
Taylor’s Theorem and Extreme Values

Definition 1: Local (Relative) Maximum Value:
Suppose f(x, y) is defined on region R. (a, b) is a point in R and in domain of f(x, y).
f(a, b) is called a local (relative) maximum value of function f(x, y) if there exists some
neighbourhood of (a, b) such that for every point (a + h, b + k) of this neighbourhood
f(a, b) ≥ f(a+ h, b+ k).
The point (a, b) is called Local (Relative) Maximum point.

Definition 2: Local (Relative) Minimum Value:
Suppose f(x, y) is defined on region R. (a, b) is a point in R and in domain of f(x, y).
f(a, b) is called a local (relative) minimum value of function f(x, y) if there exists some
neighbourhood of (a, b) such that for every point (a + h, b + k) of this neighbourhood
f(a, b) ≤ f(a+ h, b+ k).
The point (a, b) is called Local (Relative) Minimum point.

Definition 3:Local (Relative) extreme Value:
f(a, b) is said to be a local (relative) extreme value of the function f(x, y) if it is either
a local (relative) maximum or local (relative) minimum value.

First Derivative Test:(Necessary condition for extremum):
If f(x, y) has a local maximum or minimum value at an interior point (a, b) of its domain
and if the first partial derivatives fx(x, y) and fy(x, y) exists in a neighbourhood of (a, b)
then fx(a, b) = 0 and fy(a, b) = 0.

Remark:
The converse of the above theorem is not true.
For example: Consider f(x, y) = x2 − y2.
Here fx(x, y) = 2x, fy(x, y) = −2y.
Take the point (a, b) = (0, 0). Then fx(0, 0) = 0 and fy(0, 0) = 0.
This shows that both the first order partial derivatives at (0, 0) vanish but f has neither
maxima nor minima at (0, 0).
Consider any neighbourhood of (0, 0) for small values of h both (2h, h) and (h, 2h) points
are in neighbourhood of (0, 0) and we have f(2h, h) > 0, f(h, 2h) < 0 → f has neither
maxima nor minima at (0, 0).
Thus, it is clear that vanishing of the first order partial derivatives is a necessary condi-
tion but not sufficient condition.

Definition 4: Critical Point or Stationary Point:
A point (a, b) is said to be a critical point or a stationary point of a function f(x, y) if
fx(a, b) = 0 = fy(a, b).

Definition 5: Saddle Point:
A point (a, b) is said to be saddle point of a function f if in every neighbourhood of (a, b)
there are points (x, y) for which f(x, y) < f(a, b).
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Second Derivative Test For Extrema:
Suppose f(x, y) is a function of two variables x and y defined in region R such that its
first and second order partial derivatives are continuous in some neighbourhood of (a, b)
of the region R and fx(a, b) = 0 = fy(a, b) then
(i) f has local maximum at (a, b) if
fxx(a, b) < 0, fxx(a, b) · fyy(a, b)− f 2

xy(a, b) > 0.
(ii) f has local minimum at (a, b) if
fxx(a, b) > 0, fxx(a, b) · fyy(a, b)− f 2

xy(a, b) > 0.
(iii) f has saddle point at (a, b) if
fxx(a, b) · fyy(a, b)− f 2

xy(a, b) < 0.
(iv) Test is inconclusive at (a, b) if
fxx(a, b) · fyy(a, b)− f 2

xy(a, b) = 0.

The expression fxx · fyy − f 2
xy is called discriminant of f and

fxx · fyy − f 2
xy =

∣∣∣∣fxx fxy
fxy fyy

∣∣∣∣

2



Example 1 Find extreme values of the function
f(x, y) = 2(x2 − y2)− x4 + y4.
Solution:
fx = 4x− 4x3, fxx = 4− 12x2,
fy = −4y + 4y3, fyy = −4 + 12y2, fxy = 0
For extremum we have
fx = 0, fy = 0.
∴ 4x− 4x3 = 0 and −4y + 4y3 = 0
∴ 4x(1− x2) = 0 and 4y(−1 + y2) = 0
⇒ x = 0, 1− x2 = 0 and y = 0,−1 + y2 = 0
⇒ x = 0, x = ±1 and y = 0, y = ±1.
So we have 9 possibilities that is (0, 0), (0, 1), (0,−1), (1, 0), (−1, 0), (−1, 1), (−1,−1).
Now at point (0,0)
fxx(0, 0) = 4, fyy(0, 0) = −4, fx,y(0, 0) = 0
fxx · fyy − f 2

xy = (4)(−4)− 0 = −16 < 0
So (0, 0) is a saddle point for the function f .
Now at point (0,1)
fxx(0, 1) = 4 > 0, fyy(0, 1) = 8, fx,y(0, 1) = 0
fxx · fyy − f 2

xy = (4)(8)− 0 = 32 > 0
So (0, 1) is a local minimum for the function f .
Now at point (0,-1)
fxx(0,−1) = 4 > 0, fyy(0,−1) = 8, fx,y(0,−1) = 0
fxx · fyy − f 2

xy = (4)(8)− 0 = 32 > 0
So (0,−1) is a local minimum for the function f .
Now at point (1,0)
fxx(1, 0) = −8 < 0, fyy(1, 0) = −4, fx,y(1, 0) = 0
fxx · fyy − f 2

xy = (−8)(−4)− 0 = 32 > 0
So (1, 0) is a local maximum for the function f .
Now at point (-1,0)
fxx(−1, 0) = −8 < 0, fyy(−1, 0) = −4, fx,y(−1, 0) = 0
fxx · fyy − f 2

xy = (−8)(−4)− 0 = 32 > 0
So (−1, 0) is a local maximum for the function f .
Now at point (1,1)
fxx(1, 1) = −8 < 0, fyy(1, 1) = 8, fx,y(1, 1) = 0
fxx · fyy − f 2

xy = (−8)(8)− 0 = −64 < 0
So (1, 1) is a saddle point for the function f .
Now at point (-1,-1)
fxx(−1,−1) = −8 < 0, fyy(−1,−1) = 8, fx,y(−1,−1) = 0
fxx · fyy − f 2

xy = (−8)(8)− 0 = −64 < 0
So (−1,−1) is a saddle point for the function f .
Now at point (1,-1)
fxx(1,−1) = −8 < 0, fyy(1,−1) = 8, fx,y(1,−1) = 0
fxx · fyy − f 2

xy = (−8)(8)− 0 = −64 < 0
So (1,−1) is a saddle point for the function f .
Now at point (-1,1)
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fxx(−1, 1) = −8 < 0, fyy(−1, 1) = 8, fx,y(−1, 1) = 0
fxx · fyy − f 2

xy = (−8)(8)− 0 = −64 < 0
So (−1, 1) is a saddle point for the function f .

Example 2 Investigate the maximum and minimum values of
f(x, y) = (x+ y − 1)(x2 + y2).
Solution:
fx = x2 + y2 + 2x(x+ y − 1),
fy = x2 + y2 + 2y(x+ y − 1),
fxx = 6x+ 2y − 2,
fyy = 2x+ 6y − 2,
fxy = 2y + 2x.
For extremum, we have fx = 0 = fy
∴ x2 + y2 + 2x(x+ y − 1) = 0...(i) and
x2 + y2 + 2y(x+ y − 1) = 0...(ii)
Subtracting (i) and (ii), we get (x+ y − 1)(x− y) = 0.
⇒ x = y or x = 1− y.

Case (1): With x = y (i) becomes
x2 + x2 + 2x(x+ x− 1 = 0)
∴ 6x2 − 2x = 0
i.e. 2x(3x− 1) = 0
⇒ x = 0 or x = 1

3

As x = y, we get the points as (0, 0) and (1
3
, 1
3
).

Case (2): With x = 1− y in (i), we get 1− 2y + 2y2 = 0
This has imaginary roots.
∴ The stationary points are (0, 0) and (1

3
, 1
3
).

At point (0, 0),
fxx = −2 < 0, fyy = −2, fxy = 0
∴ fxx · fyy − f 2

xy = (−2)(−2) = 4 > 0
⇒ f has maximum at (0, 0) and f(0, 0) = 0.
At point (1

3
, 1
3
),

fxx = 2
3
> 0, fyy = 2

3
, fxy = 4

3

∴ fxx · fyy − f 2
xy = (2

3
)(2

3
)− (16

9
) = −4

3
< 0

⇒ f has saddle point at (1
3
, 1
3
).
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Example 3 Find extreme value of a function.
f(x, y) = xy − x2 − y2 − 2x− 2y + 4.
Solution:
fx = y − 2x− 2, fy = x− 2y − 2, fxx = −2 < 0, fyy = −2, fxy = 1
For extremum, we have fx = 0 = fy
∴ y − 2x− 2 = 0 and x− 2y − 2 = 0 solving these for x and y we get x = y = −2.
∴ The point (−2,−2) is the only point where f may have extreme values.
Now fxx · fyy − f 2

xy at (−2,−2) = (−2)(−2)− 12 = 3 > 0.
⇒ f has local maximum at (−2,−2), and f(−2,−2) = 8.

Example 4 Find and classify the extreme points of the function
f(x, y) = x4 − 3x2y + y3.
Solution:
fx = 4x3 − 6xy,
fy = −3x2 + 3y2,
fxx = 12x2 − 6y,
For extremum, we have fx = 0 = fy ∴ 4x3 − 6xy = 0, 3x2 + 3y2 = 02x(2x2 − 3y) = 0,
∴ y = ±x⇒ x = 0 or 2x2 = 3y
∴ x = 3

2
or x = −3

2
. ∴ The critical points are (3

2
, 3
2
), (−3

2
, 3
2
) and (0, 0).

At point (3
2
, 3
2
),

fxx = 12(3
2
)2 − 6(3

2
) = 18 > 0,

fyy = 6(3
2
) = 9,

fxy = −6(3
2
) = −9

∴ fxx · fyy − f 2
xy = (18)(9)− (−9)2 = 81 > 0.

⇒ f has local minimum at (3
2
, 3
2
).

Similarly f has also local minimum at (−3
2
, 3
2
)

At point (−3
2
, 3
2
) ,

fxx = 12(−3
2

)2 − 6(3
2
) = 18 > 0,

fyy = 6(3
2
) = 9,

fxy = −6(−3
2

) = 9
∴ fxx · fyy − f 2

xy = (18)(9)− (9)2 = 81 > 0. ⇒ f has local minimum at (−3
2
, 3
2
).

At point (0, 0)
fxx = 0, fyy = 0, fxy = 0.
∴ fxx · fyy − f 2

xy = 0
∴test fails.
But f(x, x) = x3(1− 2x)
∴ For 0 < x < 1

2
, f(x, x) > 0 and for −1

2
< x < 0, f(x, x) < 0.

⇒ f has saddle point at (0, 0).
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Example 5
Find extreme values of the function
f(x, y) = xy + 50

x
+ 20

y

Solution:
fx = y − 50

x2
,

fy = x− 20
y2

,

fxx = 100
x3

,
fyy = 40

y3
,

fxy = 1.
For extremum, we have fx = 0 = fy
∴ y − 50

x2
= 0 and x− 20

y2
= 0.

⇒ y = 50
x2

with this x− 20
y2

= 0 becomes x− 200x4

2500
= 0.

⇒ x(1− x3

2500
) = 0

⇒ x = 0 or (1− x3

2500
) = 0.

∴ x = 5.
Putting this in y − 50

x2
= 0 gives y = 2.

∴ (5, 2) is the only point where f take extreme value.
fxx(5, 2) = 4

5
> 0,

fyy(5, 2) = 5,
fxy(5, 2) = 1.
∴ fxx · fyy − f 2

xy = (4
5
)(5)− (1)2 = 3 > 0

⇒ f has minimum at (5, 2) and f(5, 2) = 30

Example 6
Find extreme values of the function
f(x, y) = 3x2(y − 1) + y2(y − 3) + 1.
Solution:
fx = 6x(y − 1),
fy = 3(x2 − 2y + y2)
fxx = 6(y − 1)
fyy = 6(y − 1)
fxy = 6x
For extremum, we have fx = 0 = fy
∴ 6x(y − 1) = 0 and 3(x2 − 2y + y2) = 0
⇒ x = 0 or y = 1.
When x = 0, x2 − 2y + y2 = 0
⇒ y = 0 or y = 2.
When y = 1, x2 − 2y + y2 = 0
⇒ x = ±1.
∴ The stationary points are (0, 0), (0, 2), (1, 1), (−1, 1).

At point (0, 0),
fxx = −6 < 0,
fyy = −6
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fxy = 0
∴ fxx · fyy − f 2

xy = (−6)(−6)− 0 = 36 > 0.
⇒ f has maximum at (0, 0) and f(0, 0) = 1.

At point (0, 2) ,
fxx = 6 > 0,
fyy = 6,
fxy = 0
∴ fxx · fyy − f 2

xy = 36− 0 = 36 > 0. ⇒ f has minimum at (0, 2) and f(0, 2) = −3.

At point (1, 1)
fxx = 0, fyy = 0, fxy = 6.
∴ fxx · fyy − f 2

xy = 0− 36 = −36 < 0
⇒ f has saddle point at (1, 1).

At point (−1, 1)
fxx = 0, fyy = 0, fxy = −6.
∴ fxx · fyy − f 2

xy = 0− 36 = −36 < 0
⇒ f has saddle point at (−1, 1).

Example 7
A rectangular box open at the top is to have a volume of 32m3. What must be the
dimensions so that the total surface area is minimum?
Solution
Let the length, breadth and height of the rectangular box be x, y, z respectively, with
surface S and volume V .
Here, V = 32m3 ⇒ xyz = 32...(i)
We want to minimize the surface area of the rectangular box.
But surface area = S is given by S = 2z(x+ y) + xy.
But from (i), z = 32

xy

∴ S = xy + 64( 1
x

+ 1
y
) = f(x, y)say,

Now Sx = y − 64
x2
, Sy = x− 64

y2
, Sxx = 128

x3
, Syy = 128

y3
, Sxy = 1.

For extremum, sx = 0 = Sy
y − 64

x2
= 0 and x− 64

y2
= 0

∴ x2y = 64 and y2x = 64
⇒ x2y = y2x⇒ x = y ∴ y − 64

x2
= 0

⇒ x− 64
x2

= 0⇒ x3 = 64⇒ x = 4 and hence y = 4.
∴ The point (4, 4) is only point at which S may take extreme value.
At point (4, 4),
128
64

= 2 > 0, Syy(4, 4) = 2, Sxy = 1.
Sxx · Syy − S2

xy = 2(2)− 12 = 3 > 0
⇒ S has minimum at (4, 4).
We have V = xyz = 32 ∴ (4)(4)z = 32⇒ z = 2.
∴ At (4, 4, 2), S has minimum value.
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∴ (S)min = 2z(x+ y) + xy
= 2(2)(4 + 4) + (4)(4)
(S)min = 32 + 16 = 48
Hence, Length = 4m, breadth = 4m, Height = 2m.

In example (4), we have obtained the minimum of the function x4 − 3x2y + y3 and
in example (7), we have found the minimum of the function 2z(x + y) + xy subject to
the condition xyz = 32. Here we observe that these two problems are of different types.
example (4) is a problem of free extrema where as example (7) we have an additional
condition called constraint or side condition i.e. problem is of constrained extrema.
To solve example (7) we have obtained the function S in terms of two variables x and y by
replacing the value of z from the side condition. Another method to solve the problems of
constrained extrema is given by ’Lagrange’. The method is known as ’Lagrange’s method
of multipliers.
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4.2: Lagrange’s Method of undetermined multiplier(s) :
M-(1): Let f(x, y, z) be a function of three variables x, y, z which is to be examplained
for extremum and let the variables x, y, z are connected by the relation φ(x, y, z) = 0...(1)
Since f(x, y, z) is to have extremum
∴ ∂f

∂x
= 0, ∂f

∂y
= 0, ∂f

∂z
= 0,

so that ∂f
∂x
dx+ ∂f

∂y
dy + ∂f

∂z
dz = 0...(2)

Differentiating the relation (1) we have
∂φ
∂x
dx+ ∂φ

∂y
dy + ∂φ

∂z
dz = 0...(3)

Multiply equation (3) by a parameter λ and adding in equation (2) we get
(∂f
∂x

+ λ∂φ
∂x

)dx+ (∂f
∂y

+ λ∂φ
∂y

)dy + (∂f
∂z

+ λ∂φ
∂z

)dz = 0.
This equation will be satisfied identically if coefficients of dx, dy, dz are 0.
i.e. if
∂f
∂x

+ λ∂φ
∂x

= 0...(4)
∂f
∂y

+ λ∂φ
∂y

= 0...(5)
∂f
∂z

+ λ∂φ
∂z

= 0...(6)
The equation (1),(4),(5) and (6) will determine the values of x, y, z and λ for which
f(x, y, z) stationary.

Example 1. Divide the number 36 into three parts so that continued product of the
first, square of second and cube of third may be maximum.
Solution :
Let the numbers be x, y, z respectively.
and f(x, y, z) = xy2z3 and g(x, y, z) = x + y + z = 36 Construct the auxiliary function
F as
F = f(x, y, z) + λg(x, y, z)
F = xy2z3 + λ(x+ y + z − 36)
Differentiating F partially w.r.t. x, y, z and λ, and then equating to 0, we get
Fx = y2z3 + λ = 0...(1)
Fy = 2xyz3 + λ = 0...(2)
Fz = 3xy2z2 + λ = 0...(3)
Fλ = x+ y + z − 36 = 0...(4)

Now multiply equation (1) by x, (2) by y, (3) by z and adding,we get
6xy2z3 + λ(x+ y + z) = 0
∴ 6xy2z3 + 36λ = 0
⇒ λ = −xy2z3

6

Putting this value in
xy2z3 + λx = 0
∴ xy2z3 − xy2z3

6
· x = 0

∴ xy2z3(1− x
6
) = 0

⇒ 1− x
6

= 0 ∵ xy2z3 6= 0
⇒ x = 6.
Similarly putting the values of λ in 2xy2z3 +λy = 0 and 3xy2z3 +λz = 0 respectively we
get y = 12 and z = 18.
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The three numbers are 6, 12,&18.
and f(6, 12, 18) = 6(12)2(18)3 = 5038848.

Example 2: Obtain the shortest distance of the point (1, 2,−3) from the plane
2x− 3y + 6z = 20.
Solution :
Suppose A(1, 2,−3) and let p(x, y, z) be any point on the plane (say) φ(x, y, z) = 2x −
3y + 6z − 20 = 0.
The distance = d2 = Ap = (x − 1)2 + (y − 2)2 + (z + 3)2 ≡ f(x, y, z). Which is to be
minimize.
Construct the auxiliary function
F = f(x, y, z) + λφ(x, y, z)
∴ F = (x− 1)2 + (y − 2)2 + (z + 3)2 + λ(2x− 3y + 6z − 20).
Differentiating F w.r.t. x, y, z and λ, equate to zero
Fx = 2(x− 1)− 2λ = 0...(1)
Fy = 2(y − 2)− 3λ = 0...(2)
Fz = 2(z + 3) + 6λ = 0...(3)
Fλ = 2x− 3y + 6z − 20 = 0

Multiply equation (1) by (x− 1), (2) by (y − 2), (3) by (z + 3) we get
2(x− 1)2 + 2λ(x− 1) = 0...(5)
2(y − 2)2 − 3λ(y − 2) = 0...(6)
2(z + 3)2 + 6λ(z + 3) = 0...(7)
Adding (5), (6) and (7) we get 2[(x−1)2 + (y−2)2 + (z+ 3)2] +λ(2x−3y+ 6z) + 22λ = 0
∴ 2d2 + 42λ = 0⇒ λ = −d2

14
, z + 3 = d2

7

Taking value of λ in equation (1), (2) and (3) we get
x− 1 = d2

21
, y − 2 = −d2

14

∴ d2 = (d
2

21
)2 + (−d

2

14
)2 + (d

2

7
)2

⇒ d = 6.
∴ The shortest distance is 6 unit.

Example 3: Show that the greatest value of 8xyz under the condition
x2

9
+ y2

16
+ z2

4
= 1 is 64√

3

Solution :
Let f(x, y, z) = 8xyz, g(x, y, z) = x2

9
+ y2

16
+ z2

4
− 1 = 0.

We construct the auxiliary function F as F = 8xyz + λ(x
2

9
+ y2

16
+ z2

4
− 1)

Differentiate F partially w.r.t. x, y, z and λ, then equating to zero, we get
Fx = 8yz + 2λx

9
= 0...(1)

Fy = 8xz + 2λy
16

= 0...(2)
Fz = 8xy + 2λz

4
= 0...(3)

Multiply equation (1) by x, (2) by y, (3) by z we get

Fλ = x2

9
+ y2

16
+ z2

4
− 1 = 0...(4)
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8xyz + 2λx2

9
= 0...(5)

8xyz + 2λy2

16
= 0...(6)

8xyz + 2λz2

4
= 0...(7)

Adding these equations we get
24xyz + 2λ(x

2

9
+ y2

16
+ z2

4
) = 0

⇒ 24xyz + 2λ = 0⇒ λ− 12xyz.

Putting the value of λ in equation (5), we get 8xyz + 2(−12xyz)·x2
9

= 0

⇒ 8xyz(1− 3x2

9
) = 0

⇒ 9− 3x2 = 0 ∵ xyz 6= 0
⇒ x =

√
3.

Similarly putting the value of λ in equation (6) and (7) respectively, we get
y = 4√

3
and z = 2√

3
.

∴ The point (
√

3, 4√
3
, 2√

3
) is the stationary point.

∴ Maximum value of xyz is 8(
√

3)( 4√
3
)( 2√

3
) = 64

3

Example 4:
Find the greatest and smallest values of the function f(x, y) = xy takes on the ellipse
x2

8
+ y2

2
= 1.

Solution :
We have f(x, y) = xy, Suppose g(x, y) = x2

8
+ y2

2
− 1 = 0.

Of = ∂f
∂x
ī+ ∂f

∂y
j̄

Og = ∂g
∂x
ī+ ∂g

∂y
j̄

Of = yī+ xj̄ and Og = 2x
8
ī+ 2y

2
j̄ = x

4
ī+ yj̄.

Now consider
Of = λOg
∴ yī+ xj̄ = λ(x

4
ī+ yj̄)

∴ yī+ xj̄ = λx
4
ī+ λyj̄

⇒ y = λ
4
x and x = λy

∴ y = λ
4
λy ⇒ y(λ

2

4
− 1) = 0

∴ y = 0 or (λ
2

4
− 1) = 0

⇒ λ = ±2

Case 1: If y = 0 then x = 0 ∴ we get the point (0, 0). But (0, 0) is not on the given
ellipse. ∴ y 6= 0.

Case 2: If y 6= 0 then λ = ±2 ∴ x = ±2y with this g(x, y) = 0

gives (±2y)2
8

+ y2

2
= 1⇒ 4y2 + 4y2 = 8⇒ y = ±1.

∴ The critical points are (±2, 1) and (±2,−1) The greatest value of function f(x, y) =
xy = 2. and the smallest value of function f(x, y) = xy = −2.
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Example 5: Find the extreme value of the function f(x, y) = 3x + 4y on the circle
x2 + y2 = 1.
Solution:
We have f(x, y) = 3x+ 4y. Suppose g(x, y) = x2 + y2 − 1 = 0
Of = ∂f

∂x
ī+ ∂f

∂y
j̄

Of = 3̄i+ 4j̄ and Og = 2xī+ 2yj̄
Consider
Of = λOg
3̄i+ 4j̄ = λ(2xī+ 2yj̄)
⇒ 2xλ = 3 and 2yλ = 4
Since λ 6= 0, x = 3

2λ
and y = 2

λ

With this, g(x, y) = 0 becomes
( 3
2λ

)2 + ( 2
λ
)2 − 1 = 0⇒ 4λ2 = 25λ = ±5

2
.

∴ x = ±3
5

and y = ±4
5

∴ The stationary points are (±3
5
,±4

5
).

The extreme values of f(x, y) = 3x+ 4y are 5 and −5.

Example 6: Find the extreme values of f(x, y, z) = x−2y+ 5z on x2 + y2 + z2 = 30.
Solution:
We have f(x, y, z) = x− 2y + 5z.
Suppose g(x, y, z) = x2 + y2 + z2 − 30 = 0
Of = ∂f

∂x
ī+ ∂f

∂y
j̄ + ∂f

∂z
k̄ and Og = ∂g

∂x
ī+ ∂g

∂y
j̄ + ∂g

∂z
k̄

Of = ī− 2j̄ + 5k̄ and Og = 2xī− 2yj̄ + 2zk̄.
Consider
Of = λOg
∴ ī− 2j̄ + 5k̄ = λ(2xī− 2yj̄ + 2zk̄)
⇒ 2xλ = 1, 2yλ = −2, 2zλ = 5
x = 1

2λ
, y = −1

λ
, z = 5

2λ

∴ g(x, y, z) = 0 becomes ( 1
2λ

)2 + (−1
λ

)2 + ( 5
2λ

)2 − 30 = 0⇒ λ = ±1
2

Putting this value of λ in x, y, z we get x = ±1, y = ±2, z = ±5.
∴ The stationary point is (x, y, z) = (±1,±2,±5). So that the extreme values of function
f(x, y, z) are 22 and −20.
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Taylors Formula For Functions of Two Variables
Theorem: If f(x, y) and its partial derivatives of order (n + 1) are continuous in the
neighbourhood of a point (a, b) and if (a + h, b + k) is any point in this neighbourhood
then there exists a positive number c, 0 < c < 1 such that

f(a+ h, b+ k) = f(a, b) + (h
∂

∂x
+ k

∂

∂y
)f(a, b) +

1

2!
(h

∂

∂x
+ k

∂

∂y
)2f(a, b) + ...+

1

n!
(h

∂

∂x
+

k
∂

∂y
)nf(a, b) +

1

(n+ 1)!
(h

∂

∂x
+ k

∂

∂y
)n+1f(a+ ch, b+ ck)

Proof: :Let x = a+ ht, y = b+ kt; where 0 ≤ t ≤ 1 is a parameter
∴ f(x, y) = f(a+ ht, b+ kt) = F (t).
Since f(x, y) possesses continuous partial derivatives of order n+1 in any neighbourhood
of point (a, b), F (t) is continuous in [0, 1] and

F ′(t) =
∂f

∂x
.
dx

dt
+
∂f

∂y
.
dy

dt

F ′(t) = h
∂f

∂x
+ k

∂f

∂y
= (h

∂

∂x
+ k

∂

∂y
)f

F ′′(t) =
∂f ′

∂x
.
dx

dt
+
∂f ′

∂y
.
dy

dt

=
∂

∂x
(h
∂f

∂x
+ k

∂f

∂y
).h+

∂

∂y
(h
∂f

∂x
+ k

∂f

∂y
).k

= (h
∂2f

∂x2
+ k

∂2f

∂x
∂y)h+ (h

∂2f

∂y∂x
+ k

∂2f

∂y2
)k

= h2
∂2

∂x2
+ 2hk

∂2f

∂x∂y
+ k2

∂2

∂y2

= (h
∂

∂x
+ k

∂

∂y
)2f

Continuing in this way we have F n+1(t) = (h
∂

∂x
+ k

∂

∂y
)n+1f

By Maclaurin’s theorem, we have
F (1) = F (0) + F ′(0) + 1

2!
F ′′(0) + ...+ 1

n!
F n(0) + 1

(n+1)!
F n+1(c).....(1)

But F (1) = f(a+ h, b+ k)
F (0) = f(a, b)

F ′(0) = (h
∂

∂x
+ k

∂

∂y
)f(a, b)

F ′′(0) = (h
∂

∂x
+ k

∂

∂y
)2f(a, b)...

F n(0) = (h
∂

∂x
+ k

∂

∂y
)nf(a, b)

F n+1(0) = (h
∂

∂x
+ k

∂

∂y
)n+1f(a+ ch, b+ ck)

Putting all these values in equation (1) we get

f(a+ h, b+ k) = f(a, b) + (h
∂

∂x
+ k

∂

∂y
)f(a, b) +

1

2!
(h

∂

∂x
+ k

∂

∂y
)2f(a, b) + ...+

1

n!
(h

∂

∂x
+

k
∂

∂y
)nf(a, b) +

1

(n+ 1)!
(h

∂

∂x
+ k

∂

∂y
)n+1f(a+ ch, b+ ck)
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Remark: 1.The last term is called the remainder and the theorem is called Taylor’s
expansion about the point (a, b)
2.Another form of Taylor’s Formula is

f(x, y) = f(a, b) + [(x− a)
∂

∂x
+ (y − b) ∂

∂y
]f(a, b) +

1

2!
[(x− a)

∂

∂x
+ (y − b) ∂

∂y
]2f(a, b) +

...+
1

n!
[(x− a)

∂

∂x
+ (y − b) ∂

∂y
]nf(a, b) +

1

(n+ 1)!
[(x− a)

∂

∂x
+ (y − b) ∂

∂y
]n+1f(a+ c(x− a), b+ c(y − b))

This is called Taylor’s expansion of f(x, y) about the point (a, b) in the powers of
(x− a), (y − b).
3.If a = 0, b = 0 and h, k are independent variables that is h = x, k = y then we get

f(x, y) = f(0, 0)+(x
∂

∂x
+y

∂

∂y
)f(0, 0)+

1

2!
(x

∂

∂x
+y

∂

∂y
)2f(0, 0)+...+

1

n!
(x

∂

∂x
+y

∂

∂y
)nf(0, 0)+

1

(n+ 1)!
(x

∂

∂x
+ y

∂

∂y
)n+1f(cx, cy)

This is called Maclaurin’s expansion.
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Examples
1. Expand f(x, y) = x3 + xy2 in the powers of (x− 2) and (y − 1).
Solution: We have f(x, y) = x3 + xy2, a = 2, b = 1
∴ f(2, 1) = 10.
fx = 3x2 + y2 ∴ fx(2, 1) = 13, fy = 2xy, fy(2, 1) = 4
fxx = 6x, fxx(2, 1) = 12, fyy = 2x, fyy(2, 1) = 4
fxy = 2y, fxy(2, 1) = 2, fxxx = 6, fxxx(2, 1) = 6, fyyy = 0 = fyyy(2, 1)
fxyy = 2, fxyy(2, 1) = 2, fxxy = 0, fxxy(2, 1) = 0
By Taylor’s formula

f(a+ h, b+ k) = f(a, b) + (h
∂

∂x
+ k

∂

∂y
)f(a, b) +

1

2!
(h

∂

∂x
+ k

∂

∂y
)2f(a, b) + ...+

1

n!
(h

∂

∂x
+

k
∂

∂y
)nf(a, b) +

1

(n+ 1)!
(h

∂

∂x
+ k

∂

∂y
)n+1f(a+ ch, b+ ck)

putting all th values in this , we have
x3 + xy2 = 10 + 13(x− 2) + 4(y − 1) + 1

2
[12(x− 2)2 + 4(x− 2)(y − 1) + 4(y − 1)2] +

1
6
[6(x− 2)3 + 2(x− 2)(y − 1)2]

2. Expand f(x, y) = sinxy in the powers of (x − 1) and (y − π
2
) upto second degree

terms.
Solution:Here f(x, y) = sinxy, a = 1, b = pi

2

∴ f(1.π
2
) = 1

fx = ycosxy ∴ fx(1,
π
2
) = 0

fy = xcosxy ∴ fy(1,
π
2
) = 0

fxx = −y2sinxy ∴ fxx(1,
π
2
) = −π2

4

fyy = −x2sinxy ∴ fxx(1,
π
2
) = −1

fxy = −xysinxy + cosxy, ∴ fxy(1,
π
2
) = −π

2

Now by Taylor’s formula

f(a+ h, b+ k) = f(a, b) + (h
∂

∂x
+ k

∂

∂y
)f(a, b) +

1

2!
(h

∂

∂x
+ k

∂

∂y
)2f(a, b)

∴ sinxy = 1 + 1
2!

[(x− 1)2(π2/4) + 2(x− 1)(y − π/2)(−π/2) + (y − π/2)2(−1)]

∴ sinxy ≈ 1− π2

8
(x− 1)2 − π

2
(x− 1)(y − π/2)− 1

2
(y − π/2)2.

3. Find the cubic approximation for f(x, y) = xy near the point (1, 1)
Solution: Here f(x, y) = xy, a = 1, b = 1,∴ f(1, 1) = 1
fx = yxy−1 ∴ fx(1, 1) = 1
fy = xy log x ∴ fy(1, 1) = 0
fxx = y(y − 1)xy−2 ∴ fxx(1, 1) = 0
fyy = log x.xy.logx ∴ fyy(1, 1) = 0
fxy = xy 1

x
+ log x.y.xy−1 ∴ fxy(1, 1) = 1

fxxx = y(y − 1)(y − 2)xy−3 ∴ fxxx(1, 1) = 0
fyyy = (log x)2xy log x ∴ fyyy(1, 1) = 0
fxxy = (y2 − y)xy−2 log x+ xy−2(2y − 1) ∴ fxxy(1, 1) = 1
fxyy = xy−1 log x+ log x(−y.xy−1logx+ xy−1) ∴ fxyy = 0

Putting all this values in Taylor’s formula, we have
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f(x, y) = xy = 1 + (x− 1).1 + (y − 1).0 + 1
2
[(x− 1)2.0 + 2(x− 1)(y − 1).1 + (y − 1)2.0] +

1
6
[(x− 1)3.0 + 3(x− 1)2(y − 1).1 + 3(x− 1)(y − 1)2.0 + (y − 1)3.0]
xy ≈ 1 + (x− 1) + (x− 1)(y − 1) + 1

2
(x− 1)2(y − 1)
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