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CHAPTER 4

VECTOR FIELDS ON SURFACES;
ORIENTATION

Definition. A vector field on an n−surface S ⊂ Rn+1 is a function which assigns to each
point p in S a vector X(p) ∈ Rn+1

p at p.
Definition. If X(p) is tangent to S(i.e. X(p) ∈ Sp) for each p ∈ S, X is said to be a
tangent vector field on S.
Definition. If X(p) is orthogonal to S(i.e. X(p) ∈ S⊥p ) for each p ∈ S, X is said to be
a normal vector field on S.
Definition. A function g : S → Rk, where S is an n−surface in Rn+1, is smooth if it is
the restriction to S of a smooth function g̃ : V → Rk defined on some open set V in Rk+1

containing S.
Definition. A vector field X on S is smooth if it is the restriction to S of a smooth
vector field defined on some open set containing S. Thus S is smooth if and only if
X : S → Rn+1 is smooth, where X(p) = (p,X(p)) for all p ∈ S.
Theorem. Let S be an n-surface in Rn+1, let X be a smooth tangent vector field on
S, and let p ∈ S. Then there exists an open interval I containing 0 and a parametrized
curve α : I → S such that
(i) α(0) = p
(ii) α̇(t) = X(α(t)) for all t ∈ I
(iii) If β : Ĩ → S is any other parametrized curve in S satisfying (i) and (ii), then Ĩ ⊂ I
and β(t) = α(t) for all t ∈ Ĩ.
PROOF. Since X is smooth vector field, there exists an open set V containing S and a
smooth vector field X̃ on V such that X̃(q) = X(q) for all q ∈ S. Let f : U → R and
c ∈ R be such that S = f−1(c) and ∇f(q) 6= 0 for all q ∈ S. Let

W = {q ∈ U ∩ V : ∇f(q) 6= 0} .

Then W is an open set containing S, and both X̃ and f are defined on W . Let Y be the
vector field on W , everywhere tangent to the level sets of f , defined by

Y (q) = X̃(q)− X̃(q) · ∇f(q)

‖∇f(p)‖2
∇f(q).
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Note that Y (q) = X(q) for all q ∈ S. Let α : I → W be the maximal integral curve of Y
through p. Then α maps I to S because

(f ◦ α)′(t) = ∇f(α(t)) · α̇(t)

= ∇f(α(t)) · Y (α(t))

= 0

and (f ◦α)(0) = f(α(0)) = f(p) = c, so (f ◦α)(t) = c, for all t ∈ I. Therefore conditions
(i) and (ii) holds and by theorem from Chapter 2, condition (iii) is satisfied because
β : Ĩ → S satisfying (i) and (ii) is also an integral curve of the vector field Y on W . �
Definition. A subset of Rn+1 is said to be connected if for each pair (p, q) of points in
S there is a parametrized map α : [a, b] → S such that α(a) = p and α(b) = q. Thus S
is connected if each pair of points S can be joined by a continuous curve(not necessarily
smooth which lies completely in S).
Example. Show that the unit n-sphere x21 + x22 + ...+ x2n+1 = 1 is connected if n ≥ 1.
Solution. Since the sphere S = f−1(1), where f : U → Rn+1 is smooth function.
Let n = 0 then f : R→ R and

S = {x1 ∈ R : x21 = 1}

= {x1 ∈ R : x1 = ±1}

Let n = 1 then f : R2 → R2 and

S = {(x1, x2) ∈ R2 : x21 + x22 = 1}

Let n = 2 then f : R3 → R3 and

S = {(x1, x2, x3) ∈ R3 : x21 + x22 + x23 = 1}

For n = 1, S is unit 1-sphere in R2 and for n = 2, S is 2-sphere in R3 which are connected
similarly we can see that for n = k, S is k−sphere is connected surface in Rk+1. But for
n = 0, S is set containing two points 1 and -1 so there is no path is which connects these
two points hence not connected. Thus the unit n−sphere is connected for n ≥ 1.
Theorem. Let S ⊂ Rn+1 be a connected n−surface in Rn+1. Then there exist on S
exactly two smooth unit normal vector field N1 and N2, and N2(p) = −N1(p) for all
p ∈ S.
PROOF. Since S is smooth n−surface in Rn+1 =⇒ S = f−1(c), where f : U → R and
∇f(p) 6= 0,∀p ∈ S.
Let N1 be vector field defined by

N1(p) =
∇f(p)

‖∇f(p)‖
, ∀p ∈ S

Therefore, N1 is unit normal vector field and N1(p) ∈ [∇f(p)]. The another smooth unit
normal vector field at the point p is

N2(p) = − ∇f(p)

‖∇f(p)‖
, ∀p ∈ S
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Hence,
N1(p) = N2(p), ∀p ∈ S

Therefore, N1 and N2 are both unit vector field on S.
Now show that these are the only two such vector fields. Suppose N3 be another such
vector field then for each p ∈ S.
Then, for each p ∈ S, N3(p) must be a multiple of N1(p) since both lies in 1-dimensional
vector subspace [∇f(p)]⊥ ⊂ Rn+1

p . Thus

N3(p) = g(p)N1(p), ∀p ∈ S

where, g : S → R is a smooth function on S.
Since g(p) = N3(p) ·N1(p) = ±1. ∵ Both N1 and N2 are unit vectors.
Therefore, N3(p) = ±N1(p) which shows either N3 = N1 or N3 = N2. �
Definition. A smooth unit normal vector field on an n-surface S in Rn+1 is called an
orientation on S. According to the theorem just proved , each connected n-surface in
Rn+1 has exactly two orientations. An n-surface together with a choice of orientation is
called oriented surface.
The Möbius band.
The Möbius band B, is surface in R3 obtained by taking a rectangular strip of paper,
twisting one end 180◦, and taping the ends together. That there is no smooth unit normal
vector field on B can be seen by picking a unit normal vector at some point on the central
circle and trying to extend it continuously to a unit normal vector field along this circle.
After going around the circle once, the normal vector is pointing in the opposite directly!
Since there is no smooth unit normal vector field on B, B cannot be expressed as a level
set f−1(c) of some smooth function f : U → R with ∇f(p) 6= 0 for all p ∈ S, and hence B
is not a 2-surface according to our definition. B is example of ”unorientable 2-surface”.

Note. Here onward we will consider only orientable n-surfaces in Rn+1.
Definition. A unit vector in Rn+1

p is called a direction at p.
Thus an orientation on an n−surface S in Rn+1 is, a smooth choice of normal direction
at each point of S.
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On a plane curve, an orientation can be used to define tangent direction at each point of
the curve. The positive tangent direction at the point p of the oriented plane curve C is
the direction obtained by rotating the orientation normal direction at p through an angle
−π/2, where the direction of positive rotation is counterclockwise

On a 2-surface in R3, an orientation can be used to define a direction of rotation in
the tangent space at each point of the surface S is the linear transformation Rθ : Sp → Sp
defined by Rθ(v) = (cos θ)v + (sin θ)N(p) × v where N(p) is the orientation normal
direction at p. Rθ is usually described as ”right-handed rotation about N(p) through the
angle θ”.

On a 3-surface in R4, an orientation can be used to define a sense of ”handedness”
in the tangent space at each point of the surface. Given an oriented 3-surface S and a
point p ∈ S, an ordered orthonormal basis {e1, e2, e3} for the tangent space Sp to S at p
is said to be right-handed if determinant

det


e1
e2
e3

N(p)


is positive, where N(p) = (p,N(p)) is the orientation normal direction at p and ei = (p, ei)
for i ∈ {1, 2, 3}; the basis is left-handed if the determinant is negative.

On an n-surface in Rn+1, an orientation can be used to partition the collection
of all ordered basis for each tangent space into two subsets, those consistent with the
orientation and those inconsistent with the orientation. An ordered basis {v1, v2, ..., vn}
for the tangent space Sp at the point p of the oriented n-surface S is said to be consistent
with the orientation N on S if the determinant

det



v1
v2
·
·
·
vn
N(p)


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is positive; the basis is inconsistent with N if the determinant is negative. Here, as usual
vi = (p, vi) and N(p) = (p,N(p)).

♣♣♣
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CHAPTER 5

The Gauss Map

An oriented n−surface in Rn+1 is more than just an n−surface. it is an n-surface S
together with a smooth unit normal vector field N on S. The function N : S → Rn+1

associated with the vector field N by N(p) = (p,N(p)), p ∈ S, actually S maps to unit
n-sphere Sn ⊂ Rn+1, since ‖N(p)‖ = 1, ∀p ∈ S.
Definition. Associated with each oriented n-surface S is a smooth map N : S → Sn,
called as Gauss map.
N may be thought as the map which assigns to every point p ∈ S the point in Rn+1

obtained by translating the unit normal vector N(p) to the origin.
Definition. The image of the Gauss map,

N(s) = {q ∈ Sn : q = N(p) for some p ∈ S}

is called the spherical image of the oriented n-surface S.
The spherical image of an oriented n-surface S records, the set of directions which

occur as normal directions to S. Hence its size is a measure of how much surface curves
around in Rn+1. For an n-plane, which does not curve around at all, the spherical image
is a single point. If an n-surface is compact then it must curve all the way around: the
spherical image will be all of Sn.
Theorem. Let S be a compact connected n-surface in Rn+1 exhibited as a level set f−1(c)
of a smooth function f : Rn+1 → R with ∇f(p) 6= 0 for all p ∈ S. Then the Gauss map
maps S into the unit sphere Sn.
Example 1. Describe the spherical image when n = 1 and n = 2 of the given n-surface
oriented by ∇f/‖∇f‖, where f is a function defined by left hand side of the cone

−x21 + x22 + ...+ x2n+1 = 0, x1 > 0.

Solution. Here f : Rn+1 → R defined by f(x1, x2, ..., xn+1) = −x21 + x22 + ...+ x2n+1.

∴ S = f−1(0) =
{

(x1, x2, ..., xn+1) ∈ Rn+1 : −x21 + x22 + ...+ x2n+1 = 0
}

∇f(p) = (p,−2x1, 2x2, ..., 2xn+1)

=⇒
‖∇f(p)‖ =

√
4(x21 + x22 + ...+ x2n+1)

Consider,

N(p) =
∇f(p)

‖∇f(p)‖

=
(p,−2x1, 2x2, ..., 2xn+1)√

4(x21 + x22 + ...+ x2n+1)

=
(p,−x1, x2, ..., xn+1)√
x21 + x22 + ...+ x2n+1
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when n = 1,
f(x1, x2) = −x21 + x22

and
S = f−1(0) = {(x1, x2) ∈ R2 : −x21 + x22 = 0}

= {(x1, x2) ∈ R2 : x1 = ±x2}

N(p) =
∇f(p)

‖∇f(p)‖

=
(p,−2x1, 2x2)√

4(x21 + x22)

=
(p,−x1, x2)√

x21 + x22

=

(
− x1√

x21 + x22
,

x2√
x21 + x22

)
If x1 = x2, then

N(p) =

(
− x1√

x21 + x21
,

x1√
x21 + x21

)

=

(
− x1√

2x21
,

x1√
2x21

)

=

(
− 1√

2
,

1√
2

)
If x1 = −x2, then

N(p) =

(
− x1√

x21 + x21
,− x1√

x21 + x21

)

=

(
− x1√

2x21
,− x1√

2x21

)

=

(
− 1√

2
,− 1√

2

)
Therefore, the spherical image is

{(
− 1√

2
,

1√
2

)
,

(
− 1√

2
,− 1√

2

)}
.

Example 2. Find the spherical image of one sheet of a 2-sheeted hyperbola x21 − x22 −
...− x2n+1 = 4, x1 > 0 oriented by −∇f/‖∇f‖.
Solution. Here

f(x1, x2, ..., xn+1) = x21 − x22 − ...− x2n+1.
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For n = 1,
f(x1, x2) = x21 − x22

=⇒ f−1(4) = {(x1, x2) ∈ R2 : x21 − x22 = 4}

which represent hyperbola and x1 > 0, we take only one branch.
Here the orientation is given by −∇f/‖∇f‖.

∇f(x1, x2) = (2x1,−2x2)

=⇒ ‖∇f(x1, x2)‖ =
√

4x21 + 4x22

Therefore,

N(x1, x2) = − ∇f(x1, x2)

‖∇f(x1, x2)‖

= −(2x1,−2x2)

2
√
x21 + x22

=
(−x1, x2)√
x21 + x22

=

(
− x1√

x21 + x22
,

x2√
x21 + x22

)

=

(
− x1√

x21 + x21 − 4
,

√
x21 − 4√

x21 + x21 − 4

)

=

(
− x1√

2
√
x21 − 2

,

√
x21 − 4

√
2
√
x21 − 2

)
The spherical image is given by

N(x1, x2) = {q ∈ S1 : q = N(p) for some p ∈ S}

N(x1, x2) =

{
q ∈ S1 : q =

(
− x1√

2
√
x21 − 2

,
x21 − 4

√
2
√
x21 − 2

)
for some p ∈ S

}

GEODESICS
Geodesics are curves in n−surface which play the same role as do straight line in Rn.
Before formulating a precise definition, we must introduce the process of differentiation
of vector fields and functions defined along parametrized curves.
Definition. A vector field X along the parametrized curve α : I → Rn+1 is a function
which assigns to each t ∈ I a vector X(t) at α(t); i.e., X(t) ∈ Rn+1

α(t) for all t ∈ I.
Definition. A function f along α is simply a function f : I → R.
Example. The velocity α̇ of the parametrized curve α : I → Rn+1 is a vector field along
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α; its length ‖α̇‖ : I → R, defined by ‖α̇‖(t) = ‖α̇(t)‖ for all t ∈ I, is a function along α.
‖α̇‖ is called speed of α.

Vector fields and functions along parametrized curves frequently occur as restrictions.
Thus X is a vector field on U , where U is an open subset of Rn+1 containing image of
α, then X ◦ α is a vector field along α. Similarly f ◦ α is a function along α whenever
f : U → R, where U ⊃ Image α.

Each vector field along α is of the form

X(t) = (α(t), X1(t), ..., Xn+1(t))

where each component Xi is a function along α. X is smooth if each Xi : I → R is
smooth. The derivative of a smooth vector field X along α is the vector field Ẋ along α
defined by

Ẋ(t) =

(
α(t),

dX1

dt
(t), ...,

Xn+1

dt
(t)

)
.

Ẋ(t) measures the rate of change of the vector part (X1(t), X2(t), ..., Xn+1(t)) of X(t)
along α. Thus, for example, the acceleration α̈ of a parametrized curve α is the vector
field along α obtained by differentiating the velocity field α̇

[
α̈ =

(
˙̇α
)]

.
The differentiation of vector fields along parametrized curves has the following properties.
For X and Y smooth vector field along the parametrized curve α : I → Rn+1 and f a
smooth function along α,
(i) ( ˙X + Y ) = Ẋ + Ẏ
(ii) ( ˙fX) = f ′X + fẊ
(iii) (X · Y )′ = Ẋ · Y +X · Ẏ
where X + Y, fX and X · Y are defined along α by

(X + Y )(t) = X(t) + Y (t)

(fX)(t) = f(t)X(t)

(X · Y )(t) = X(t) · Y (t), ∀t ∈ I.

Definition. A geodesic in an n−surface S ⊂ Rn+1 is a parametrized curve α : I → S
whose acceleration is everywhere orthogonal to S; that is α̈ ∈ S⊥α(t) for all t ∈ I.
Thus geodesic is a curve in S which always goes ”straight ahead” in the surface. Its
acceleration serves only to keep it in surface. It has no components of acceleration
tangent to the surface.
Example 1. Prove that a geodesic has a constant speed.
PROOF. Suppose α : I → S be a geodesic in an n−surface.
=⇒ α̇(t) ∈ Sα(t) and α̈(t) ∈ S⊥α(t). Therefore, α̇(t) · α̈(t) = 0.
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Now consider,
d

dt
‖α̇(t)‖2 =

d

dt
[α̇(t) · α̇(t)]

= α̇(t) · α̈(t) + α̈(t) · α̇(t)
= 2α̇(t) · α̈(t)

= 0

Therefore, ‖α̇(t)‖2 is constant.
Therefore, ‖α̇(t)‖ is constant for all t ∈ I.
Therefore, speed of geodesic is constant.
Example 2. If an n−surface S contains a straight line segment α(t) = p + tv, t ∈ I,
then prove that this segment is geodesic in S.
PROOF. Suppose α(t) = p+ tv, t ∈ I be a straight line segment in S.
=⇒ α̇(t) = v and α̈(t) = 0.
Here α̇(t) · α̈(t) = 0, ∀t ∈ I.
=⇒ α̈(t) ⊥ α̇(t), ∀t ∈ I.
=⇒ α̈(t) ∈ Sα(t), ∀t ∈ I.
Therefore, straight line in S is geodesic in S.
Example 3. For a, b, c, d ∈ R, show that the parametrized curve α(t) = (cos(at +
b), sin(at+ b), ct+ d) is a geodesic in the cylinder x21 + x22 = 1 in R3.
PROOF. Suppose f(x1, x2, x3) = x21 + x22 so that S = f−1(1) with ∇f(p) 6= 0, ∀p ∈ S.

α(t) = (cos(at+ b), sin(at+ b), ct+ d)

=⇒ α̇(t) = (−a sin(at+ b), a cos(at+ b), c)

=⇒ α̈(t) = (−a2 cos(at+ b),−a2 sin(at+ b), 0)

= −a2(cos(at+ b), sin(at+ b), 0). (1)

Now we shall find a unit normal vector field to the cylinder S.
f(x1, x2, x3) = x21 + x22 =⇒ ∇f(x1, x2, x3) = (2x1, 2x2, 0).
Consider,

N(α(t)) =
∇f(α(t))

‖∇f(α(t))‖

=
(2 cos(at+ b), 2 sin(at+ b), 0)

2
√

cos2(at+ b) + sin2(at+ b)

= (cos(at+ b), sin(at+ b), 0). (2)

From equation (1) and (2) we get,

α̈(t) = ±a2N(α(t))
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Therefore, α(t) is geodesic in the cylinder.

Example 4. For each pair of orthogonal unit vectors {e1, e2} in R3 and each a ∈ R, the
great circles α(t) = (cos at)e1 + (sin at)e2 is a geodesic in the 2−sphere x21 + x22 + x23 = 1
in R3.
Solution. Since α(t) = (cos at)e1 + (sin at)e2.

=⇒ α̇(t) = −a(sin at)e1 + a(cos at)e2

and
α̈(t) = −a2(cos at)e1 − a2(sin at)e2

Now,

N(x1, x2, x3) =
∇f(x1, x2, x3)

‖∇f(x1, x2, x3)‖

=
(2x1, 2x2, 2x3)

‖2
√
x21 + x22 + x23‖

= (x1, x2, x3)

=⇒ N(α(t)) = (cos at, sin at, 0)

= (cos at)e1 + (sin at)e2

Therefore, α̈(t) = ±a2N(α(t)).
=⇒ α is geodesic in the 2−sphere.
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Example 5. Let S denote the cylinder x21 + x22 + x23 = r2 in R3. Show that α is
geodesic in S if and only if α(t) = (r cos(at+ b), r sin(at+ b), ct+ d).
Solution. Since α(t) = (r cos(at+ b), r sin(at+ b), ct+ d).

=⇒ α̇(t) = (−ar sin(at+ b), ar cos(at+ b), c)

and
=⇒ α̈(t) = (−a2r cos(at+ b),−ar sin(at+ b), c)

= −a2r(cos(at+ b), sin(at+ b), c)

Also, we have f(x1, x2, x3) = x21 + x22 + x23 =⇒ S = f−1(1).
Consider,

N(x1, x2, x3) =
∇f(x1, x2, x3)

‖∇f(x1, x2, x3)‖

=
(2x1, 2x2, 2x3)√
4x21 + 4x22 + 4x23

=
(x1, x2, x3)√
x21 + x22 + x23

= (x1, x2, x3)

=⇒ N(α(t)) = r(cos(at+ b), sin(at+ b), ct+ d)

=⇒ α̈(t) = ±a2N(α(t))

=⇒ α̈(t) ∈ S⊥α(t) (1)

Suppose α(t) = (r cos(at+ b), r sin(at+ b), ct+ d) is geodesic in S.
⇐⇒ α̈(t) ∈ S⊥α(t).

Prof. K. R. Shinde 12 Department of Mathematics



Differential Geometry Modern College of ASC(Autonomous), Pune

⇐⇒ α̈(t) · α̇(t) = 0, ∀α̇(t) ∈ Sα(t) this will follows from equation (1).
Therefore, α is geodesic in S if and only if α(t) = (r cos(at+ b), r sin(at+ b), ct+ d).
Theorem. Let S an n−surface in Rn+1 let p ∈ S, and let v ∈ Sp. Then there exists an
open interval I containing 0 and a geodesic α : I → S such that
(i) α(0) = p and α̇(0) = v.
(ii) If β : Ĩ → S is any other geodesic in S with β(0) = p and β̇(0) = v, then Ĩ ⊂ I and
β(t) = α(t) for all t ∈ Ĩ .
PROOF. Suppose S is n-surface in Rn+1 =⇒ S = f−1(c) for some c ∈ R and some smooth
function f : U → R(U open in Rn+1) with ∇f(p) 6= 0 for all p ∈ S. Since ∇f(p) 6= 0 for
all p in some open set containing S, we may assume(by shrinking U if necessary) that
∇f(p) 6= 0 for all p ∈ U . Set N = ∇f/‖∇f‖.

By definition, a parametrized curve α : I → S is geodesic of S if and only if its
acceleration is everywhere perpendicular to S; that is, if and only if α̈(t) is multiple of
N(α(t)) for all t ∈ I:

α̈ = g(t)N(α(t))

for all t ∈ I, where g : I → R. Taking the dot product of both side of this equation with
N(α(t)) we find

α̈ ·N(α(t)) = g(t)N(α(t)) ·N(α(t)) (1)

= g(t), ∀t ∈ I

=⇒ g = α̈ ·N ◦ α

= (α̇ ·N ◦ α)′ − α̇ ·N ◦̇α

= −α̇ ·N ◦̇α

Because α̇ ⊥ N ◦ α = 0. Substituting this value of g in equation (1) we get,

α̈(t) = − (α̇ ·N ◦̇α) (N ◦ α)

=⇒ α̈(t) + (α̇ ·N ◦̇α) (N ◦ α) = 0

Thus α : I → S is geodesics if it satisfies the differential equation

α̈(t) + (α̇ ·N ◦̇α) (N ◦ α) = 0

which is a second order differential equation in α. If we express α(t) = (x1, x2, ..., xn+1)
then equating the ith component on both side we get,

d2xi
dt2

+
n+1∑
j,k=1

Ni(x1, x2, ..., xn+1)
∂Nj

∂xk
(x1, x2, ..., xn+1)

dxj
dt

dxk
dt

= 0

where the Nj (j ∈ {1, 2, ..., n+ 1}) are the components of N. By existence theorem for
the solution of such equations there is an interval I1 about 0 and a solution β1 : I1 → U
of this differential equation satisfying the initial conditions β(0) = p and β̇(0) = v
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(that is, satisfying xi(0) = pi and (dxi/dt)(0) = vi for i ∈ {1, 2, ..., n+ 1}, where p =
(p1, p2, ..., pn+1) and v = (v1, v2, ..., vn+1)). Moreover, this solution is unique in the sense
that if β2 : I2 → U is another solution, with β2(0) = p and β̇2(0) = v, then β1(t) = β2(t)
for all t ∈ I1 ∩ I2. It follows that there exists a maximal open interval I and a unique
solution α : I → U of given system of equations satisfying α(0) = p and α̇(0) = v.
Furthermore if β : Ĩ → I is any another solution with β(0) = p and β̇(0) = v then Ĩ ⊂ I
and β is the restriction of α to Ĩ.

Now to complete the proof it only remains to show that the solution α is curve in S.
For, if so, it must be geodesic because it satisfies the geodesic equation, and rest of the
theorem follows from the uniqueness statement above. To see that α is in fact a curve
in S, note first that every solution α : I → U of second order differential equation given
above, α̇ ·N ◦ α = 0.

=⇒ (α̇ ·N ◦ α)′ = α̈ ·N ◦ α + α̇ ·N ◦̇α = 0

Therefore, α̇ ·N ◦ α is constant along α, and

(α̇ ·N ◦ α)(0) = α̇(0) ·N(α(0)) = v ·N(p) = 0

Because v ∈ Sp and N(p) ⊥ Sp.

(f ◦ α)′(t) = ∇f(α(t)) · α̇(t) = ‖∇f(α(t))‖N(α(t)) · α̇(t) = 0

for all t ∈ I so f ◦ α is constant along α, and f(α(0)) = f(p) = c so f(α(t)) = c for all
t ∈ I.
That is, Image α ⊂ f−1(c) = S. �

♣♣♣
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CHAPTER 6

PARALLEL TRANSPORT

Definition. A vector field X along a parametrized curve α : I → S in an n−surface S
is tangent to S along α if X(t) ∈ Sα(t) for all t ∈ I. The derivative Ẋ of such a vector
field is, however, generally not tangent to S. We can, obtain a vector field tangent to S
by projecting Ẋ(t) on to Sα(t) for each t ∈ I. This process of differentiating and then
projecting onto the tangent space to S defines an operation with the same properties as
differentiation, except that now differentiation or vector fields tangent to S yields vector
fields tangent to S. This process is called covariant differentiation.

Let S be an n−surface in Rn+1, let α : I → S be a parametrized curve in S, and let
X be a smooth vector field tangent to S along α. The covariant derivative of X is the
vector field X ′ tangent to S along α defined by

X ′(t) = Ẋ(t)−
[
Ẋ ·N(α(t))

]
N(α(t)),

where N is an orientation on S. Note that X ′(t) is independent of the choice of N since
replacing N by −N has no effect on the above formula.
Exercise. Verify that the following properties of covariant differentiation for smooth
vector fields X and Y tangent to S along α,
(i) (X + Y )′ = X ′ + Y ′

(ii) (fX)′ = f ′X + fX ′

(iii) (X · Y )′ = X ′ · Y +X · Y ′
Covariant derivative X ′ measures the rate of change of X along α as seen from the

surface S. Note that a parametrized curve α : I → S is a geodesic in S if and only if its
covariant acceleration (α̇′) is zero along α.

The covariant derivative leads naturally to a concept of parallelism on an n−surface.
In Rn+1, v = (p, v) ∈ Rn+1

p and w = (q, w) ∈ Rn+1
q are said to be Euclidean parallel if

v = w. A vector field X along a parametrized curve α : I → Rn+1 is Euclidean parallel if
X(t1) = X(t2) for all t1, t2 ∈ I, where X(t) = (α(t), X(t)) for t ∈ I. Thus X is Euclidean
parallel along α if and only if Ẋ = 0.

Given an n−surface S in Rn+1 and a parametrized curve α : I → S, a smooth vector
field X tangent to S along α is said to be Levi-Civita parallel, or simply parallel, if
X ′ = 0. Therefore, X is parallel along α if X is a constant vector field along α. Levi-
Civita parallelism has following properties:
(i) If X is parallel along α, then X has constant length.
PROOF. Suppose X is parallel along α.

d

dt
‖X‖2 =

d

dt
(X ·X)

0 = X ′X +XX ′

0 = 2X ′X
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Therefore, length of X is constant along α.
(ii) If X and Y are two parallel vector field along α, then X · Y is constant.
PROOF. Since X and Y are parallel vector fields along α =⇒ X ′ = 0, Y ′ = 0.
Consider,

(X · Y )′ = X · Y ′ +X ′ · Y

= 0

Therefore, X · Y is constant along α.
(iii) If X and Y are parallel along α, then the angle between cos−1 (X · Y/‖X‖‖Y ‖)
between X and Y is constant along α.
PROOF. Since X · Y , ‖X‖ and ‖Y ‖ are each constant along α.
Therefore, cos−1 (X · Y/‖X‖‖Y ‖) is constant along α.
(iv) If X and Y are parallel along α then X + Y and cX, for all c ∈ R are parallel along
α.
(v) The velocity vector field along a parametrized curve α in S is parallel if and only if
α is a geodesic.
Theorem. Let S be an n−surface in Rn+1, let α : I → S be a parametrized curve in
S, let t0 ∈ I, and let v ∈ Sα(t0). Then there exists a unique vector field V , tangent to S
along α, which is parallel and has V (t0) = v.
PROOF. We require a vector field V tangent to S along α satisfying V ′ = 0. But

V ′ = V̇ − (V̇ ·N ◦ α)N ◦ α

= V̇ − [(V ·N ◦ α)′ − V ·N ◦̇α]N ◦ α

= V̇ + (V ·N ◦̇α)N ◦ α

V ′ = 0 if and only if V satisfied the differential equation

V̇ + (V ·N ◦̇α)N ◦ α = 0

This is first order differential equation in V . If we write V (t) = (α(t), V1(t), V2(t), ..., Vn+1(t)),
the vector differential equation becomes the system of first order differential equations

dVi
dt

+
n+1∑
j=1

(Nj ◦ α)(Nj ◦ α)′Vj = 0

whereNj(j ∈ {1, 2, ..., n+ 1}) are the components ofN . By existence and uniqueness the-
orem for solutions of first order differential equations, there exist a unique vector field V
along α satisfying the above differential equation together with initial conditions V (t0) =
v (that is, satisfying Vi(t0) = vi for i ∈ {1, 2, ..., n+ 1}, where v = (α(t0), v1, v2, ..., vn+1)).
The existence and uniqueness theorem does not guarantee that V is tangent to S along
α.
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To show V is tangent to S, from the above differential equation we have,

(V ·N ◦ α)′ = V̇ ·N ◦ α + V ·N ◦̇α

= [−(V ·N ◦̇α)N ◦ α] ·N ◦ α + V ·N ◦̇α

= −V ·N ◦̇α + V ·N ◦̇α

= 0

so V ·N ◦α is constant along α and, since (V ·N ◦α)(t0) = v ·N(α(t0)) = 0, this constant
must be 0. Finally, this vector field V , tangent to S along α, is parallel because it satisfies
above differential equation. �
Corollary. Let S be a 2-surface in R3 and let α : I → S be a geodesic in S with α̇ 6= 0.
Then a vector field X tangent to S along α is parallel along α if and only if both ‖X‖
and the angle between X along α̇ are constant along α.
PROOF. Suppose a vector field X tangent to S is parallel along α then by property
(i) ‖X‖ is constant along α. Also we know that the geodesic has constant speed along
α. That is ‖α̇‖ is constant along α. Since the angle between X and α̇ is given by

θ = cos−1
(

X · α̇
‖X‖‖α̇‖

)
and ‖X‖, ‖α̇‖ and X · α̇ are constant. Which implies θ is constant

along α.
Conversely, Suppose ‖X‖ and the angle θ between X and α̇ is constant along α. Let
t0 ∈ I and let v ∈ Sα(t0) be a unit vector orthogonal to α̇(t0). Let V be unique parallel
vector field along α such that V (t0) = v. Then ‖V ‖ = 1 and V · α̇ = 0 along α so{

˙α(t), V (t)
}

is and orthogonal basis for Sα(t), for each t ∈ I. In particular, there exist

an smooth functions f, g : I → R such that X = fα̇ + gV . Since

cos θ =
X · α̇
‖X‖‖α̇‖

=
fα̇ · α̇ + gV · α̇
‖X‖‖α̇‖

=
f‖α̇‖2

‖X‖‖α̇‖

=
f‖α̇‖
‖X‖

and

‖X‖2 = f 2‖α̇‖2 + g2

the constancy of θ, ‖X‖ and ‖α̇‖ along α implies that f and g are constant along α.
Hence X is parallel along α, by property (iv) above. �
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Parallelism can be use to transport tangent vectors from one point of an n-surface to
another. Given two points p and q in an n-surface S, a parametrized curve in S from p
to q is a smooth map α : [a, b] → S, from a closed interval [a, b] into S, with α(a) = p
and α(b) = q. By smoothness of a map α defined on a closed interval we mean that α is
restriction to [a, b] into S. Each parametrized curve α : [a, b]→ S from q to q determines
a map Pα : Sp → Sq by

Pα(v) = V (b)

where, for v ∈ Sp, V is the unique parallel vector field along α with V (a) = v. Pα(v) is
called the parallel transport of v along α to q.
Example. For θ ∈ R, let αθ : [0, π]→ S2 be the parametrized curve in the unit 2−sphere
S2, from the north pole p = (0, 0, 1) to the south pole q = (0, 0,−1), defined by

αθ(t) = (cos θ sin t, sin θ sin t, cos t) .

Thus, for each θ, αθ is half of a great circle on S2. Let v = (p, 1, 0, 0) ∈ S2
p . Since αθ is

geodesics in S2, a vector field tangent to S2 along αθ will be parallel if and only if it has
constant length and keeps constant angle with α̇θ. The one with initial value v is

Vθ(t) = (cos θ)α̇θ(t)− (sin θ)N(αθ(t))× α̇θ(t),

where N is the outward orientation on S2. Hence

Pαθ
(v) = Vθ(π)

= (cos θ)(q,− cos θ,− sin θ, 0)− (sin θ)(q,− sin θ, cos θ, 0)

= −(q, cos 2θ, sin 2θ, 0)

♣♣♣
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CHAPTER 7

THE WEINGARTEN MAP
Definition. Given a smooth function f defined on an open set U in Rn+1 and a vector
v ∈ Rn+1

p , p ∈ U , the derivative of f with respect to v is the real number

∇vf = (f ◦ α)′(t0)

where α : I → U is any parametrized curve in U with α̇(t0) = v. The value of ∇vf does
not depend on the choice of α.

∇vf = (f ◦ α)′(t0) = ∇f(α(t0)) · α̇(t0) = ∇f(p) · v

This formula also shows that the function which sends v into ∇vf is a linear map from
Rn+1
p to R,

∇v+wf = ∇vf +∇wf

and
∇cvf = c∇vf

for all v, w ∈ Rn+1
p and c ∈ R.

Note that∇vf depends on the magnitude of v as well as direction of v. When ‖v‖ = 1,
the derivative ∇vf is called the directional derivative of f at p in the direction v.

Given an n-surface S in Rn+1 and a smooth function f : S → R, it’s derivative with
respect to a v tangent to S is defined similarly, by

∇vf = (f ◦ α)′(t0)

where α : I → S is any parametrized curve in S with α̇(t0) = v. Note that the value of
∇vf is independent of the curve α in S passing through p with velocity v, since

∇vf = (f̃ ◦ α)′(t0) = ∇f̃(α(t0)) · α̇(t0) = ∇f̃(p) · v

where f̃ : U → R is any smooth function, defined on an open set U containing S, whose
restriction to S is f . It also follows from this last formula that the function which sends
v in to ∇vf is a linear map from Sp to R.

The derivative of a smooth vector field X on an open set U in Rn+1 with respect to
a vector v ∈ Rn+1

p , p ∈ U is defined by

∇vX = (X ◦̇α)(t0)

where α : I → U is any parametrized curve in U such that α̇(t0) = v. For X a smooth
vector field on an n-surface S in Rn+1 and v a vector tangent to S at p ∈ S, the derivative
∇vX is defined by the same formula, where now α is required to be a parametrized curve
in S with α̇(t0) = v. Note that, in both situations, ∇vX ∈ Rn+1 and that

∇vX = (α(t0), (X1 ◦ α)′(t0), ..., (Xn+1 ◦ α)′(t0))

= (p,∇vX1, ...,∇vXn+1)
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where Xi are the components of X. The differentiation of vector field satisfies following
properties:
(i) ∇v(X + Y ) = ∇vX +∇vY
(ii) ∇v(fX) = (∇vf)X(t) + f(p)(∇vX)
(iii) ∇v(X · Y ) = (∇vX) · Y (p) +X(p) · (∇vY )
for all smooth vector fields X and Y on U(or on S) and all smooth functions f : U → R.
The sum X + Y of two vector fields X and Y is the vector field defined by (X + Y )(q) =
X(q) + Y (q), the product of a function f and a vector field X is the vector field defined
by (Xf)(q) = f(q)X(q) and the dot product of vector fields X and Y is the function
defined by (X · Y )(q) = X(q) · Y (q), for all q ∈ U . Moreover, for each vector field X, the
function which sends v in to ∇vX is a linear map, from Rn+1

p into Rn+1
p if X is vector

field on an open set U , and from Sp into Rn+1
p if X is a vector field on an n−surface S.

The derivative ∇vX of a tangent vector field X on an n−surface S with respect to
a vector v tangent to S at p ∈ S will not in general be tangent to S. Consider the
tangential component of DvX of ∇vX:

DvX = ∇vX − (∇vX ·N(p))N(p),

where N is an orientation on S. DvX is called the covariant derivative of the tangent
vector field X with respect to v ∈ Sp. Covariant derivative has the same properties as
ordinary differentiation. For each smooth tangent vector field X on S, the function which
sends v into DvX is a linear map from Sp into Sp.

Suppose N is a normal direction on an n-surface in Rn+1. For p ∈ S and v ∈ Sp, the
derivative ∇vN is tangent to S since.

0 = ∇v(1)

= ∇v(N ·N)

= (∇vN) ·N(p) +N(p) · (∇vN)

= 2(∇vN) ·N(p)

The linear map Lp : Sp → Sp defined by

Lp(v) = −∇vN

is called Weingarten map of S at p. The geometric meaning of Lp seen from the formula

∇vN = (N ◦̇α)(t0)

where, α : I → S is any parametrized curve in S with α̇(t0) = v. Lp(v) measures the rate
of change of N as one passes through p along any such curve α. Since the tangent space
Sα(t) to S at α(t) is just [∇N(α(t))]⊥, the tangent space turns as the normal N turns
and so Lp(v) can be interpreted as a measure of the turning of the tangent space as one
passes through p along α. Thus Lp contains information about the shape of S. For this
reason Lp is sometimes called the shape operator S at p.
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Lp(v) can be obtained from the formula

Lp(v) = −∇vN

= −(p,∇vN1,∇vN2, ...,∇vNn+1)

= −(p,∇N1 · v,∇N2 · v, ...,∇Nn+1 · v)

= −(p,∇Ñ1 · v,∇Ñ2 · v, ...,∇Ñn+1 · v),

where Ñ is any smooth vector field defined on an open set U containing S with Ñ(q) =
N(q) for all q ∈ S.
Example 1. Let S be the n-sphere x21 + x22 + · · · + x2n+1 = r2 of radius r > 0, oriented
by the inward unit normal vector field N .

N(q) = (q,−q/‖q‖)

= (q,−q/r)

for q ∈ S. Setting Ñ(q) = (q,−q/r) for q ∈ Rn+1.

Ñ(x1, x2, ..., xn+1) =
(
x1, x2, ..., xn+1,−

x1
r
,−x2

r
, ...,−xn+1

r

)
= (q,−q/r)

we have, for p ∈ S and v ∈ Sp,

Lp(v) = −∇vN

= − (p,∇vN1,∇vN2, ...,∇vNn+1)

= −
(
p,∇v

(
−x1
r

)
,∇v

(
−x2
r

)
, ...,∇v

(
−xn+1

r

))
=

1

r
(p,∇vx1,∇vx2, ...,∇vxn+1)

But for each i ∈ {1, 2, ..., n+ 1},

∇vxi = ∇xi · v

= (p, 0, 0, .., 1, ..., 0) · (p, v1, v2, ..., vn+1)

= vi

Therefore,

Lp(v) =
1

r
(p, v1, v2, ..., vn+1)

=
1

r
v
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Therefore, the Weingarten map of the n−sphere of radius r is simply multiplication by
1/r. If S is oriented by outward normal −N , the Weingartern map will be multiplication
by −1/r.
Theorem 1. Let S be an n-surface in Rn+1, oriented by the unit normal vector field N .
Let p ∈ S and v ∈ Sp. Then for every parametrized curve α : I → S, with α̇(t0) = v for
some t0 ∈ I,

α̈(t0) ·N(p) = Lp(v) · v

PROOF. Since α is a parametrized curve in S =⇒ α̇(t) ∈ Sα(t) = [N(α(t))]⊥ , ∀t ∈ I.
That is, α̇ ·N(α(t)) = 0 along α. Hence

0 = [α̇ · (N ◦ α)]′ (t0)

= α̈(t0) · (N ◦ α)(t0) + ˙(α)(t0) · (N ˙α)(t0)◦

= α̈(t0) · (N ◦ α)(t0) + v · ∇vN

= α̈(t0) · (N ◦ α)(t0)− v · Lp(v)

Therefore, α̈(t0) · (N ◦ α)(t0) = Lp(v) · v. �
Theorem 2. The Weingarten map Lp is self-adjoint; that is,

Lp(v) · w = v · Lp(w)

for all v, w ∈ Sp.
PROOF. Let f : U → R(U open in Rn+1) be such that S = f−1(c) for some c ∈ R such
that N(p) = ∇f(p)/‖∇f(p)‖ for all p ∈ S. Then

Lp(v) · w = (−∇vN) · w

= −∇v

(
∇f
‖∇f‖

)
· w

= −
[
∇v

(
1

‖∇f‖

)
∇f(p) +

(
1

‖∇f‖

)
∇v(∇f)

]
· w

= −∇v

(
1

‖∇f‖

)
∇f(p) · w −

(
1

‖∇f‖

)
∇v(∇f) · w
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Since ∇f(p) · w = 0, the first term drops out. Thus

Lp(v) · w = − 1

‖∇f(p)‖
∇v(∇f) · w

= − 1

‖∇f(p)‖
∇v

(
p,
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xn+1

)
· w

= − 1

‖∇f(p)‖

(
p,∇v

∂f

∂x1
,∇v

∂f

∂x2
, ...,∇v

∂f

∂xn+1

)
· w

= − 1

‖∇f(p)‖

(
p,∇

(
∂f

∂x1

)
(p) · v,∇

(
∂f

∂x2

)
(p) · v, ...,∇

(
∂f

∂xn+1

)
(p) · v

)
· w

= − 1

‖∇f(p)‖

(
p,

n+1∑
i=1

∂2f

∂xi∂x1
(p) · vi,

n+1∑
i=1

∂2f

∂xi∂x2
(p) · vi, ...,

n+1∑
i=1

∂2f

∂xi∂xn+1

(p) · vi

)
· w

= − 1

‖∇f(p)‖

n+1∑
i,j=1

∂2f

∂xi∂xj
(p)viwj,

where v = (v1, v2, ..., vn+1) and w = (w1, w2, ..., wn+1). The same computation, with v
and w interchanged, shows that

Lp(w) · v = − 1

‖∇f(p)‖

n+1∑
i,j=1

∂2f

∂xi∂xj
(p)wivj,

Since
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
for all 1 ≤ i, j ≤ n+ 1.

Therefore,

Lp(v) · w = − 1

‖∇f(p)‖

n+1∑
i,j=1

∂2f

∂xi∂xj
(p)viwj

= − 1

‖∇f(p)‖

n+1∑
i,j=1

∂2f

∂xj∂xi
(p)viwj

= − 1

‖∇f(p)‖

n+1∑
i,j=1

∂2f

∂xj∂xi
(p)wjvi

= Lp(w) · v
which shows Weingarten map is self-adjoint. �

♣♣♣
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