Linear Transformations

Dr. A. N. Bhavale

Head, Department of Mathematics, Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune-5.

March 30, 2021

(□) (_①

 $2Q$

ミト 扂

Definition :

Let U and V be vector spaces over $\mathbb R$. A mapping $T: U \rightarrow V$ is called a **linear transformation** if it satisfies the following two conditions :

• For all
$$
u, v \in U
$$
, $T(u + v) = T(u) + T(v)$.

2 For any $u \in U$ and for any $\alpha \in \mathbb{R}$, $T(\alpha u) = \alpha T(u)$.

In other words, \bar{T} is a linear mapping if it preserves the basic operations of a vector space, that of vector addition and that of scalar multiplication.

Note that, $\mathbb R$ may be replaced by any field F .

For example, $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x, y) = (x + y, 2x, x - y)$ is a linear transformation.

Theorem : Let U and V be vector spaces over \mathbb{R} . A mapping $T: U \rightarrow V$ is a linear transformation if it satisfies for all $u, v \in U$ and for any $\alpha, \beta \in \mathbb{R}$, $T(\alpha u + \beta v) = \alpha T(u) + \beta T(v).$

Note that $T(\mathbf{0}) = \mathbf{0}'$, where $\mathbf{0}$ and $\mathbf{0}'$ are the zero vectors of U and V respectively.

Show that $\,\mathcal{T}:\mathbb{R}^2\to\mathbb{R}^3$ defined by $T(x, y) = (x + y, 2x, x - y)$ is a linear transformation. Solution : Let $u = (a, b), v = (c, d) \in \mathbb{R}^2$. Then $T(u + v) = T(a + c, b + d) = ((a + c) + (b + d)),$ $2(a+c)$, $(a+c)-(b+d)$) = $(a+b, 2a, a-b)+(c+b)$ $d, 2c, c-d$ = $T(a, b) + T(c, d) = T(u) + T(v)$. Also, for $\alpha \in \mathbb{R}$ and $u = (a, b) \in \mathbb{R}^2$, $T(\alpha u) = T(\alpha(a, b)) = T(\alpha a, \alpha b) = (\alpha a + \alpha b,$

$$
2(\alpha a), \alpha a - \alpha b) = (\alpha(a+b), \alpha(2a), \alpha(a-b))
$$

= $\alpha(a+b, 2a, a-b) = \alpha \mathcal{T}(a, b) = \alpha \mathcal{T}(u)$.

∽≏ດ

Check whether the following mappings are linear transformations?

 $\mathcal{T}: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $\mathcal{T}(x, y, z) = (x, y, 0)$. $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x, y) = (x + 1, y)$. $T: \mathbb{R}^2 \to \mathbb{R}$ defined by $T(x, y) = xy$. $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x, y) = (x + y, 3x)$. $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x, y, z) = (x, yz)$. • $T: U \rightarrow V$ defined by $T(u) = 0$, for all $u \in U$. • $T: V \to V$ defined by $T(v) = v$, for all $v \in V$.

∽≏ດ

More examples of linear transformations :

\n- \n
$$
\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^2
$$
 defined by\n $\mathcal{T}\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$.\n
\n- \n $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^m$ defined by\n $\mathcal{T}_A(X) = AX$,\n where\n $A = [a_{ij}]_{m \times n}$.\n
\n- \n $\mathcal{T}: \mathcal{F}([0,1], \mathbb{R}) \to \mathcal{F}([0,1], \mathbb{R})$ defined by\n $\mathcal{T}(f(x)) = f'(x)$, for all\n $f(x) \in \mathcal{F}([0,1], \mathbb{R})$.\n
\n- \n $\mathcal{T}: \mathcal{C}([0,1]) \to \mathbb{R}$ defined by\n $\mathcal{T}(f(x)) = \int_0^1 f(x) \, dx$, for all\n $f(x) \in \mathcal{C}([0,1])$.\n
\n- \n $\mathcal{T}: \mathcal{P}_n \to \mathcal{P}_{n+1}$ defined by\n $\mathcal{T}(p(x)) = xp(x)$,\n for all\n $p(x) \in \mathcal{P}_n$.\n
\n

4. 0. 3. 4.

ð \sim $\,$ K 로 게 活

 299

Definitions :

Let $T: U \rightarrow V$ be a linear transformation. Then

- \bullet T is said to be **onto** or **surjective** if for all $v \in V$, there exists $u \in U$ such that $T(u) = v$. In other words, T is onto if $T(U) = V$.
- \bullet T is said to be one-one or injective if for any $u \neq v \in U$, $T(u) \neq T(v)$. Equivalently, T is one-one if $T(u) = T(v)$ implies $u = v$.
- \bullet T is said to be **bijective** if T is injective as well as surjective. If $\mathcal T$ is bijective then $\mathcal T^{-1}$ exists and it is also bijective.
- \bullet T is said to be an **isomorphism** if T is bijective. U and V are said to be **isomorphic** if T is an isomorphism. へのへ

Kernel and Range of a linear transformation $T: U \rightarrow V$.

•
$$
T(\mathbf{0}) = \mathbf{0}' \implies T(-u) = -T(u)
$$
 for all $u \in U$.

- $Ker(T) = \{u \in U | T(u) = \mathbf{0}'\}$ is called kernel of T. Note that $Ker(T)$ is a subspace of U.
- T is said to be **singular** if for some $u \neq 0$ in U, $T(u) = 0$ [']; Otherwise, T is called non-singular.
- T is one-one if $Ker(T) = \{0\}$ (or T is non-singular).
- $T(U) = {T(u) | u \in U}$ is called **range** of T. Note that $T(U)$ is a subspace of V.
- Nullity(T) = dim(Ker(T)) and Rank(T) = dim(T(U)).
- \bullet Dimension Theorem : If U is of finite dimension then rank(T) + nullity(T) = dim(U).

∽≏ດ

Let $T_1: U \to V$ and $T_2: U \to V$ be linear transformations. Define

• The sum
$$
T_1 + T_2
$$
: $U \rightarrow V$ as
\n $(T_1 + T_2)(u) = T_1(u) + T_2(u)$, for all $u \in U$.

• The scalar multiplication $\alpha T_1 : U \rightarrow V$ as $(\alpha T_1)(u) = \alpha T_1(u)$, for all $u \in U$.

Prove that both $T_1 + T_2$ and αT_1 are linear transformations.

Let $T_1: U \to V$ and $T_2: V \to W$ be two linear transformations. Define a map $T_2 \circ T_1 : U \to W$ as $(T_2 \circ T_1)(u) = T_2(T_1(u))$, for all $u \in U$. The map $T_2 \circ T_1$ is called a **composition** of the linear transformations T_1 and T_2 .

Prove that $T_2 \circ T_1$ is a linear transformation.

In general, $T_2 \circ T_1 \neq T_1 \circ T_2$.

The collection of all linear transformations from U to V, denoted by $Hom(U, V)$, is a vector space with the sum and the scalar multiplication of linear transformations defined as above.

For finite dimensional vector spaces U and V, $dim(Hom(U, V)) = dim(U) \times dim(V)$.

A linear transformation $T: V \rightarrow V$ is called a linear operator.

A linear operator T is said to be **invertible** if it has an inverse \mathcal{T}^{-1} , that is, $\mathcal{T}\circ\mathcal{T}^{-1}=\mathcal{T}^{-1}\circ\mathcal{T}=I.$

Let $\mathcal{T}:\mathbb{R}^3\to\mathbb{R}^3$ be defined as $\mathcal{T}(x,y,z)=0$ $(x + y, y + z, z + x)$. Show that T is one-one, onto, bijective, a linear transformation and isomorphism. Also find \mathcal{T}^{-1} , Kernel of $\mathcal T$ and Range of $\mathcal T$.

Solution : Clearly T is a linear transformation. Note that Ker(T) $=$ $\{(0,0,0)\}\.$ Therefore T is one-one. Also for any $(x, y, z) \in \mathbb{R}^3$ (Codomain), there exists $(x', y', z') = (\frac{x+z-y}{2}, \frac{x+y-z}{2}, \frac{z+y-x}{2}) \in \mathbb{R}^3$ (Domain), such that $T(x', y', z') = (x' + y', y' + z', z' + x') = (x, y, z)$. This implies that T is onto. Thus, T is bijective. Hence T is an isomorphism. As T is onto, range of $T = T(\mathbb{R}^3) = \mathbb{R}^3$. Finally, $T^{-1}(x, y, z) = \left(\frac{x+z-y}{2}, \frac{x+y-z}{2}, \frac{z+y-x}{2}\right).$

つくい

Let U and V be vector spaces of dimension n and m respectively. Let $T: U \rightarrow V$ be a linear transformation. Let $E = \{u_1, u_2, \ldots, u_n\}$ be a basis of U. Let $F = \{v_1, v_2, ..., v_m\}$ be a basis of V. Now for each $i, 1 \le i \le n$, as $T(u_i) \in V$, we have $T(u_i) = b_{i1}v_1 + b_{i2}v_2 + \cdots + b_{im}v_m$. Therefore the coordinate vector of $T(u_i)$ is $[T(u_i)]_F = (b_{i1}, b_{i2}, \ldots, b_{im}).$ If $B_{n \times m}$ is a matrix with *ith* row $[b_{i1} \ b_{i2} \ \ldots \ b_{im}]$ then $A=B^t$, a transpose of B , is called the matrix representation of T relative to the bases E and F .

Let $\mathcal{T}:\mathbb{R}^3\to\mathbb{R}^3$ be a linear transformation given by $T(x, y, z) = (-x - y + z, x - 4y + z, 2x - 5y).$ Determine the matrix of T with respect to the basis $E = \{u_1 = (1, 0, 2), u_2 = (2, 1, 0), u_3 = (1, 0, 1)\}.$

Solution : Note that $T(u_1) = (1, 3, 2), T(u_2) = (-3, -2, -3)$ and $T(u_3) = (0, 2, 2)$. Also, the coordinate vectors $[T(u_1)]_E = (7, 3, -12)$, $[T(u_2)]_E = (-4, -2, 5)$ and $[T(u_3)]_E = (6, 2, -10)$. Therefore $B =$ $\sqrt{ }$ $\overline{}$ 7 3 −12 -4 -2 5 6 2 −10 1 $\bigg|$. Hence matrix of T is $A =$ $\sqrt{ }$ $\overline{}$ 7 −4 6 $3 -2 2$ -12 5 -10 1 $\vert \cdot$

Let
$$
A = \begin{bmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 2 & 1 & -1 \end{bmatrix}
$$
 be the matrix of a linear
transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ with respect to a basis
 $B = \{u_1 = (5, 1, 3), u_2 = (3, 2, 2), u_3 = (1, 2, 1)\}$.
Determine the linear transformation T.

Solution : Note that, the coordinate vectors $[T(u_1)]_B = (3, -1, 2)$, $[T(u_2)]_B = (2, 0, 1)$ and $[T(u_3)]_B = (-2, 1, -1)$.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

 $2Q$

$$
\begin{array}{l}\n\therefore \ T(u_1) = (3)u_1 + (-1)u_2 + (2)u_3 = (14, 5, 9), \\
T(u_2) = (2)u_1 + (0)u_2 + (1)u_3 = (11, 4, 7) \text{ and} \\
T(u_3) = (-2)u_1 + (1)u_2 + (-1)u_3 = (-8, -2, -5).\n\end{array}
$$

Let
$$
u = (x, y, z) \in \mathbb{R}^3
$$
.
\nSuppose $u = k_1u_1 + k_2u_2 + k_3u_3$.
\nThen we get
\n $5k_1 + 3k_2 + k_3 = x$, $k_1 + 2k_2 + 2k_3 = y$, $3k_1 + 2k_2 + k_3 = z$.
\n $\therefore k_1 = -2x - y + 4z$, $k_2 = 5x + 2y - 9z$, $k_3 = -4x - y + 7z$.
\nBut $T(u) = k_1 T(u_1) + k_2 T(u_2) + k_3 T(u_3)$. Therefore
\n $T(x, y, z) = (59x + 16y - 99z, 18x + 5y - 30z, 37x + 10y - 62z)$.

メロメメ 倒す メミメメミメー ミー のんぴ

Theorem : Let V be a vector space with $dim(V) = n$. Let $E = \{u_1, u_2, \ldots, u_n\}$ and $F = \{v_1, v_2, \ldots, v_m\}$ be two bases of V. Then there exists a non-singular matrix $P = [p_{ii}]$ of size *n* such that $v_i = p_{1i}u_1 + p_{2i}u_2 + \cdots + p_{ni}u_n$, $\forall i, 1 \le i \le n$.

Note that $P_i = [p_{1i} \ p_{2i} \ \cdots \ p_{ni}]^t$, the *ith* column of P, is the coordinate vector of v_i with respect to the basis E for each i, $1 \le i \le n$. The matrix P in the above theorem is the coordinate transformation matrix, called a **transition matrix** from F to E .

Also, if X and Y are the coordinate vectors of $u \in V$ with respect to the bases E and F respectively then $Y = P^{-1}X$.

∢ ロ ▶ (御) (を) (を) (

Theorem : Let V be a vector space with $dim(V) = n$ and $T: V \rightarrow V$ be a linear operator. Let $E = \{u_1, u_2, \ldots, u_n\}$ and $F = \{v_1, v_2, \ldots, v_m\}$ be two bases of V , and let P be the transition matrix from F to E. Then $P^{-1}AP$ is the matrix of T w.r.t. the basis F whenever A is the matrix of T w.r.t. the basis F .

Note that $P^{-1}AP$ and A are similar matrices. Illustration : Let $E = \{(1,0), (0, 1)\}\;$ and $F = \{(1,-1),(2,1)\}$ be two bases of \mathbb{R}^2 . Verify the above theorem for $T(x, y) = (x + y, x - 2y)$.

Thank you

K ロ ▶ K 伊 ▶ K 글

重す È 299