Class : SYBSc (Semester IV) 2020-21 Subject : Mathematics Practical IV (19ScMatU404) (Based on Linear Algebra (19ScMatU401))

Practical No. 1 : Vector Space and Subspace

- 1. Let $V = \mathbb{R}^+$. For $x, y \in V$ and for $\alpha \in \mathbb{R}$, define $x + y = x \cdot y$ and $\alpha x = x^{\alpha}$. Show that V is a vector space over \mathbb{R} .
- 2. Show that $W = \{f|f(3) = 0\}$ is a subspace of the vector space V of all real valued functions.
- 3. Write the matrix $\begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}$ 1 −1 1 as the linear combination of the matrices $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ and $\begin{bmatrix} 0 & 2 \\ 0 & - \end{bmatrix}$ $0 -1$ 1 .
- 4. Show that the vectors $(1, 1, 1), (0, 1, 1), (0, 1, -1)$ generate \mathbb{R}^3 .
- 5. Determine whether the matrices $\sqrt{ }$ $\overline{1}$ 1 3 5 1 4 3 1 1 9 1 | and $\sqrt{ }$ $\overline{}$ 1 2 3 -2 -3 -4 7 12 17 1 have the same column space.
- 6. Let $U = \{(a, b, c) | a = b = c\}$ and $W = \{(0, b, c)\}\$ be the subspaces of \mathbb{R}^3 . Show that $\mathbb{R}^3 = U \oplus W$.

Class : SYBSc (Semester IV) 2020-21 Subject : Mathematics Practical IV (19ScMatU404) (Based on Linear Algebra (19ScMatU401))

Practical No. 2 : Basis and Dimension of Vector Space

- 1. Determine whether or not the vectors $(1, -2, 1), (2, 1, -1), (7, -4, 1)$ in \mathbb{R}^3 are linearly dependent.
- 2. Show that the vectors $(1, 1, 1), (1, 2, 3), (2, -1, 1)$ form a basis of \mathbb{R}^3 .
- 3. Find the dimension and the basis of the solution space W of the system

 $x + 2y + 2z - r + 3s = 0$ $x + 2y + 3z + r + s = 0$ $3x + 6y + 8z + r + 5s = 0$

- 4. Find the coordinate vector of $v = (4, -3, 2)$ relative to the basis $\{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}\text{ of } \mathbb{R}^3.$
- 5. Find the rank and the nullity of a matrix $\sqrt{ }$ $\begin{matrix} \end{matrix}$ 1 2 −3 2 1 0 -2 -1 3 -1 4 -2 1 $\Bigg\}$.
- 6. Let W be the space generated by the polynomials $u = t^3 + 2t^2 2t + 1$, $v = t^3 + 3t^2 - t + 4$ and $w = 2t^3 + t^2 - 7t - 7$. Find a basis and the dimension of W.

Class : SYBSc (Semester IV) 2020-21 Subject : Mathematics Practical IV (19ScMatU404) (Based on Linear Algebra (19ScMatU401))

Practical No. 3 : Linear Transformation I

- 1. Show that a map $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x, y) = (x y, 2x + y)$ is a linear transformation.
- 2. Determine whether a map $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x, y) = (x, y^2)$ is a linear transformation.
- 3. Let $T : \mathbb{R}^2 \to \mathbb{R}$ be the linear mapping for which $T(1, 1) = 3$ and $T(0, 1) = -2$. Find $T(x, y)$ and hence compute $T(2, 3)$.
- 4. Let $T_1 : \mathbb{R}^2 \to \mathbb{R}^2$ and $T_2 : \mathbb{R}^2 \to \mathbb{R}^3$ be linear transformations defined by $T_1(x, y) = (x + y, y)$ and $T_2(x, y) = (2x, y, x + y)$ respectively. Find $T_1 \circ T_1$ and $T_2 \circ T_1$. Is it possible to find $T_1 \circ T_2$?
- 5. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T(x, y, z) = (x + y, y + z, z + x)$. Show that T is a linear isomorphism. Hence find T^{-1} .
- 6. Show that a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x, y, z) = (y, x+y-z)$ is surjective but not injective. Also find kernel of T.

Class : SYBSc (Semester IV) 2020-21 Subject : Mathematics Practical IV (19ScMatU404) (Based on Linear Algebra (19ScMatU401))

Practical No. 4 : Linear Transformation II

- 1. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear mapping defined by $T(x, y, z) = (x + 2y - z, y + z, x + y - 2z).$ Find a basis and the dimension of (i) Range of T , and (ii) Kernel of T .
- 2. Let $A =$ $\sqrt{ }$ $\overline{}$ 1 2 0 1 2 −1 2 −1 1 −3 2 −2 1 be the matrix of a linear map $T : \mathbb{R}^4 \to \mathbb{R}^3$. Find the image and the kernel of T . Also verify the dimension theorem for T .
- 3. Let T be the linear operator on \mathbb{R}^3 defined by $T(x, y, z) = (2y + z, x 4y, 3x)$. Find the matrix of T in the basis $\{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}.$
- 4. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear operator defined by $T(x, y) = (2x 3y, x + 4y)$. Find the matrix of T in the bases $\{(1,0),(0,1)\}\$ and $\{(1,3),(2,5)\}.$
- 5. Let $E = \{(1,0,0), (0,1,0), (0,0,1)\}\$ and $F = \{(1,1,1), (1,1,0), (1,0,0)\}\$ be the bases of \mathbb{R}^3 . Then
	- (a) Find the transition matrix P from E to F .
	- (b) Find the transition matrix Q from F to E. Is $Q = P^{-1}$?
	- (c) If $v = (1, 2, 3)$ then show that $[v]_F = Q[v]_E$. Is this true for any vector $v \in \mathbb{R}^3$?
	- (d) If A and B are the matrices of T defined by $T(x, y, z) = (2y + z, x 4y, 3x)$ with respect to E and F respectively, then verify that $B = P^{-1}AP$.

Class : SYBSc (Semester IV) 2020-21 Subject : Mathematics Practical IV (19ScMatU404) (Based on Linear Algebra (19ScMatU401))

Practical No. 5 : Eigenvalues and Eigenvectors

1. Find the characteristic polynomial, the eigenvalues, the eigenvectors and the eigenspaces corresponding to each eigenvalue of the matrix $\sqrt{ }$ $\overline{}$ -3 1 -1 -7 5 -1 -6 6 -2 1 $\vert \cdot$

2. Verify Cayley-Hamilton theorem for the matrix $\begin{bmatrix} 5 & -1 \\ 1 & 3 \end{bmatrix}$.

- 3. Let $A =$ $\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$. Find an invertible matrix P such that $P^{-1}AP$ is diagonal.
- 4. Determine whether the matrix $\sqrt{ }$ $\overline{}$ 3 1 1 2 4 2 1 1 3 1 is diagonalizable.
- 5. Find all eigenvalues and a basis of each eigenspace of the operator T on \mathbb{R}^3 defined by $T(x, y, z) = (2x + y, y - z, 2y + 4z).$
- 6. Find the minimum polynomial of the matrix $A =$ $\sqrt{ }$ $\Bigg\}$ 2 1 0 0 0 2 0 0 0 0 1 1 $0 \t 0 \t -2 \t 4$ 1 $\Bigg\}$.

Class : SYBSc (Semester IV) 2020-21 Subject : Mathematics Practical IV (19ScMatU404) (Based on Linear Algebra (19ScMatU401))

Practical No. 6 : Inner Product Space

- 1. Verify that the following is an inner product in \mathbb{R}^2 . $\langle u, v \rangle = x_1 y_1 - x_1 y_2 - x_2 y_1 + 3 x_2 y_2$, where $u = (x_1, x_2), v = (y_1, y_2)$.
- 2. Find norm of each and the distance between $u = (1, 1, -1)$ and $v = (-1, 1, 0)$ with respect to the usual Euclidean dot product of \mathbb{R}^3 . Also verify the parallelogram law : $||u + v|| + ||u - v|| = 2||u|| + 2||v||$.
- 3. Let V be the vector space of polynomials with inner product given by $\langle f, g \rangle = \int_0^1$ 0 $f(t)g(t)dt$. Let $f(t) = t + 2$ and $g(t) = t^2 - 2t - 3$. Find $\langle f, g \rangle$, ||f|| and ||g||.
- 4. Let $u = (1, -2, 2), v = (0, -3, 4) \in \mathbb{R}^3$. Then find
	- (a) An angle between u and v .
	- (b) A unit vector orthogonal to u and v.
	- (c) An orthogonal projection of u along v .
- 5. Let W be the subspace of \mathbb{R}^5 spanned by $(1, 2, 3, -1, 2)$ and $(2, 4, 7, 2, -1)$. Find a basis of the orthogonal complement W^{\perp} of W.
- 6. Using Gram-Schmidt orthogonalization process, transform the basis
	- (a) $\{(1, -3), (2, 2)\}\)$ to an orthonormal basis of \mathbb{R}^2 .
	- (b) $\{(1,1,1),(-1,1,0),(1,2,1)\}\)$ to an orthonormal basis of \mathbb{R}^3 .
	- (c) $\{(1, i, 0), (1, 2, 1-i)\}\$ of the subspace W of \mathbb{C}^3 to an orthonormal basis of W.