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Definition : Integration

Integral (or Primitive) of a function :

If the differential coefficient of a function f(x) is
F(x) then f(x) is said to be an Integral or

a Primitive of F(x).

In symbols, we write it as follows.

If £ — F(x) then [ F(x)dx = f(x).

The process of determining an integral of a function
is called Integration, and the function to be
integrated is called Integrand.




1. [ cosxdx = sinx. 2. [sinxdx = — cosx.

3. [ 2xdx = x*. 4. [eXdx = e~

5. [ Ldx =log|x|. 6. [ sec® xdx = tan x.

7. [ csc® xdx = —cotx 8. [ secxtan xdx = secx.
9. fx”dx— n+1’ where n # —1.

10. faxdx— —, where a > 0 but a # 1.

Note that, if ¢ is an arbltrary constant then 2 (f(x) + ¢) = F(x), and
hence [ F(x)dx = f(x) + ¢, which is called General Integral.
Thus, it follows that integral of a function is not unique, and

any two integrals of the same function differ by a constant.
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11. f\/L dx =sin"!x = —cos1x.

12. fl dx—tan ly = —cotlx
13. f -dx = sec” Ly — —csc1x.
14. fcosh xdx =sinhx. 15. [sinhxdx = cosh x.

Note that, cosh x = exgi and sinh x = %

[ af (x)dx = a [ f(x)dx, where a is a constant.
J

(f(x) £ g(x))dx = [ f(x)dx £ [ g(x)dx.




Definite Integration :

b
If f'(x) = F(x) then / F(x)dx = f(b) — f(a).
Geometrically, the definite integration represents the
area under the curve y = F(x), bounded by the
lines x = a,x = b and X-axis in the plane.

Remark :

1. /a:F(x)dx——/baF(x)dx. b
2./a F(x)dx:/acF(x)dx—l—/C F(x)dx.




Methods of Integration :

@ Decomposition of the given integrand as a sum
of integrands with known integrals.

Q@ Integration by substitution:

[ f(x)dx = [ f(o(t))¢'(t)dt.
@ Integration by parts:

J f(x)g(x)dx =

f(x) [ g(x)dx — [(J g(x)dx)f'(x)dx.
Q@ Integration by successive reduction.




Some important forms of integrals (using substitution) :

o ':((j: dx = log f(x). It follows that

1. [tanxdx = [ £ X gy — |og sec x.
Sec X g

2. [cotxdx = [ <Xdx = logsinx.
3. fsec xdx — f sec x(sec x+tan x) dx

(sec x+tan x)

= log(sec x + tan x) = logtan(7 + 3).
4. fCSC xdx — f csc x(csc x—cot x) dx

(csc x—cot x)
= log(csc x — cot x) = Iog tan 3.

o [(F(x)")F'(x)dx = S where n # —1.

n+1 !

o [f'(ax + b)dx = @.




1 _ an—1lx
ofmdx—sm .

1 o -1 x
Of\/ﬁdx—sn’lh 2

1 . -1 x
ofmdx—cosh :

2_ 2
of\/aQ—xzdx:XVa x4 2sm —1x

a

o [Va®+ x?dx = XVa2+XZ + < smh 1 x
o [Vx?—a%dx = X—V’i_az — 3cosh_1§

Note that 1 + sinh? 0 = cosh? §. Therefore
sinh™ % = log XJ”X T , cosh™! X = |og XHVX—2" sz_az.
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Some important forms of integrals

(using integration by parts) :

o [eX(f(x)+ f'(x))dx = e*f(x).
o [ e™cos(bx + ¢)dx =
“m(acos(bx + c) + bsin(bx + ¢)).
o [e¥sin(bx + ¢)dx =
32+b2(a sm(bx + C) b cos(bx + ¢)).

o [x"e¥dx = x" fx” leax x .

x™ cos nx

o [x™sin nde: =

— 2 [ x™1 cos nxdx.
n

The last two are reduction formulae.




Integration of rational functions using partial fractions

Let f(x) = apx™ + arx™ 1 +--- 4+ ap_1x + a, and
g(x) = box" + byx" 1 + .-+ b,_1x + b, be two

polynomials. Then the ratio % is called a rational

function, provided g(x) # 0.
By division algorithm, f(x) = g(x)q(x) + r(x),
where either r(x) = 0 or deg.r(x) < deg.g(x).

Thus, % = q(x) + %. Therefore

f%dx = fq(x)dx—i—f;(();))dx.




As g(x) is a quotient polynomial, its integration
[ q(x)dx can be obtained term by term.

Also g(x) can be written as,

g(x) = clax+ di)P(cx + dr)P

X (erx® + fix + g1)"(exx? + hox + go)®

where p; > 1 and g; > 1.

Thus, the factors of g(x) are of the four types, linear non-repeated, linear
repeated, quadratic non-repeated, and quadratic repeated.

Hence, é',(( )) can be written as sum of partial fractlons of the forms

ks of Gtk r> 1. Therefore f dx can be
obtained by integrating the partial fractlons of these
types. Consider the following four cases depending on the kind of

factors of g(x) through some illustrations.
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Case 1 : Linear non-repeated factors

H . x+1
Illustration 1 : Evaluate [ g dx.

Solution : Note that x? + 5x + 6 = (x + 2)(x + 3).
. x+1 — x+1 A + B

© x2+5x+6 x+2)(x+3) — (x+2) (x+3)"
where A, B are constants to be determined.
Now x + 1 = A(x + 3) + B(x + 2).
SA4+4B=1and3A+2B=1. -.A=-1,B=2.
. x+1 _ x+1 _

: f x2+§x+6dx f mdx -

— -1
f ((X—|—12) + (X_Q’_3)> dX — fﬁdX‘i— fﬁdx —

—log(x 4+ 2) +2log(x + 3) + ¢ = log (&132))2 +c,
where c is a constant of integration.




[llustration 2 : Evaluate f( +§)(+5X“)Léi 1)dx

. ' 245yt 4] L C
SOlUt|0n . Let (x—|—3)(_>til—)|—éx—l) == (X—|—3) + (X—l) + (2x—1)

where A, B, C are constants to be determined.
It follows that A=5/4, B =47/4, C = —25

L (x+§<)(4xrixf)réi_1) dx =

J (((XSJ/S)) + ((17_/;1)) + ((2x 1))> dx

= (5/4)log(x +3) + (47/4) log(x — 1) —
(25/2) log(2x — 1) + ¢,

where c is a constant of integration.




Case 2 : Linear repeated factors

[llustration 3 : Evaluate f(xfzf)é—x(imdx.

Solzution . Consider
(Xff);)&iz) = (xél) + (x—Bl)2 + (xfz) _

where A, B, C are constants to be determined. Now
x>+ x+1=A(x—1)(x—2)+B(x—2)+ C(x—1).
A+ C=1, -3A+B—-2C=1and
2A—2B+C=1 - A=-6B=-3C=T.

: x4 x+1 _ (=6) (=3) 7 —
S e =/ ((x—l) oo T (x—2)> dx =
—6log(x — 1) +3(x — 1)t + 7log(x — 2) + c,
where c is a constant of integration.




Case 3 : Quadratic non-repeated factors

[llustration 4 : Evaluate szde.

x3+1
Solution : Consider
x2+1 x2+1 A Bx+C

Bl = D) — i) T ext D)
where A, B, C are constants to be determined.

Now x2 +1 = A(x®>—x+ 1)+ (Bx+ C)(x + 1).
SA+B=1 -A+B+C=0and A+ C=1.
A=2/3,B=1/3,C=1/3.

. X2 - 2/3 1/3)x+(1/3
- f X3ii dx = f (((X—{-].)) + ( (/x2)—x—5—1/) )) dx

= (2/3) log(x + 1) + (1/6) log(x* — x + 1)
+(1/v/3) tan™? (ﬂ> + ¢, where ¢ is a constant.

V3




Case 4 : Quadratic repeated factors

Illustration 5 : Evaluate [ (ijxfl) dx.

Solution : Expressing numerator in terms of the

derivative of the denominator quadratic expression,
we have 2x — 3 = (1)(2x + 1) + (—4). Therefore

2x—3 2x+1)
f (x2—|—x—|i1) dx f (X(2+x+1 dx +f W—i)—l)dx

=— 7T —4f(X2+X+1) dx + ¢, where

1 _ 1
| ey = | Goampprwaem

1_2x+1 4 —1 [ 2x+1 -
3x4xt1 T 3.5 tan ( Y ) which follows from the

Reduction formula using integration by parts :

d — 2n—3 d
| ey = senetrrer t anene | g
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lllustration 6 : Evaluate fwdx
Solution : In the integrand, replacing x? by t for the

moment, we have

2x%—1 _ 2t _L_i_L—L_f_L
(x2=5)(x>+4) — (t-5)(t+4) — t-5 t+4 X2 5 x*+4

. 2x2—1 _
_.fde—fQSdX‘l_f 2+4
x—/b 1
_zflog(Jr\f)Jr tan~! (%) + ¢,
where ¢ is a constant of mtegration.

2

il (Xzﬂﬁwdx = %tan_lx — ﬁgtan_l(\/gx) + c.
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Illustration 7 : Evaluate [ e s 9%

Solution : Put sinx = t. .. cos xdx = dt. Hence
f( COS X d

1—|—S|n x)(24+sin x) . .
+t _ +sin x

f (1+t)(2+t) dt = |Og (2+t) tc= |0g (2+zmx> +c
Evaluate the following

. fmdx (Hlnt - Put cosx = t)
2. [ s5dx. (Hint: Put e =t)

log x : . —

3. [< 1+|og?{g Togdx- (Hint - Put logx = t)
4. | XX2+1 sdx.  (Hint : Divide and multiply by x,

and put x2+1 =t)

—
|
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Illustration 8 : Evaluate [ X Ly,

4+1

Solution : Consider f Xty — szi((ll//)fz))dx —

f( 1+(1/x?) dX_

—(1/x))*+

constant of integration. [Hint :

4+1
x’—1

ﬁ tan— T

Evaluate the following

1. fx_ldx

x4+1
1

2. J 4+1dX
x%2+1

3. fx“ x2+1dX

4. f 8 _21+1dx

[Hint : Put x + (1/x) = t]

[Hint : 2y = 3555

[Hint : Put x — (1/x) = t]
[Hint : Put x + (1/x) = t]

+ ¢, where c is a
Put x — (1/x) = t]




Integration of some irrational functions :

Type 1 : Evaluation off __AHB gy

v ax24bx+c

f'(x) _
fmdx—2 f(x).

[llustration 1 : Evaluate f _3x42

Hint :

Vo1
Solution : Clearly 3x +2=(3/4)(4x + 2) + (1/2).
_ 3x+2
o) m
3 f _ Ax+2 f 1 dx —
4 \/2x2+2x+ 2 V2x24+2x+1

3\/2x2—i—2x—|—1-l—2f|og((x—|—%)+\/X2+x—l—%>

+ ¢, where c is a constant of integration.
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Type 2 : Evaluation of

[ (Ax + B)vax? + bx + cdx.

lllustration 1 : Evaluate [ (2x —5)v/2 + 3x — x2dXx.

Solution : Clearly 2x — 5 = (—1)(3 — 2x) + (—2).
[ (2x —5)V2 + 3x — x%dx =

—f 3 — 2x)v/2 + 3x — x2dx — 2 [ /2 + 3x — x2dx

—W—Qf\/2+————l—3x x2dx

(24 3x — x2)3/2 — 2f\/ — 3)2dx
D [ X_g)\/gﬁﬁ n (172/4) sin~! ( x—3 >] + c.

V17/2




Type 3 : Evaluation of [

%
(Ax+B)Vax2+bx+c

Hint : Put Ax + B = %
s.x=%(3 — B) and dx = — 5 dt.

. _ - )
Illustration 1 : Evaluate | = [ (X+1)\/2X2+3x+4dx'
Solution : Put x + 1 = % = XLH

X———landdx— %dt.

. 2x? +3x+4—2( —1)2+3(: —1)+4
_ 2(1-t)? +3t(1 t)+4t? 32—t42

_ fm_ 7§f¢(t_)2 %y

L1 1(t=¢\ _ 1 ., -1( 5-x
= —7 sinh™ <?) =—7 sinh (\/ﬁ(xﬂ))'




Type 4 : Evaluation of [(ax + b)Y/ dx.

Hint : Put ax + b = t".
n n—1
SX = tT_b and dx = %dt.

[llustration 1 : Evaluate | = fﬁd

Solution : Put 2x +3 =t - dx =3Cdt.

L= [ a =2 (e 3o = 2(E - )
Thus / = E—%_g—ﬁ—%:t@i—g)_
Hence | = (2x + 3)%/3 <—3(2§0+3) — %) + c.

Thatis, | = (2x+3)¥3 (& - ) 4+ c,

where c is a constant of integration.




Thank you




