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CHAPTER 3

Eigenvalues and Eigenvectors
In this chapter, we will develop a variety of techniques for approximating the eigenvalues
and eigenvectors of n× n matrix.
Definition. An eigenvalue of a matrix A is any number λ, for which the equation
Av = λv has a nonzero solution for the vector v.
Since the equation Av = λv is equivalent to (A− λI)v = 0, we see that the eigenvalue of
A are those values of λ for which the matrix A − λI is singular; that is, those values of
λ for which the det(A− λI) = 0 is singular.

As a function of λ, det(A − λI) is a nth degree polynomial, known as characteristic
polynomial of A. Counting multiplicities, and n × n matrix has precisely n eigenvalues.
Furthermore, the coefficients of the characteristic polynomial are sum and product of
elements of A. If A is a real matrix, then eigenvalues of A are real or occur in complex
conjugate pairs. The collection eigenvalues of A is called as spectrum of the matrix.

A nonzero vector v for which Av = λv is called an eigenvector of the matrix A
associated with the eigenvalue λ. Since v is solution to the matrix equation (A−λ)v = 0
when a − λI is singular, the eigenvectors are not unique. They are however determined
up to a multiplicative constants. In other ward, if v is an eigenvalue associated with
eigenvalue λ, the αv is also eigenvector associated with the same eigenvalue, for any
nonzero constant α.
Localizing Eigenvalues

Theorem. Let A be an n × n matrix and define ri =
n∑

j=1,j 6=i

|aij| for each i = 1, 2, ..., n.

Further, let
Ci = {z ∈ C : |z − aii| ≤ ri}

where C denote complex plane. If λ is eigenvalue of A then λ lies in one of the circle Ci.
PROOF. Let λ be an eigenvalue of A, with associated eigenvector x. Define ri =

n∑
j=1,j 6=i

|aij| for each i = 1, 2, ..., n. Further, let k be an index for which |xk| = ‖x‖∞.

Equating the kth element in the eigenvalue relation Ax = λx yields
n∑
j=1

akjxj = λxk
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or

(λ− akk)xk =
k−1∑
j=1

akjxj −
n∑

j=k+1

akjxj

Hence, upon taking the absolute value and repeatedly applying the triangle inequality,

|λ− akk||xk| ≤

∣∣∣∣∣
k−1∑
j=1

akjxj

∣∣∣∣∣−
∣∣∣∣∣

n∑
j=k+1

akjxj

∣∣∣∣∣
≤ ‖x‖∞

∣∣∣∣∣
k−1∑
j=1

akj

∣∣∣∣∣− ‖x‖∞
∣∣∣∣∣

n∑
j=k+1

akjxj

∣∣∣∣∣
≤ rk‖xk‖∞.

This follows that |λ− akk| ≤ rk and hence λ ∈ Ck.
THE POWER METHOD
Let A is n× n matrix with eigenvalues λ1, λ2, ..., λn, not necessarily distinct, that satisfy
the relation |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|. The eigenvalues λ1, which is largest in
magnitude, is known as the dominant eigenvalue of the matrix A. Assume that the
associated eigenvectors v1, v2, ..., vn are linearly independent, and therefore forms a basis
for Rn+1. Let x(0) be a non-zero element of Rn. Since the eigenvector of A forms a basis
for Rn, it follows that x(0) can be written as a linear combination of v1, v2, ..., vn; that is
there exist constants α1, α2, ..., αn such that

x(0) = α1v1 + α2v2 + ...+ αnvn

Next, construct the sequence of vectors
{
x(m)

}
according to the rule x(m) = Ax(m−1) for

m ≥ 1. By direct calculation we find

x(1) = Ax(0)

= A(α1v1 + α2v2 + ...+ αnvn)

= α1(Av1) + α2(Av2) + ...+ αn(Avn)

= α1(λ1v1) + α2(λ2v2) + ...+ αn(λnvn)

x(2) = Ax(1)

= A(Ax(0))

= A2(α1v1 + α2v2 + ...+ αnvn)

= α1(A
2v1) + α2(A

2v2) + ...+ αn(A2vn)

= α1(λ
2
1v1) + α2(λ

2
2v2) + ...+ αn(λ2nvn)
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and, in general,

x(m) = Ax(m−1) = Am(x(0))

= Am(α1v1 + α2v2 + ...+ αnvn)

= α1(A
mv1) + α2(A

mv2) + ...+ αn(Amvn)

= α1(λ
m
1 v1) + α2(λ

m
2 v2) + ...+ αn(λmn vn)

In deriving these expressions we have made repeated use of Avj = λvj, which follows
from the fact that vj is an eigenvector associated with the eigenvalue λj.

Factoring λm1 from the right-hand side of the equation for x(m) gives

x(m) = λm1

[
α1v1 + α2

(
λm2
λm1

)
v2 + ...+ αn

(
λm2
λm1

)
vn

]
By assumption |λj/λ1| < 1 for each j, so |λj/λ1|m → 0 as m→∞. Therefore,

lim
m→∞

x(m)

λm1
= α1v1.

Since any non-zero constant multiple times an eigenvector is still an eigenvector associ-
ated with the same eigenvalue. Hence the scaled sequence

{
x(m)/λm1

}
converses to an

eigenvector associated with the dominant eigenvalue provided, α1 6= 0.
An approximation for the dominant eigenvalue of A can be obtained from the sequence{

x(m)
}

as follows. Let i be an index for which x
(m−1)
i 6= 0, and consider the ration of the

i element from the vector x(m) to the ith element from x(m−1)

x
(m)
i

x
(m−1)
i

=

λm1

[
α1v1,i + α2

(
λm2
λm1

)
v2,i + ...+ αn

(
λmn
λm1

)
vn,i

]
λm−11

[
α1v1,i + α2

(
λm−12

λm−11

)
v2,i−1 + ...+ αn

(
λm−1n

λm−11

)
vn,i−1

]
Since, |λj/λ1| < 1 for each j, so |λj/λ1|m−1, |λj/λ1|m → 0 as m→∞.

lim
m→∞

x
(m)
i

x
(m−1)
i

=
λm1 (α1v1,i)

λm−11 (α1v1,i)

= λ1

Therefore, the sequence

{
x
(m)
i

x
(m−1)
i

}
converges to dominant eigenvalue λ1.

To simplify the notations, let’s introduce the vector y(m) to denote the result of mul-
tiplication by the matrix A; that is, y(m) = Ax(m−1). x(m) is then calculated by the
formula

x(m) =
y(m)

y
(m)
pm

,
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where pm is an integer chosen so that |y(m)
pm | = ‖y(m)‖∞. Note that pm is an index into

the vector y(m). Whenever there is more than one possible choice for the index pm, we
will adopt the convention of always selecting the smallest value. The vector xm now
converges specifically to the multiple of v1 which has unit length measured in the infinity
norm. As for the eigenvalue, since x(m−1) is approximately an eigenvector associated
with λ1, y

(m) = Ax(m−1) ≈ λ1x
(m−1). By construction x

(m−1)
pm−1 = 1, so it follows that y

(m)
pm−1

converges to λ1.
Example. Find the dominant eigenvalue and corresponding eigenvector of a matrix

A =

 −2 −2 3
−10 −1 6
10 −2 −9

 whose eigenvalues are λ1 = −12, λ2 = −3 and λ3 = 3.

Solution. Let us start with vector x(0) = [1 0 0]T =⇒ ‖x(0)‖∞ = 1.
Therefore, we set p0 = 1(initially we consider x(0) = y(0)).
For the first iteration of the power method we compute,

y(1) = Ax(0)

=

 −2 −2 3
−10 −1 6
10 −2 −9

1
0
0



=

 −2
−10
10



from which we obtain the first approximation to dominant eigenvalue: λ(1) = y
(1)
p0 =

y
(1)
1 = −2.

Since ‖y(1)‖∞ = 10. For our convenience of selecting the smallest index for which the
magnitude of the vector element is equal to the infinity norm of the vector, we take
p1 = 2. Therefore, for the second iteration, we have

x(1) =
y(1)

y
(1)
p1

= − 1

10

 −2
−10
10



=

1/5
1
−1


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The calculations for the second iteration produce the results

y(2) = Ax(1)

=

 −2 −2 3
−10 −1 6
10 −2 −9

1/5
1
−1



=

−27/5
−9
9



λ(2) = y
(2)
p1 = y

(2)
2 = −9

p2 = 2

and

x(2) =
y(2)

y
(2)
p2

= −1

9

−27/5
−9
9



=

3/5
1
−1


The third iteration then produces

y(3) = Ax(2)

=

 −2 −2 3
−10 −1 6
10 −2 −9

3/5
1
−1



=

−31/5
−13
13


λ(3) = y

(3)
p2 = y

(3)
2 = −13,

p3 = 2
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and

x(3) =
y(3)

y
(3)
p3

= − 1

13

−31/5
−13
13



=

31/5
1
−1


The following table displays the output of 11 iterations of power method

j x(j)
T

λj

0 [1.000000 0.000000 0.000000]
1 [0.200000 1.000000 − 1.000000] -2.00000
2 [0.600000 1.000000 − 1.000000] -9.000000
3 [0.476923 1.000000 − 1.000000] -13.000000
4 [0.505882 1.000000 − 1.000000] -11.769231
5 [0.498537 1.000000 − 1.000000] -12.058824
6 [0.500366 1.000000 − 1.000000] -11.985366
7 [0.499908 1.000000 − 1.000000] -12.003663
8 [0.500023 1.000000 − 1.000000] -11.999085
9 [0.499994 1.000000 − 1.000000] -12.000229
10 [0.500001 1.000000 − 1.000000] -11.999943
11 [0.500000 1.000000 − 1.000000] -12.000014

The final estimate are

λ1 ≈ −12.000014 and v1 ≈ [0.500000 1.000000 − 1.000000]T

Power Method for Symmetric Matrices
When a matrix A is symmetric, a slight modification to the power method provides more
rapid convergence. In this method we select the initial vector x(0) be a non-zero element
of Rn with x(0)

T
x(0) = 1. The modified iteration schemes are as follows:

y(m) = Ax(m−1)

λ(m) = x(m−1)
T
y(m) and

x(m) = y(m)/
√
y(m)T y(m).

Then λm → λ1 and x(m) converges to an associated with λ1 that has unit length in the
Euclidean norm.
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Example. Find the dominant eigenvalue of 4× 4 symmetric matrix

A =


5.5 −2.5 −2.5 −1.5
−2.5 5.5 1.5 2.5
−2.5 1.5 5.5 2.5
−1.5 2.5 2.5 5.5

 ,
whose eigenvalues are λ1 = 12, λ2 = 4, λ3 = 4 and λ4 = 2. The eigenvector associated
with eigenvalue λ1 that has unit Euclidean norm is v1 = [−1/2 1/2 1/2 1/2]T .
Solution. We will start the iteration with the vector x(0) = [0.5 0.5 0.5 0.5]T . Here

x(0)
T
x(0) = (0.5)(0.5) + (0.5)(0.5) + (0.5)(0.5) + (0.5)(0.5) = 1,

For m = 1, we calculate

y(1) = Ax(0)

=


5.5 −2.5 −2.5 −1.5
−2.5 5.5 1.5 2.5
−2.5 1.5 5.5 2.5
−1.5 2.5 2.5 5.5




0.5
0.5
0.5
0.5



=


−0.5
3.5
3.5
4.5


λ(1) = x(0)

T
y(1)

= (0.5)(−0.5) + (0.5)(3.5) + (0.5)(3.5) + (0.5)(4.5)

= 5.5

and

x(1) =
y(1)√
y(1)T y(1)

=
1√

(−0.5)(−0.5) + (3.5)(3.5) + (3.5)(3.5) + (4.5)(4.5)


−0.5
3.5
3.5
4.5



=


−0.074536
0.521749
0.521749
0.670820


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Continue on to the second iteration, we find

y(2) = Ax(1)

=


5.5 −2.5 −2.5 −1.5
−2.5 5.5 1.5 2.5
−2.5 1.5 5.5 2.5
−1.5 2.5 2.5 5.5



−0.074536
0.521749
0.521749
0.670820



=


−4.024920
5.515630
5.515630
6.410060


λ(2) = x(1)

T
y(2)

= [−0.074536 0.521749 0.521749 0.670820]


−4.024920
5.515630
5.515630
6.410060


= 10.355556

and

x(2) =
y(2)√
y(2)T y(2)

=
1

10.86891


−4.024920
5.515630
5.515630
6.410060



=


−0.370315
0.507469
0.507469
0.589761



The table below displays the result of 10 iterations.
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j x(j)
T

λj

0 [0.500000 0.500000 0.500000 0.500000]
1 [−0.074536 0.521749 0.521749 0.670820] 5.500000
2 [−0.370315 0.507469 0.507469 0.589761] 10.355556
3 [−0.460013 0.501622 0.501622 0.533985] 11.799850
4 [−0.487194 0.500309 0.500309 0.511882] 11.977899
5 [−0.495812 0.500056 0.500056 0.504042] 11.997556
6 [−0.498617 0.500010 0.500010 0.501360] 11.999729
7 [−0.499541 0.500002 0.500002 0.500455] 11.999970
8 [−0.499847 0.500000 0.500000 0.500152] 11.999997
9 [−0.499949 0.500000 0.500000 0.500051] 12.000000
10 [−0.499983 0.500000 0.500000 0.500017] 12.000000

THE INVERSE POWER METHOD
The power method is designed to approximate the dominant eigenvalue of a matrix.
There are many instances, however, in which an eigenvalue other than dominant one is
needed. To approximate the other eigenvalues inverse power method is used.
Theorem. Let A be an n × n matrix with eigenvalues λ1, λ2, ..., λn and associated
eigenvector v1, v2, ..., vn.
1. If B = a0 + a1A + a2A

2 + · · · + amA
m = p(A), where p is the polynomial p(x) =

a0 + a1x + a2x
2 + · · · + amx

m, then the eigenvalues of B are p(λ1), p(λ2), ..., p(λn) with
associated eigenvectors v1, v2, ..., vn.
2. If A is non-singular, then A−1 has eigenvalues

1

λ1
,

1

λ2
,

1

λ3
, ...,

1

λn

PROOF. Part 1:
For any positive integer k,

Akvi = Ak−1(Avi) = λiA
k−1vi

= λiA
k−2(Avi) = λ2iA

k−2vi
= ...
= λk−1i (Avi) = λki vi.

Now, let B = a0I + a1A+ a2A
2 + ...+ amA

m = p(A), where p is the polynomial
p(x) = a0 + a1x+ a2x

2 + ...+ amx
m. Then, for each i = 1, 2, 3, ..., n,

Bvi = (a0I + a1A+ a2A
2 + ...+ amA

m)vi

= a0vi + a1Avi + a2A
2vi + ...+ amA

mvi

= a0vi + a1λivi + a2λ
2
i vi + ...+ amλ

m
i vi

= (a0 + a1λi + a2λ
2
i + ...+ amλ

m
i )vi

= p(λi)vi
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Hence, the eigenvalues of B are

p(λ1), p(λ2), p(λ3)..., p(λn)

with associated eigenvector v1, v2, v3, ..., vn.
Part 2:
Suppose A is non-singular. Since vi is an eigenvector associated with the eigenvalue λi,
it follows that

Avi = λivi.

Premultiplying this by (1/λi)A
−1 yields

1

λi
A−1(Avi) =

1

λi
A−1(λivi),

or
1

λi
vi = A−1vi,

Therefore, for each i = 1, 2, ..., n, 1/λi is an eigenvalue of A−1, with associated eigenvector
vi.
Method
Once again, let A be an n× n with eigenvalues λ1, λ2, ..., λn and associated eigenvectors
v1, v2, ..., vn. Let q be any constant for A − qI is non-singular (this will hold true for
any q that is not an eigenvalue of A), and consider the matrix B = (A − qI)−1. As a
consequence of the theorem we just finished proving, the eigenvalue of B are

µ1 =
1

λ1 − q
, µ2 =

1

λ2 − q
, µ3 =

1

λ3 − q
, ..., µn =

1

λn − q

with associated eigenvector v1, v2, ..., vn.

If we apply the power method to the matrix B, the eigenvalue λ(m) will converge to
the dominant eigenvalue, say µk. Note, however, that µk will be the dominant eigenvalue
of B if and only if λk is the eigenvalue of A that is closest to the number q.

If A has an eigenvalue in the vicinity of q, we can approximate to that eigenvalue by
applying the power method to the matrix B. This process is known as the inverse power
method.

An implementation of the inverse power method can be obtained from code for the
power method which only a few modifications. First, an extra input value, the number
q, must be included in the parameter list. Second, the operation y(m) = Ax(m−1) must be
replaced by y(m) = (A−qI)−1x(m−1). In practice we solve the linear system (A−qI)y(m) =
x(m−1) for y(m). Since the matrix A− qI can be computed once prior to the iteration loop
and only the solve step(forward and backward substitution) need be performed with each
iteration. Third, remember that the sequence λ(m) converges to (λk− q)−1. To obtain an
approximation to λk, we must compute (1/λ(m))+q. The eigenvector of A and (A−qI)−1

are the same, so no manipulation of the sequence
{
x(m)

}
is necessary.
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Example. Find the eigenvalue of following matrix by inverse power method

A =


12 1 1 0 3
−1 3 0 1 0
1 0 −6 2 1
0 2 1 9 0
1 0 1 0 −2


Solution. The Gerschgorin circles for A are plotted in the figure below. Each circle Ci
corresponds to the ith row from the matrix. Note that circle C2 = {z ∈ C : |z − 3| ≤ 2}
is disjoint from the other four circles and hence is guaranteed to contain one of the five
eigenvalues. From the figure it is clear that the eigenvalue in C2 is not the dominant
eigenvalue of the matrix, so power method will not locate it. However, the inverse power
method can. Let’s take q = 3, since this is the center of the Gerschgorin circle. With a
starting vector of

[1 1 1 1 1]T

The five iterations of inverse power method are listed in table below:

j x(j)
T

3 + 1/λj

0 [1.000000 1.000000 1.000000 1.000000 1.000000]
1 [−0.130952 1.000000 − 0.068452 − 0.360119 0.005952] 4.750000
2 [−0.087393 1.000000 − 0.083210 − 0.306325 − 0.033860] 2.781069
3 [−0.087658 1.000000 − 0.084217 − 0.308045 − 0.035867] 2.779612
4 [−0.087622 1.000000 − 0.084233 − 0.307981 − 0.035952] 2.779641
5 [−0.087621 1.000000 − 0.084234 − 0.307983 − 0.035955] 2.779638

From the above table we see that λ ≈ 2.779638 and the corresponding eigenvector

v = [−0.087621 1.000000 − 0.084234 − 0.307983 − 0.035955]T

REDUCTION TO SYMMETRIC TRIDIAGONAL FORM
The eigenvalues of symmetric matrices are well-conditioned whereas the eigenvalues of
non-symmetric matrices can be poorly conditioned because n×n symmetric matrix always
possess n linearly independent eigenvectors whereas a non-symmetric matrix may not,
we will restric our attention to symmetric matrices only.

To compute all the eigenvalues of a symmetric matrix, we will proceed in two stages.
First, the matrix will be transformed to symmetric tridiagonal form. This stage requires
a fixed, finite number of operations. In second stage we apply the iterative process of
QR-algorithm on the triadiagonal matrix. The iteration generates a sequence of matrices
which will converge to a diagonal matrix. The eigenvalues of diagonal matrix are, of
course, just the elements along the main diagonal.
Similarity Transformation and Orthogonal Matrices
Definition. Let A be an n× n matrix and let M be an non-singular n× n matrix. The
matrix B = M−1AM is said to be similar to A. The process of converting A to B is
called as similarity transformation.
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The similarity transformation does not affect any of the eigenvalue of A, we proceed
as follows. The eigenvalue of B are solution of the equation det(B − λI) = 0 ; but

det(B − λI) = det(M−1AM − λI)

= det [M−1(A− λ)M ]

= det(M−1) det(A− λI) det(M)

=
1

det(M)
det(A− λI) det(M)

= det(A− λI)

Thus, det(B − λI) = 0 if and only if det(A− λI) = 0, which implies that A and B have
exactly the same eigenvalues.
Definition. The n× n matrix Q is called an orthogonal matrix if Q−1 = QT .
Definition. A Householder matrix is any matrix of the form

H = I − 2wwT

where w is a column vector with wTw = 1.
Example. Show that Householder matrix is both symmetric and orthogonal(Exercise).
The Householder matrix are not computed explicitly, only the vector w is computed. For,
once the vector w is known, the similarity transformation HAH is given by

HAH = (I − 2wwT )A(I − 2wwT )

= A− 2wwTA− 2AwwT + 4wwTAwwT ,

which is completely determined by w. The computation of HAH can be simplified
tremendously if we define u = Aw and K = wTu = wTAw. Then

HAH = A− 2wwTA− 2AwwT + 4wwTAwwT

= A− 2wuT − 2uwT + 4KwwT

= A− 2w(uT −KwT )− 2(u−Kw)wT .

If we now let q = u−Kw, then HAH = A− 2wqT − 2qwT .

The algorithm to reduce a symmetric matrix to tridiagonal form using Householder
matrices involves a sequence of n− 2 similarity transformations as shown below diagram
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for the case n = 5.
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 H1AH1−−−−→


× × × × 0
× × × × 0
× × × × 0
× × × × ×
0 0 0 × ×



H2H1AH1H2−−−−−−−→


× × × 0 0
× × × 0 0
× × × × 0
0 0 × × ×
0 0 0 × ×



H3H2H1AH1H2H3−−−−−−−−−−−→


× × 0 0 0
× × × 0 0
0 × × × 0
0 0 × × ×
0 0 0 × ×


The first Householder matrix, H1, is selected so that H1A will have zeros in the first n−2
rows of the nth row of A will not be affected. By symmetry, when H1AH1 is computed
to complete the transformation, then zeros in the nth column will not be changed, but
zeros will appear in the first n− 2 columns of the nth row. Each subsequent Householder
matrix Hi(i = 2, 3, ..., n− 2), is then selected so that

HiHi−1 · · ·H2H1AH1H2 · · ·Hi−1Hi

will have zeros in the first n− i−1 rows of the (n− i+ 1)th column but will not affect the
bottom i rows. Completing the ith transformation will place zeros in the first n − i − 1
columns of the (n− i+ 1)th row.

Determine the appropriate Householder matrix for use in each step of the above
algorithm require the solution of the following fundamental problem:

Given an integer k and an n−dimensional column vector x, select w so that Hx =
(I − 2wwT )x has zero in the first n − k − 1 rows but leaves the last k elements in x
unchanged.

To solve this problem, first note that in order for the last k elements in x to be
unchanged, the last k elements in w must be zero. This guarantees that the last k rows
and columns of H are identical to the identity matrix. Thus w must be of the form

w = [w1 w2 w3 · · · wn−k 0 · · · 0]T .

Let b = (I − 2wwT )x, where by construction b will have the form

b = [0 · · · α xn−k+1 · · · xn]T ,

with n−k−1 zero at the beginning of the vector. Since multiplication by the Householder
matrix must preserve the Euclidean norm, we must have bT b = xTx, which implies

α2 = x21 + x22 + · · ·+ x2n−k.
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To proceed further, let’s rearrange the equation defining the vector b as

x− 2wwTx = b (1)

Premultiplying equation (1) by wT yields

wTx− 2wTwwTx = wT b

which simplifies to

−wTx = αwn−k (2)

upon taking into account the form of both w and b and using the fact that wTw = 1.
Substituting equation (2) into (1) produces

x+ 2αwn−kw = b,

or, in component form,

xi + 2αwn−kwi = 0, (i = 1, 2, 3, ..., n− k − 1)

xn−k + 2αw2
n−k = α.

From the last of these equations we see that

wn−k =
√

1
2

(
1− xn−k

α

)
.

To avoid cancellation error, we will choose sgn(α) = −sgn(xn−k). With wn−k determine,
the remaining nonzero entries in w are given by

wi = −1
2

xi
αwn−k

(i = 1, 2, 3, ..., n− k − 1)

Example. Convert the following matrix to symmetric tridiagonal form.

A =


−1 −2 1 2
−2 3 0 −2
1 0 2 1
2 −2 1 4


Solution. We want to produce zeros in the first two rows of the last column of A and leave
the last element in that column alone. Therefore, we are working with k = 1 and a vector
x = [2 −2 1 4]T . With this vector, we compute α2 = x11 +x22 +x23 = 22 +(−2)2 +12 = 9
and sgn(α) = −sgn(x3) =negative. Therefore, we choose α = −3.

w3 =

√
1

2

(
1− x3

α

)
=

√
1

2

(
1− 1

−2

)
=

√
6

3
;

w2 = −1

2

x2
αx3

= −1

2

−2

−3(
√

6/3)
= −
√

6

6
and

w1 = −1

2

x1
αx3

= −1

2

2

−3(
√

6/3)
=

√
6

6
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Hence, w = [w1 w2 w3 0]T = (
√

6/6)[1 − 1 2 0]T . Next we compute

u = Aw =


−1 −2 1 2
−2 3 0 −2
1 0 2 1
2 −2 1 4

 (
√

6/6)[1 − 1 2 0]T = (
√

6/6)[3 − 5 5 6]T ;

K = wTu = (
√

6/6)[1 − 1 2 0](
√

6/6)[3 − 5 5 6]T = 3; and

q = u−Kw = (
√

6/6)[3 − 5 5 6]T − 3(
√

6/6)[1 − 1 2 0] = (
√

6/6)[0 − 2 − 1 6]T

Therefore,

H1AH1 = A− 2wqT − 2qwT

=


−1 −2 1 2
−2 3 0 −2
1 0 2 1
2 −2 1 4

− 2

√
6

6


1
−1
2
0


√

6

6
[0 − 2 − 1 6]

−2

√
6

6


0
−2
−1
6


√

6

6
[1 − 1 2 0]

=


−1 −4/3 4/3 0
−4/3 5/3 1 0
4/3 1 10/3 −3
0 0 −3 4


For the second step of reduction, we want to produce a zero in the first row of the third
column of H1AH1 and leave the last two elements in that column alone. Therefore, we
are working with k = 2 and the vector x = [4/3 1 10/3 − 3]T . With this vector, we
compute α2 = 25/9 and since sgn(x2) is positive, we choose α = −5/3. It then follows
that

w2 =

√
1

2

(
1− 1

−5/3

)
=

2
√

5

5

w1 = −1

2

4/3

(−5/3)(3
√

5/5)
=

√
5

5

Hence, w = (
√

5/5)[1 2 0 0]T . Next, we compute

u = Aw = (
√

5/5)[−11/3 2 10/3 0]T ;

K = wTu = 1/15; and

q = u−Kw = (
√

5/5)
[
−56

15
28
15

10
3

0
]T
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Therefore,

H2H1AH1H2 = H1AH1 − 2wqT − 2qwT

=


−1 −4/3 4/3 0
−4/3 5/3 1 0
4/3 1 10/3 −3
0 0 −3 4

− 2
2

5


1
2
0
0

[−56

15

28

15

10

3
0

]

−2

5


−56/15
28/15
10/3

0

 [1 2 0 0]

=


149/75 68/75 0 0
68/75 −33/25 −5/3 0

0 −5/3 10/3 −3
0 0 −3 4


♣♣♣
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