to [a_{ij}]$ is a bijection of $\mathcal{F}(X, \mathbb{R})$ and $M_{m \times n}(\mathbb{R})$.
- **③** In Ex.3, take $X = \mathbb{N}$ and define $f : X \to \mathbb{R}$ by $f(i) = x_i, \forall i \in \mathbb{N}$. Then the map $T : f \to (x_i)$ is a bijection of $\mathcal{F}(X, \mathbb{R})$ and $S = \{(x_n) | x_n \in \mathbb{R}\}.$

(4回) (4回) (4回)

Let $\mathcal{P} = \{\sum_{i=0}^{n} a_i x^i | a_i \in \mathbb{R}, n \in \mathbb{N}\}$ be the set of all polynomials in terms of variable x with real coefficients. Show that \mathcal{P} is a vector space under the addition and the scalar multiplication defined as follows. For $p(x) = \sum_{i=0}^{\dots} a_i x^i$, $q(x) = \sum_{i=0}^{\dots} b_i x^i \in V$ and $\alpha \in \mathbb{R}$, $p(x) + q(x) = \sum_{i=0}^{r} (a_i + b_i) x^i$, $r = max\{m, n\}$, and $\alpha p(x) = \sum_{i=0}^{m} (\alpha a_i) x^i$. Let $\mathcal{P}_n = \{\sum_{i=1}^n a_i x^i | a_i \in \mathbb{R}\}$ be the set of all polynomials of degree $\leq n$. Then \mathcal{P}_n is a vector space. Note that the set of all polynomials exactly of degree n is not a vector space, since there does not exist a zero vector.

Let V and W be vector spaces.

Define an addition and a scalar multiplication on the cartesian product $V \times W$ as follows.

For $(v_1, w_1), (v_2, w_2) \in V \times W$ and $\alpha \in \mathbb{R}$, $(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$ and $\alpha(v_1, w_1) = (\alpha v_1, \alpha w_1)$. Then $V \times W$ is a vector space, called **direct sum**

of V and W, denoted by $V \oplus W$.

Note that $\mathbb{R}^2 = \mathbb{R} \oplus \mathbb{R}$.

Theorem 1 : In a vector space V, we have

•
$$0 \cdot x = \mathbf{0}$$
 for all $x \in V$.

- There is a **unique** additive identity.
- The additive inverse is **unique**.

•
$$(-1) \cdot x = -x$$
 for all $x \in V$.

- $\alpha \cdot \mathbf{0} = \mathbf{0}$ for all $\alpha \in \mathbb{R}$ and $\mathbf{0} \in \mathbf{V}$.
- If $\alpha \cdot x = \mathbf{0}$ for $\alpha \in \mathbb{R}$ and $x \in V$, then either $\alpha = \mathbf{0}$ or $x = \mathbf{0}$.

Proof of Theorem 1 :

1. Claim : $0 \cdot x = 0$ for all $x \in V$. Note that $0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x$. Now $\mathbf{0} = 0 \cdot x + (-0 \cdot x) = (0 \cdot x + 0 \cdot x) + (-0 \cdot x) = 0 \cdot x + (0 \cdot x + (-0 \cdot x)) = 0 \cdot x + \mathbf{0} = 0 \cdot x$.

2. Let **0** and **0**' be two additive identities of V. Claim : $\mathbf{0} = \mathbf{0}'$. As $x + \mathbf{0} = x = \mathbf{0} + x$, $\forall x \in V$ and also $x + \mathbf{0}' = x = \mathbf{0}' + x$, $\forall x \in V$, we have in particular, $\mathbf{0}' + \mathbf{0} = \mathbf{0}' = \mathbf{0} + \mathbf{0}'$ and $\mathbf{0} + \mathbf{0}' = \mathbf{0} = \mathbf{0}' + \mathbf{0}$. Thus $\mathbf{0} = \mathbf{0}'$. 3. Let y and y' be two additive inverses of x in V. Claim : y = y'. We have $x + y = \mathbf{0} = y + x$ and also x + y' = 0 = y' + x. Consider $y = y + \mathbf{0} = y + (x + y') = (y + x) + y' = \mathbf{0} + y' = y'.$ Thus y = y'. 4. Consider $(-1)\cdot x + x = (-1)\cdot x + 1\cdot x = ((-1)+1)\cdot x = 0\cdot x = \mathbf{0}.$ Similarly $x + (-1) \cdot x = \mathbf{0}$. Thus $(-1) \cdot x = -x$.

個 と く ヨ と く ヨ と …

5. Claim : $\alpha \cdot \mathbf{0} = \mathbf{0}$ for all $\alpha \in \mathbb{R}$ and $\mathbf{0} \in \mathbf{V}$. Note that $\alpha \cdot \mathbf{0} = \alpha \cdot (\mathbf{0} + \mathbf{0}) = \alpha \cdot \mathbf{0} + \alpha \cdot \mathbf{0}$. Now $\mathbf{0} = \alpha \cdot \mathbf{0} + (-\alpha \cdot \mathbf{0}) = (\alpha \cdot \mathbf{0} + \alpha \cdot \mathbf{0}) + (-\alpha \cdot \mathbf{0}) = \alpha \cdot \mathbf{0} + (\alpha \cdot \mathbf{0} + (-\alpha \cdot \mathbf{0})) = \alpha \cdot \mathbf{0} + \mathbf{0} = \alpha \cdot \mathbf{0}$

6. Claim : If $\alpha \cdot x = \mathbf{0}$ for $\alpha \in \mathbb{R}$ and $x \in V$, then either $\alpha = 0$ or $x = \mathbf{0}$ If $\alpha = 0$ then we are done. So suppose $\alpha \neq 0$. Consider $\alpha \cdot x = \mathbf{0}$ $\therefore \alpha^{-1} \cdot (\alpha \cdot x) = \alpha^{-1} \cdot \mathbf{0}$ $\therefore (\alpha^{-1}\alpha) \cdot x = \mathbf{0}$ $\therefore 1 \cdot x = \mathbf{0}$ Thus $x = \mathbf{0}$.

母 と く ヨ と く ヨ と …

Let W be a non-empty subset of a vector space V. Then W is said to be a vector subspace (or simply a subspace) of V if W itself is a vector space under the operations induced from V. That is,

• $\mathbf{0} \in W$.

3 If
$$w_1, w_2 \in W$$
, then $w_1 + w_2 \in W$.

• If $\alpha \in \mathbb{R}$ and $w \in W$, then $\alpha w \in W$.

Theorem 2 : A subset W of V is a subspace of V if and only if

1. W is non-empty.

2. For $v, w \in W$ and for $\alpha, \beta \in \mathbb{R}$, $\alpha v + \beta w \in W$.

- 1. $\mathbb R$ is a subspace of $\mathbb C.$
- 2. $\mathcal{D}([0,1])$ is a subspace of $\mathcal{C}([0,1])$.
- 3. $W = \{(a, b, 0) | a, b \in \mathbb{R}\}$ is a subspace of \mathbb{R}^3 .
- 4. \mathcal{P}_n is a subspace of \mathcal{P} .
- 5. S_n is a subspace of $M_n(\mathbb{R})$.
- 6. C is a subspace of S.

7. The set of bounded real valued functions is a subspace of $\mathcal{F}(X, \mathbb{R})$.

8. The set of all solutions of a homogeneous system AX = O of linear equations in terms of *n* variables is a subspace of \mathbb{R}^n .

Note that, the set of all solutions of a non-homogeneous system AX = Bof linear equations in terms of *n* variables is **not** a subspace of \mathbb{R}^n due to absence of a zero vector. State two more reasons.

Theorem 3 : If U and W are subspaces of V then $U \cap W$ is also a subspace of V.

What about $U \cup W$? Note that, the union of X-axis and Y-axis is **not** a subspace of \mathbb{R}^3 , since $(1,0,0) + (0,1,0) = (1,1,0) \notin U \cup W$. Let U and W be two subspaces of a vector space V. Then sum of U and W, denoted by U + W, is defined as $U + W = \{u + w | u \in U, w \in W\}$.

Theorem 4 : The sum U + W of the subspaces U and W of V is also a subspace of V.

For example, let
$$U = \{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} | a, b \in \mathbb{R} \}$$
 and
 $W = \{ \begin{bmatrix} c & 0 \\ d & 0 \end{bmatrix} | c, d \in \mathbb{R} \}$. Then $U + W = \{ \begin{bmatrix} x & y \\ z & 0 \end{bmatrix} | x, y, z \in \mathbb{R} \}$ is a subspace of $V = M_2(\mathbb{R})$.

The vector space V is said to be the direct sum of its subspaces U and W, denoted by $U \oplus W$, if every vector v of V can be written in **unique** way as v = u + w, where $u \in U$ and $w \in W$.

Theorem 5 : The vector space V is the direct sum of its subspaces U and W if and only if V = U + W and $U \cap W = \{\mathbf{0}\}.$

Ex. : \mathbb{R}^3 is the direct sum of XY-plane and Z-axis. Note that, \mathbb{R}^3 is **not** the direct sum of XY-plane and YZ-plane,

since (3, 5, 7) = (3, 1, 0) + (0, 4, 7) = (3, -4, 0) + (0, 9, 7).

Note also that, $M_n(\mathbb{R}) = S_n \oplus A_n$, since any $X \in M_n(\mathbb{R})$ can be written as X = Y + Z, where $Y = (X + X^t)/2 \in S_n$ and $Z = (X - X^t)/2 \in A_n$.

Solve the following:

1. Show that $W = \{(a, b, c) | a + b + c = 0, a, b, c \in \mathbb{R}\}$ is a subspace of \mathbb{R}^3 . 2. Show that $W = \{(a, b, c) | a \ge 0, a, b, c \in \mathbb{R}\}$ is not a subspace of \mathbb{R}^3 . 3. Show that $W = \{(a, b, c) | a^2 + b^2 + c^2 < 1, a, b, c \in \mathbb{R}\}$ is not a subspace of \mathbb{R}^3 .

LA

Let *V* be a vector space over \mathbb{R} . Let $S = \{v_1, v_2, ..., v_k\}$ be a subset of *V*. Then any vector $v \in V$ of the form $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k$ is called a **linear combination** of $v_1, v_2, ..., v_k$, where for each *i*, $\alpha_i \in \mathbb{R}$.

The set of all linear combinations of the vectors in S, denoted by L(S), is the smallest subspace of V containing S, called the **linear span** of the set S.

In other words, L(S) is the subspace spanned or generated by S, notationally, $L(S) = Span(S) = \langle S \rangle$. We define $L(\emptyset) = \{\mathbf{0}\}$.

Example : Let $S = \{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\}$. Then

・ 御 と ・ 臣 と ・ を 臣 と

 $\mathbb{R}^3 = L(S)$, since for any $(a, b, c) \in \mathbb{R}^3$, $(a, b, c) = ae_1 + be_2 + ce_3$.

Consider $A = [a_{ij}]_{m \times n}$.

Let $R_i = (a_{i1}, a_{i2}, \ldots, a_{in})$, where $1 \le i \le m$. Clearly $R_i \in \mathbb{R}^n$. Let $S = \{R_1, R_2, \ldots, R_m\}$. Then L(S) is subspace of \mathbb{R}^n , called the **row space** of A.

Similarly, one can define the **column space** of A, as the subspace of \mathbb{R}^m .

Note that, row equivalent matrices have the same row space.

Linear dependence and independence of vectors :

Let *V* be a vector space over \mathbb{R} .

A vector $v \in V$ is said to be dependent on the vectors $v_1, v_2, \ldots, v_k \in V$

if there exist $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R}$ such that $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_k \mathbf{v}_k$.

The vectors $v_1, v_2, \ldots, v_k \in V$ are said to be **linearly dependent** over \mathbb{R} , or simply dependent, if there exist scalars $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R}$, not all of them 0, such that $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k = \mathbf{0}$. Otherwise, the vectors are said to be **linearly independent** over \mathbb{R} , or simply independent.

Thus, if $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k = \mathbf{0}$ implies that $\alpha_i = \mathbf{0}$, for each *i*,

 $1 \le i \le k$, then the vectors $v_1, v_2, \ldots, v_k \in V$ are linearly independent.

★ 国 ▶ ★ 国 ▶ 二 国

- The set S = {v₁, v₂, ..., v_k} is said to be linearly independent, if the vectors v₁, v₂, ..., v_k are linearly independent. The empty set Ø is defined to be independent.
- If subset of a set is dependent then the set is also dependent. Hence any subset of an independent set is independent.
- **3** A non-zero vector is independent.
- If any one of the vectors is zero or any two are same then the vectors are dependent.
- Two vectors are dependent if and only if one of them is a scalar multiple of the other.

回 と く ヨ と く ヨ と

Show that the set $S = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ is linearly independent. What is L(S)? Solution : Consider $k_1(1,1,1) + k_2(1,1,0) + k_3(1,0,0) = (0,0,0).$ That is, $(k_1 + k_2 + k_3, k_1 + k_2, k_1) = (0, 0, 0)$. Therefore $k_1 + k_2 + k_3 = 0$, $k_1 + k_2 = 0$, $k_1 = 0$. Thus $k_1 = 0, k_2 = 0, k_3 = 0$. $L(S) = \mathbb{R}^3$, since for any $(a, b, c) \in \mathbb{R}^3$, there exist scalars $k_1 = c, k_2 = b - c, k_3 = a - b \in \mathbb{R}$ such that $(a, b, c) = k_1(1, 1, 1) + k_2(1, 1, 0) + k_3(1, 0, 0).$

(《圖》 《문》 《문》 - 문

Let V be a vector space over \mathbb{R} . Then

V is said to be a vector space of **dimension** *n*, denoted by dim(V) = n, if there exists a set *B* of linearly independent vectors v_1, v_2, \ldots, v_k which span *V*. The set *B* is called a **basis** of *V*.

In other words, *B* is a basis of *V* if any $v \in V$ can be expressed **uniquely** as the linear combination of v_1, v_2, \ldots, v_k . From above Example 1, *S* is a basis of \mathbb{R}^3 , and so \mathbb{R}^3 is of dimension 3. Note that, as \emptyset is independent, the vector space $L(\emptyset) = \{\mathbf{0}\}$ is defined to have dimension 0. Also, when vector space is not of finite dimension, it is said to be of infinite dimension, for example, \mathcal{P} .

同 ト く ヨ ト く ヨ ト

Let $B = \{e_1, e_2, \dots, e_n\}$ be a basis of an *n*-dimensional vector space V over \mathbb{R} . Let $v \in V$. As B is a basis, v can be written *uniquely* as $v = \alpha_1 e_1 + \alpha_2 e_2 + \dots + \alpha_n e_n$, where for each $i, 1 \leq i \leq n, \alpha_i \in \mathbb{R}$.

The vector $(\alpha_1, \alpha_2, ..., \alpha_n)$ is called **coordinate vector** of v with respect to the basis B. It is denoted by $[v]_B$ or simply by [v].

In general [v] depends not only on the basis (and the order of the elements in the basis) but also the field F over which V is defined.

- Consider the basis set $S = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ of \mathbb{R}^3 . Let $v = (1, 2, 3) \in V = \mathbb{R}^3$. Then $[v]_S = (3, -1, -1)$.
- Now consider the standard basis set $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ of \mathbb{R}^3 . Let $v = (1,2,3) \in \mathbb{R}^3$. Then $[v]_B = (1,2,3)$.
- Also, if we consider the set $B' = \{(1, 2, -3), (1, -3, 2), (2, -1, 5)\}$. Then B' is a basis of \mathbb{R}^3 , and for $v = (1, 2, 3) \in \mathbb{R}^3$, $[v]_{B'} = (0, -1, 1)$.

御 と く ヨ と く ヨ と … ヨ

The set of all solutions of a homogeneous system AX = O of *m* linear equations in terms of *n* variables is a vector subspace of \mathbb{R}^n , called the **null** (or solution) space of *A*. The dimension of null space of *A* is called **nullity** of *A*, denoted by $\eta(A)$.

The set of all vectors $Y \neq O$ such that AX = Y for some $X \in \mathbb{R}^n$ is a vector subspace of \mathbb{R}^m , called the **range space** of A. The dimension of range space of A is called **rank** of A, denoted by $\rho(A)$. **Remark** : By definition of the range space of A, that is, using AX = Y, it can be concluded that each Y can be written as the linear combination of the columns of A with scalars, precisely entries of X. Therefore the range space of A is spanned by the column vectors of A. Hence the rank of A is nothing but the number of linearly independent column vectors of A.

Thus, the set of these linearly independent vectors forms the basis of the range space of A.

Theorem : If A is an $m \times n$ matrix then $\rho(A) + \eta(A) = n$.

Verify above Theorem for
$$A = egin{bmatrix} 1 & 2 & 2 \ 0 & -1 & 1 \end{bmatrix}$$

Remark :

- Let S be a set with two or more vectors in a vector space V. Then S is linearly dependent if and only if at least one of the vectors in S is expressible as a linear combination of the rest of the vectors in S.
- A set with exactly two vectors is linearly independent if and only if neither vector is a scalar multiple of the other.
- Geometrically, a set of two vectors in R² or R³ is linearly independent if and only if the vectors do not lie on the same line when they are placed with their initial points at the origin. Also, a set of three vectors in R³ is linearly independent if and only if the vectors do not lie on the same plane when they are placed with their initial points at the origin.

個 と く ヨ と く ヨ と …

 If U, W are subspaces of a vector space V then dim(U + W) = dim(U) + dim(W) - dim(U ∩ W).

- If B = {v₁, v₂,..., v_n} is a basis of a vector space V, then every set with more than n vectors of V is linearly dependent.
- If V is a finite dimensional vector space, then any two basis sets of V have the same number of vectors.
- If V is an n dimensional vector space then

 Any set with n linearly independent vectors in V is a basis of V.
 Any set with n vectors which spans V is a basis of V.
 If S is a linearly independent subset of V with |S| < n, then S can be enlarged to a basis set of V.
 If W is a subspace of V then dimW ≤ dimV. Moreover, dimW = dimV if and only if W = V.
- The standard basis of \mathcal{P}_n is the set $B = \{1, x, x^2, x^3, \dots, x^n\}$.

Maximal linearly independent and minimal generating sets :

Let V be a finite dimensional vector space. A linearly independent subset S of V is said to be **maximal linearly independent set** of V, if $S \cup \{v\}$ is dependent, for any vector $v \in V$. A generating subset S of V is said to be **minimal generating set** of V, if $S \setminus \{u\}$ is not a generating set, for any vector $u \in S$.

Theorem : Let V be a finite dimensional vector space. Let $B = \{v_1, v_2, ..., v_n\}$ be a subset of V. Then the following statements are equivalent. 1. B is a basis of V. 2. B is a maximal linearly independent set. 3. B is a minimal generating set.

Exercise :

- Let V = ℝ⁺. For x, y ∈ V and for α ∈ ℝ, define x + y = x ⋅ y and αx = x^α. Show that V is a vector space over ℝ.
- Show that W = {f|f(1) = 0} is a subspace of the vector space V of all real valued functions.
- Check whether the matrices

$$\begin{bmatrix} 4 & 0 \\ -2 & -2 \end{bmatrix},$$

$$\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$
 and $\begin{bmatrix} 0 & 2 \\ 1 & 4 \end{bmatrix}$ are linearly independent.

- Show that e^x, sin x and cos x are linearly independent in the vector space V of all real valued functions.
- Show that the polynomials 1 x, $1 + 3x x^2$ and $5 + 3x - 2x^2$ are linearly dependent in \mathcal{P}_2 .
- Show that $\{x, 3x^2, x+5\}$ forms a basis of \mathcal{P}_2 .
- Let W = {(x, y, z, w)|y + z = 0, x = 2w}. Prove that W is a subspace of ℝ⁴. Also, find a basis and the dimension of W.

• Find the rank and the nullity of the matrix

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 1 & 5 & 1 \\ 3 & 5 & 8 \end{bmatrix}$$

- Find a basis and the dimension of the solution space of the following system of linear equations.
 x+2y+7z = 0, -2x+y-4z = 0, x-y+z = 0.
- Let S and T be subsets of the vector space V. Then prove that
 (1) If S ⊂ T then L(S) ⊂ L(T).
 (2) L(S) = S if and only if S is a subspace of V.
 (3) L(L(S)) = L(S).

Thank you

・ロト ・回ト ・ヨト

< ≣⇒

æ