Differentiability

Introduction:

In case of function of one variable, we know that if $y = f(x)$ is a function of one variable x then we say that the function f is differentiable at $x = x_0$ if the increment or change in f from x to $x_0 + \Delta x$.

 $\Delta y = f(x_0 + \Delta x) - f(x_0)$ is expressed as $\Delta y = f'(x_0) \Delta x + \epsilon_1 \Delta x$; where as $\Delta x \to 0, \epsilon_1 \to 0$. Here, $f'(x_0)$ is called the differential (total) of function f. It is denoted by df. Thus, $df =$ differential of $f = f'(x_0)h$. Now we shall extend this concept for the function of two variables. Suppose $f(x, y)$ is a function of two variables x and y. Let (x_0, y_0) be a point in the domain \mathbb{R}^2 of $f(x, y)$ and $(x_0 + \Delta x, y_0 + \Delta y)$ be any point in a neighbourhood of point (x_0, y_0) and in the domain of f. The increment (or change) in the function f is the difference $f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$ from point (x_0, y_0) to $(x_0 + \Delta x, y_0 + \Delta y)$. This is denoted by $(\triangle) f(x_0, y_0)$ or $\triangle f$. Thus $\Delta f(x_0, y_0) = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$

Example:

If $f(x, y) = x^2y$ $\Delta f(x_0, y_0) = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$ $=(x_0 + \triangle x)^2(y_0 + \triangle y) - x_0^2y_0$ $\Delta f(x_0, y_0) = 2x_0 y_0 \Delta x + x_0^2 \Delta y + y_0 (\Delta x)^2 + 2x_0 \Delta x \Delta y + (\Delta x)^2 \Delta y ... (i)$ Now if we put $A = 2x_0y_0$, $B = x_0^2$, $\epsilon_1 = y_0\Delta x + x_0\Delta y$ and $\epsilon_2 = x_0 \triangle x + (\triangle x)^2$ then expression (*i*) can be written as $\Delta f(x_0, y_0) = A\Delta x + B\Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y ... (ii)$ where A and B are independent of Δx and Δy , and $\lim_{(\triangle x, \triangle y) \to (0,0)} \epsilon_1 = 0, \lim_{(\triangle x, \triangle y) \to (0,0)} \epsilon_2 = 0.$

Here, the function $f(x, y)$ is said to have a differential at point (x_0, y_0) . It is denoted by df.

Thus
$$
df = A\Delta x + B\Delta y
$$
.

Note that when Δx and Δy are sufficiently small df gives a good approximation of $\triangle f(x_0, y_0)$.

3.1: Definition (Differentiability)

A function $f(x, y)$ is said to be differentiable at a point (x_0, y_0) if there exists a neighbourhood $(x_0 + \Delta x, y_0 + \Delta y)$ of (x_0, y_0) in which the increment $\Delta f(x_0, y_0)$ can be expressed in the form

 $\Delta f(x_0, y_0) = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = A\Delta x + B\Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$ where A and B are independent of Δx and Δy , and

 $\lim_{(\triangle x, \triangle y) \to (0,0)} \epsilon_1 = 0, \lim_{(\triangle x, \triangle y) \to (0,0)} \epsilon_2 = 0.$

Theorem 1: (Necessary conditions for differentiability :-)

Suppose $f(x, y)$ is a real valued function defined on a neighbourhood of (x_0, y_0) . If $f(x, y)$ is differentiable at (x_0, y_0) then $(i) f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ both exists $(ii) f(x, y)$ is continuous at (x_0, y_0) . Proof : Assume that $f(x, y)$ is differentiable at point (x_0, y_0) . (i) ∴ By the definition of differentiability at (x_0, y_0) $\Delta f(x_0, y_0) = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$ $= A\Delta x + B\Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$...(1) where A and B are independent of Δx and Δy , and

 $\lim_{(\triangle x, \triangle y) \to (0,0)} \epsilon_1 = 0, \lim_{(\triangle x, \triangle y) \to (0,0)} \epsilon_2 = 0.$

Equation (1) is true for small values of
$$
\Delta x
$$
 and Δy .
\nPut $\Delta y = 0$ in equation (1), we get
\n $f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = A\Delta x + \epsilon_1 \Delta x$
\n $(A + \epsilon_1)\Delta x = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$
\n $A + \epsilon_1 = \frac{f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)}{\Delta x}$
\n $\lim_{\Delta x \to 0} [A + \epsilon_1] = \lim_{\Delta x \to 0} [\frac{f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)}{\Delta x}]$
\n $\therefore A = \lim_{\Delta x \to 0} (\frac{f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)}{\Delta x})$
\n $A = f_x(x_0, y_0).$
\ni.e. $A = f_x(x_0, y_0)$
\n \therefore A is $\lim_{\Delta x \to 0} (A + \Delta x, B) \to (A + B)$
\nSimilarly by putting $\Delta x = 0$ in equation (1) we get $B = f_y(x_0, y_0)$.
\nThis proves condition (i).
\n(ii) Taking limit as $(\Delta x, \Delta y) \to (0, 0)$ of Equation (1) we get
\n $\lim_{(\Delta x, \Delta y) \to (0, 0)} [f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)] = 0$
\n \therefore the limit of each term on R.H.S. is 0.
\n $\lim_{(\Delta x, \Delta y) \to (0, 0)} [f(x_0 + \Delta x, y_0 + \Delta y)] = f(x_0, y_0)$

This shows that $f(x, y)$ is continuous at (x_0, y_0) .

Remark 1: A function $f(x, y)$ is differentiable at (x_0, y_0) iff the partial derivatives $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ exists and $\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$ $= f_x(x_0, y_0)\triangle x + f_y(x_0, y_0)\triangle y + \epsilon_1\triangle x + \epsilon y\triangle y;$ where $\epsilon_1 \to 0, \epsilon_2 \to 0$ as $(\triangle x, \triangle y) \to (0, 0)$

Remark 2: The converse of the above theorem is not true i.e. above conditions are not sufficient.

Example 1: Show that the function $f(x, y) = \sqrt{|xy|}$ has first partial derivatives at the origin but it is not differentiable at the origin. **Solution :** Given that $f(x, y) = \sqrt{|xy|}(x_0, y_0) = (0, 0)$. First let us find the first partial derivatives of $f(x, y)$ at the origin. $f_x(0,0) = \lim_{\Delta x \to 0} \left(\frac{f(0 + \Delta x,0) - f(0,0)}{\Delta x} \right)$ $\frac{(x,0)-f(0,0)}{\triangle x}$ $\therefore f_x(0,0) = \lim_{\Delta x \to 0}$ $\sqrt{\left|\triangle x,0\right|\cdot\sqrt{\left|0\right|}}$ $\frac{\sum_{v} |V(v)|}{\sum x}$ $=\lim_{\Delta x\to 0}(\frac{0}{\Delta})$ $\frac{0}{\triangle x}$) = 0 $f_x(0,0) = 0...(i)$ Similarly, $f_y(0,0) = 0...(ii)$ From (i) and (ii) both the first partial derivatives of $f(x, y)$ exists at $(0, 0)$. Now, suppose that f is differentiable at $(0, 0)$ then by the definition of differentiability $f(\Delta x, \Delta y) - f(0, 0) = f_x(0, 0)\Delta x + f_y(0, 0)\Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$ $\therefore \sqrt{|\triangle x \cdot \triangle y|} - \sqrt{|0|} = 0 \cdot \triangle x + 0 \cdot \triangle y + \epsilon_1 \triangle x + \epsilon_2 \triangle y ... (iii)$ $\epsilon_1 \to 0, \epsilon_2 \to 0$ as $(\triangle x, \triangle y) \to (0, 0)$. $\sqrt{\vert(\Delta x)^2\vert} = \epsilon_1 \Delta x + \epsilon_2 \Delta x$ Since *(iii)* holds for all small values of Δx and Δy , put $\Delta y = \Delta x$ in *(iii)*, we get $\therefore |\Delta x| = \Delta x (\epsilon_1 + \epsilon_2)$ $\therefore \frac{|\Delta x|}{\Delta x} = \epsilon_1 + \epsilon_2$ Taking limit as $\Delta x \rightarrow 0$ of both sides. ∴ $\lim_{\Delta x \to 0}$ $\frac{|\Delta x|}{\Delta x} = \lim_{\Delta x \to 0} \epsilon_1 + \epsilon_2$ $\therefore \pm 1 = 0$ which is absurd. Hence f is not differentiable at $(0, 0)$. Moreover, For continuity of $f(x, y)$ at $(0, 0)$. Consider $|f(x,y) - f(0,0)| = |\sqrt{|xy|}$ = \mathcal{Q} . Consider $\overline{x} \cdot \sqrt{y} \leq x^2 + y^2 < \epsilon$ ∣ ∫ ∖ ‴
' ` √ $\overline{x} \leq \sqrt{x^2 + y^2}$ $\sqrt{y} \leq \sqrt{x^2 + y^2}$ $\Rightarrow \sqrt{x^2+y^2}$ $\sqrt{\epsilon}$ (= δ) Thus, $|f(x, y) - f(0, 0)| < \epsilon$ whenever $\sqrt{x^2 + y^2} < \delta$. \Rightarrow $f(x, y)$ is continuous at $(0, 0)$.

Example 2: Show that the function $f(x, y) = |x|(1 + y)$ is not differentiable at $(0, 0)$ but is continuous at $(0, 0)$.

Solution :

Given that $f(x, y) = |x|(1 + y)$. $(x_0, y_0) = (0, 0)$ ∴ $f(x_0, y_0) = f(0, 0)$ $= 0$ $\lim_{\triangle x \to 0} \left(\frac{f(x_0 + \triangle x, y_0) - f(x_0, y_0)}{\triangle x} \right)$ $\frac{y_0)-f(x_0,y_0)}{\triangle x}$ = $\lim_{\triangle x\to 0}$ $(\triangle x,0)-f(0,0)$ $\triangle x$ $=\lim_{\Delta x\to 0}$ $|\Delta x|(1+0)-0$ $\triangle x$ $=\lim_{\Delta x\to 0}$ $|\triangle x|$ $\triangle x$

Now

$$
= \lim_{\Delta x \to 0^{+}} \frac{|\Delta x|}{\Delta x} = \lim_{\Delta x \to 0^{+}} (\frac{\Delta x}{\Delta x}) = 1...(i)
$$

$$
= \lim_{\Delta x \to 0^{-}} \frac{|\Delta x|}{\Delta x} = \lim_{\Delta x \to 0^{-}} (\frac{-\Delta x}{\Delta x}) = -1...(ii)
$$

$$
\therefore \lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x} \text{ does not exist. } (\because \text{ by}(i) \text{ and } (ii))
$$

i.e. $\lim_{\Delta x \to 0}$ $f(\triangle x,0)-f(0,0)$ $\frac{d(x,y)}{dx}$ does not exist, which means that $f_x(0,0)$ does not exist. Since existence of $f_x(0,0)$ and $f_y(0,0)$ is a necessary condition for differentiability, there-

fore f is not differentiable at $(0, 0)$.

To show that $f(x, y)$ is continuous at $(0, 0)$ we will use $\epsilon - \delta$ definition. Let $\epsilon > 0$. Consider $|f(x, y) - f(0, 0)| = |f(x, y) - 0| = |x(1 + y)| = |x| \cdot |1 + y| \leq 2|x|$, if $|y| < 1$ ∴ $|f(x, y) - f(0, 0)| \leq 2|x| < \epsilon$ ∴ $|f(x, y) - f(0, 0)| < \epsilon$, if $|x| < \frac{\epsilon}{2} = \delta$ take $\delta = min\{\frac{\epsilon}{2}$ $\frac{\epsilon}{2}$, 1} then $|f(x, y) - f(0, 0)| < \epsilon$ when $|x| < \delta$, $|y| < \delta$ $\lim_{\Delta x \to 0} f(x, y) = 0 = f(0, 0) \Rightarrow f(x, y)$ is continuous at $(0, 0)$ $\therefore \lim_{\Delta x \to 0} f(x, y) = 0 = f(0, 0) \Rightarrow f(x, y)$ is continuous at $(0, 0)$.

Example 3: Let

 $f(x,y) = \frac{2xy}{x^2+y^2}$, if $f(x,y) \neq (0,0)$ $= 0$ if $f(x, y) = (0, 0)$

Show that $f(x, y)$ is not differentiable at $(0, 0)$ even though $f_x(0, 0)$ and $f_y(0, 0)$ exists Solution:

First let us show that $f_x(0,0)\&f_y(0,0)$ exist $f_x(0,0) = \lim_{\Delta x \to 0}$ $f(\triangle x,0)-f(0,0)$ $\triangle x$ $f_x(0,0) = \lim_{\Delta x \to 0}$ $\frac{0-0}{\triangle x}=0$ Similarly $f_y(0,0) = 0$ i.e. both $f_x(0,0) \& f_y(0,0)$ exist. Now, we will find the limit of $f(x, y)$ along a path $y = mx, m \neq 0$. ∴ $\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,mx)\to(0,0)} f(x,mx)$

$$
= \lim_{x \to 0} \left(\frac{2x \cdot mx}{x^2 + m^2 x^2} \right)
$$

=
$$
\frac{2m}{1 + m^2}
$$

which depends upon the path. i.e. $\lim_{h \to 0}$ $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist. Hence, f is not continuous at $(0, 0)$.

Therefore f is not differentiable at $(0, 0)$.

Example 4:

 $f(x,y) = 2xy \frac{x^2-y^2}{x^2+y^2}$ $\frac{x^2-y^2}{x^2+y^2}$, $(x, y) \neq (0, 0)$ $= 0, (x, y) = (0, 0)$ Show that $f(x, y)$ is differentiable at $(0, 0)$. Solution : $f_x(0,0) = \lim_{\Delta x \to 0}$ $f(\triangle x,0)-f(0,0)$ $\triangle x$ $f_x(0,0) = \lim_{\Delta x \to 0}$ $\frac{0-0}{\triangle x}=0$ Similarly $f_y(0,0) = 0$ i.e. both $f_x(0,0) \& f_y(0,0)$ exist. Now $\triangle f = f(x_0 + \triangle x, y_0 + \triangle y) - f(x_0, y_0)$ $\Delta f = f(\Delta x, \Delta y) - f(0, 0)$ ∴ $f(\triangle x, \triangle y) - f(0, 0) = 0 \cdot \triangle x + 0 \cdot \triangle y + \epsilon_1 \triangle x + \epsilon_2 \triangle y$; where $\epsilon_1 = \frac{2(\triangle x)^2 \triangle y}{(\triangle x)^2 + (\triangle y)^2}$ $\frac{2(\Delta x)^2 \Delta y}{(\Delta x)^2 + (\Delta y)^2}$, if $(\Delta x, \Delta y) \neq (0, 0)$ $= 0$ if $(\triangle x, \triangle y) = (0, 0)$ $\epsilon_2 = \frac{-2(\triangle x)(\triangle y)^2}{(\triangle x)^2 + (\triangle y)^2}$ $\frac{-2(\triangle x)(\triangle y)^2}{(\triangle x)^2+(\triangle y)^2}$, if $(\triangle x, \triangle y) \neq (0, 0)$ $= 0$ if $(\triangle x, \triangle y) = (0, 0)$

Here as $(\Delta x, \Delta y) \rightarrow (0, 0), \epsilon_1 \rightarrow 0, \epsilon_2 \rightarrow 0.$ ∴ $(\triangle x, \triangle y) - f(0, 0) = f_x(0, 0) \triangle x + f_y(0, 0) \triangle y + \epsilon_1 \triangle x + \epsilon_2 \triangle y; \epsilon_1 \rightarrow 0, \epsilon_2 \rightarrow 0$ as $(\triangle x, \triangle y) \rightarrow (0, 0)$

Hence by the definition, $f(x, y)$ is differentiable at $(0, 0)$.

Theorem 3: (Sufficient Conditions for Differentiability) :

If $f(x, y)$ is a function of two variables x and y such that $(i) f_x(a, b)$ and $f_y(a, b)$ exist (*ii*) One of the first partial derivatives f_x, f_y is continuous at (a, b) . Then $f(x, y)$ is differentiable at (a, b) .

Proof :

Suppose f_y is continuous at $(a, b) \Rightarrow f_y$ exist in the neighbourhood of (a, b) , (say square δ neighbourhood of (a, b)

i.e. $\exists \delta > 0$ so that the point $(a + h, b + k)$ lies in the δ -neighbourhood of (a, b) where $|h| < \delta, |k| < \delta.$ Now $\Delta f = f(a+h), b+k$) – $f(a,b)$ $= f(a+h, b+k) - f(a+h, b) + f(a+h, b) - f(a, b)...*$

Define the function $q(y)$ as $q(y) = f(a+h, y)$ Here g is derivable in $(b, b + k)$ and we have $g'(y) = f_y(a + h, y)$. Also g is continuous in $[b, b + k]$. Hence by LMVT (IInd form) $g(b + k) - g(b) = kg'(b + k\theta); 0 < \theta < 1.$ i.e. $f(a+h, b+k) - f(a+h, b) = kf_u(a+h, b+k\theta)...(1)$

Since f_y is continuous at (a, b) $\lim_{(h,k)\to(0,0)} f_y(a+h, b+k\theta) = f_y(a, b)$ $\lim_{(h,k)\to(0,0)} f_y(a+h, b+k\theta) - f_y(a, b) = 0$ If we put $f_y(a+h, b+k\theta) - f_y(a, b) = \psi(h, k)$ $\lim_{(h,k)\to(0,0)} \psi(h,k) = 0.$ With this equation (1) becomes, $f(a + h, b + k) - f(a + h, b) = k(f_u(a, b) + \psi(h, k))$ $f(a+h, b+k) - f(a+h, b) = kf_u(a, b) + k\psi(h, k)...(2)$

Now, we have, $f_x(a, b) = \lim_{h \to 0}$ $f(a+h,b)-f(a,b)$ h ∴ $\lim_{h\to 0} \left[\frac{f(a+h,b)-f(a,b)}{h} - f_x(a,b) \right] = 0$ Put $\phi(h) = \frac{f(a+h,b)-f(a,b)}{h} - f_x(a,b)$ then $\lim_{h \to 0} \phi(h) = 0$ i.e. $\phi(h) \to 0$ as $(h,k) \to (0,0)$. ∴ $f(a+h, b) - f(a, b) = hf_x(a, b) + h\phi(h, k)...(3)$ Putting $(2), (3)$ and (1) in $*$ we get

 $\Delta f = f(a + h, b + k) - f(a, b) = hf_x(a, b) + kf_y(a, b) + h\phi(h, k) + k\psi(h, k);$ where $\phi(h, k) \to 0$ and $\psi(h, k) \to 0$ as $(h, k) \to (0, 0)$. Hence, by the definition of differentiability, $f(x, y)$ is differentiable at (a, b) .

Differentials : Let $z = f(x, y)$ be a differentiable function of two variables x and y. The differential or total differential of z ; denoted by dz ; is defined as $dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$

where dx and dy (are called the differentials of x and y) are two new independent variables.

Suppose $z = f(x, y)$ is differentiable at (x_0, y_0) . Then $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$ $\Delta z = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y;$ $\epsilon_1, \epsilon_2 \to 0$ as $(\triangle x, \triangle y) \to (0, 0)$. For small values of $\triangle x \& \triangle y$ $\Delta z = dz + \epsilon_1 \Delta x + \epsilon_2 \Delta y$; where

 $\Delta x, \Delta y$ are increments in x and y respectively.

Hence, the increment Δz is approximately equal to the differential dz.

i.e. we can compute the approximate value of the given function by using differential. Formula is

 $f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + df$; where $df = \frac{\partial f}{\partial x}(x_0, y_0) \triangle x + \frac{\partial f}{\partial y}(x_0, y_0) \triangle y$

Working Rule : Given any function $f(x, y)$

(*i*) Decide x_0, y_0 and $\triangle x, \triangle y$. (ii) Find $f(x_0, y_0)$. $(iii) \left(\frac{\partial f}{\partial x}\right)(x_0, y_0), \left(\frac{\partial f}{\partial y}\right)(x_0, y_0)$ obtain these values. (iv) Use the formula.

Example 1: Using differentials find the approximate value of $(2.01)(3.02)^2$. Solution :

Let
$$
f(x, y) = xy^2
$$

\n $f(x_0 + \Delta x, y_0 + \Delta y) = (2.01)(3.02)^2$
\nHere, $x_0 = 2, y_0 = 3$ and $\Delta x = 0.01, \Delta y = 0.02$.
\n $f(x_0, y_0) = f(2, 3) = 2(3)^2 = 18$
\n $f_x(x_0, y_0) = (\frac{\partial f}{\partial x})(x_0, y_0) = y_0^2$
\n $\therefore f_x(2, 3) = 3^2 = 9$
\n $f_y(x_0, y_0) = (\frac{\partial f}{\partial y})(x_0, y_0) = 2x_0y_0$
\n $\therefore f_y(2, 3) = 2(2)(3)12$.
\n $\therefore df = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y$
\n $\therefore df = y_0^2 \Delta x + 2x_0y_0 \Delta y$
\n $= 9(0.01) + 12(0.02)$
\n $df = 0.33$.
\nHence
\n $f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + df$
\n $\therefore (2.01)(3.02)^2 \approx 18 + 0.33$
\n $= 18.33$.

Example 2: Find approximate value of $\sqrt{\frac{4.1}{25.01}}$ by using differentials.

Solution :
\nLet
$$
f(x, y) = \sqrt{\frac{x}{y}}
$$
.
\nHere, $x_0 = 4$, $y_0 = 25$ and $\triangle x = 0.1$, $\triangle = 0.01$
\n $\therefore f(x_0, y_0) = f(4.25) = \sqrt{\frac{4}{25}} = \frac{2}{5}$.
\n $f_x(x_0, y_0) = \frac{1}{2\sqrt{x_0, y_0}}$
\n $\therefore f_x(4.25) = \frac{1}{2\sqrt{4.25}} = \frac{1}{20}$
\n $f_y(x_0, y_0) = \frac{-1}{2}\sqrt{\frac{x_0}{y_0^3}}$
\n $\therefore f_y(4.25) = \frac{-1}{2}\sqrt{\frac{4}{25^3}} = \frac{-1}{25}$
\n $\therefore df = f_x(x_0, y_0) \triangle x + f_y(x_0, y_0) \triangle y$
\n $\therefore \frac{1}{20}(0.1) - \frac{1}{125}(0.01)$
\n $= 0.005 - 0.00008$
\n $\therefore df = 0.00492$.
\nHence,
\n $f(x_0 + \triangle x, y_0 + \triangle y) \approx f(x_0, y_0) + df$
\n $\therefore \sqrt{\frac{4.1}{25.01}} \approx \frac{2}{3} + 0.00492$
\n $= 0.4 + 0.00492 = 0.40492$.

Composite Function:Chain Rule

For a function of one variable $y = f(x)$ and $= \phi(t)$ then $y = f(\phi(t))$ is called composite function of t

its derivative w.r.t. t is given by $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$ dt

which is known as chain rule.

For a function of two variables also we have composite function and chain rule.

1. Suppose $u = f(x, y)$ is a function of two independent variables x, y and x, y are themselves function of single variable t

that is $x = \phi(t)$ and $y = \psi(t)$ then $u = f(\phi(t), \psi(t)) = F(t)$

is called a composite function of a single variable t

For e.g.
$$
1.u = f(x, y) = x + y
$$
 and $x = at, y = bt^2$

then $u = f(at, bt^2) = at + bt^2$ is a composite function of a single variable t

2.
$$
u = \sin(x + y^2)
$$
 and $x = \cos t, y = t^2$

then $u = sin(cost + t^4)$ is a composite function of t

3. Suppose $W = f(u, v)$ is a function of two variables u, v and u, v are functions of two variables x, y

that is $u = \phi(x, y)$ and $v = \psi(x, y)$

 $W = f[\phi(x, y), \psi(x, y)] = F(x, y)$ is called a composite function of two variables x, y for eg. $W = f(u, v)$ and $u = x + y$, $v = x - y$ then

 $W = f(x + y, x - y)$ is a composite function of two variables x and y.

4. Suppose $Z = f(x)$ is a function in one variable x and x itself a function of two variables u and v i.e. $x = \phi(u, v)$

then $Z = f(\phi(u, v))$ is a composite function of two variables u and v.

for eg. $Z = f(u)$: $u = ax + by$ then $Z = f(ax + by)$ is a composite function of x and y.

Theorem : Chain Rule (I):-

If $u = f(x, y)$ is a differentiable function of x and y, $x = \phi(t)$ and $y = \psi(t)$ are themselves a functions of single variable t then composite function $u = f[\phi(t), \psi(t)]$ is a differentiable function of a single variable t and its total derivative is given by du ∂u dx $\bar{\partial u}$ dy

 $\frac{du}{dt} =$ ∂x $\frac{du}{dt} +$ ∂y $\frac{dy}{dt}$

Proof: Given: $u = f(x, y)$ and $x = \phi(t)$ and $y = \psi(t)$. Let $\Delta x = \phi(t + \Delta t) - \phi(t)$ and $\Delta y = \psi(t + \Delta t) - \psi(t)$ be the increments in x and y respectively corresponds to an increment Δt in t Since $u = f(x, y)$ is differentiable, then by increment theorem $\triangle u = \frac{\partial u}{\partial x} \triangle x + \frac{\partial u}{\partial y} \triangle y + \epsilon_1 \triangle x + \epsilon_2 \triangle y \dots (1)$ where $\epsilon_1 \to 0, \epsilon_2 \to 0$ as $(\triangle x, \triangle y) \to (0, 0)$ $\triangle u = \left(\frac{\partial u}{\partial x} + \epsilon_1\right) \triangle x + \left(\frac{\partial u}{\partial y} + \epsilon_2\right) \triangle y$ $\triangle u$ $\triangle t$ $=\left(\frac{\partial u}{\partial u}\right)$ $\frac{\partial u}{\partial x} + \epsilon_1$ $\triangle x$ $\triangle t$ $+\left(\frac{\partial u}{\partial x}\right)$ $rac{\partial u}{\partial y} + \epsilon_2$ $\triangle y$ $\triangle t$(2) As $x = \phi(t)$, $y = \psi(t)$ are differentiable functions in t ∴ they are continuous at t and hence $\triangle x, \triangle y \to 0$ as $\triangle \to 0$ ∴ $\epsilon_1 \to 0, \epsilon_2 \to 0$ as $\triangle \to 0$ Also $\lim_{\Delta t \to 0}$ $\triangle x$ $\triangle t$ = dx $\frac{d}{dt}$ and $\lim_{\Delta t \to 0}$ $\triangle y$ $\triangle t$ = dy dt Taking limit as $\Delta t \rightarrow 0$ of equation (2) $\lim_{\Delta t \to 0}$ $\triangle u$ $\triangle t$ $=\lim_{\Delta t\to 0}$ ∂u $\frac{\partial}{\partial x} + \epsilon_1$) $\lim_{\Delta t \to 0}$ $\triangle x$ $\triangle t$ $+\lim_{\Delta t\to 0}$ ∂u $\frac{\partial}{\partial y} + \epsilon_2 \big) \lim_{\Delta t \to 0}$ $\triangle y$ $\triangle t$ $\frac{du}{u}$ $\frac{du}{dt} =$ ∂u ∂x dx $\frac{du}{dt} +$ ∂u ∂y dy $\frac{dy}{dt}$.

Theorem: Chain Rule(II):-

If $w = f(u, v)$ is a differentiable function of two variables u and v, $u = \phi(x, y)$ and $v = \psi(x, y)$ are differentiable functions of x and y then the composite function $W =$ $f[\phi(x, y), \psi(x, y)] = F(x, y)$ is also differentiable and $\partial \overline{w}$ $rac{\partial}{\partial x} =$ ∂w ∂u ∂u $rac{\partial}{\partial x}$ + ∂w ∂v ∂v ∂x ∂w $rac{\partial}{\partial y} =$ ∂w ∂u ∂u $rac{\partial}{\partial y}$ + ∂w ∂v ∂v ∂y

Proof:Since u, v, w are differentiable functions, by Chain rule(I)

$$
\Delta u = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y.....(1)
$$

\n
$$
\Delta v = \frac{\partial v}{\partial x} \Delta x + \frac{\partial v}{\partial y} \Delta y + \epsilon_3 \Delta x + \epsilon_4 \Delta y.....(2)
$$

\n
$$
\Delta w = \frac{\partial w}{\partial x} \Delta u + \frac{\partial w}{\partial y} \Delta v + \epsilon_5 \Delta u + \epsilon_6 \Delta v.....(3)
$$

\nWhere $\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4 \to 0$ as $(\Delta x, \Delta y) \to (0, 0)$
\nand $\epsilon_5, \epsilon_6 \to 0$ as $(\Delta u, \Delta v) \to (0, 0)$
\nNow by (3) $\Delta w = (\frac{\partial w}{\partial u} + \epsilon_5) \Delta u + (\frac{\partial w}{\partial v} + \epsilon_6) \Delta v$
\n
$$
\Delta w = (\frac{\partial w}{\partial u} + \epsilon_5) (\frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y) + (\frac{\partial w}{\partial v} + \epsilon_6) (\frac{\partial v}{\partial x} \Delta x + \frac{\partial v}{\partial y} \Delta y + \epsilon_3 \Delta x + \epsilon_4 \Delta y)
$$

\n
$$
\Delta w = \frac{\partial w}{\partial u} \frac{\partial u}{\partial x} \Delta x + \frac{\partial w}{\partial u} \frac{\partial u}{\partial y} \Delta y + \frac{\partial w}{\partial u} \epsilon_1 \Delta x + \frac{\partial w}{\partial v} \epsilon_2 \Delta y + \frac{\partial u}{\partial x} \Delta x \epsilon_5 + \frac{\partial u}{\partial y} \Delta y \epsilon_5 + \epsilon_1 \epsilon_5 \Delta x + \epsilon_4 \epsilon_6 \Delta y
$$

\n $\epsilon_2 \epsilon_5 \Delta y + \frac{\partial v}{\partial v} \frac{\partial v}{\partial x} \Delta x + \frac{\partial w}{\partial v} \frac{\partial v}{\partial y} \Delta y + \frac{\partial w}{\partial u} \epsilon_3 \Delta x + \frac{\partial w}{\partial v} \epsilon_4 \Delta y + \frac{\partial v}{\partial x} \Delta x \epsilon_6 + \frac{\partial v}{\partial y} \Delta y \epsilon_6 + \$

Theorem: Chain rule for the functions of three variables

If $W = f(x, y, z)$ is a differentiable function of three variables x, y, z and x, y, z are differentiable functions of single variable t then the composite function $w = f(t)$ is also differentiable function of t and its derivative is \overline{dw} $\frac{d}{dt} =$ ∂w ∂x \overline{dx} $\frac{du}{dt} +$ ∂w ∂y dy $\frac{dy}{dt} +$ ∂w ∂z dz dt

Theorem: Chain rule for the functions of many variables

If $W = f(x_1, x_2, ... x_n)$ is a differentiable function of finite set of variables $x_1, x_2, ... x_n$ and each $x_1, x_2, ... x_n$ is a differentiable function of finite set of variables $p_1, p_2, ... p_r$. Then $w = f[p_1, p_2, ... p_r]$ is differentiable function of finite set of variables $p_1, p_2, ... p_r$ and we have ∂w $\partial w \partial x_1$ $\partial w \partial x_2$ $\partial w \partial x_3$ $\partial w \partial x_n$

Examples:

1. If $w = f(ax + by)$ then show that b $\frac{\partial w}{\partial x} - a \frac{\partial w}{\partial y}$ $\frac{\partial u}{\partial y} = 0$ **Solution:** We have given that $w = f(ax + by)$ and put $u = ax + by$ then $w = f(u)$. Then by chain rule ∂w $\frac{\partial}{\partial x} =$ dw $\frac{du}{du}$ ∂u $\frac{\partial u}{\partial x} = a$ dw du $\therefore b\frac{\partial w}{\partial x} = ab\frac{dw}{du}.....(1)$ ∂w $rac{\partial}{\partial y} =$ dw $\frac{d}{du}$ ∂u $rac{\partial u}{\partial y} = b$ dw du $\therefore a \frac{\partial w}{\partial y} = ab \frac{dw}{du} \dots (2)$

From (1) and (2) b $\frac{\partial w}{\partial x} - a \frac{\partial w}{\partial y}$ $\frac{\partial u}{\partial y} = 0$

2. If $z = f(y + ax) + g(y - ax)$ prove that $z_{xx} = a^2 z_{yy}$, assuming that second order partial derivatives of f, g exist and a is constant.

Solution: Put $u = y + ax, v = y - ax$ hence $z = f(u) + g(v)$ Where $u = \phi(y, x) = y + ax, v = \psi(y, x) = y - ax$

$$
\therefore \text{ by chain rule} \n z_x = \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x} = f'(u)a + g'(v)(-a) \n z_x = a(f'(u) - g'(v)).....(1) \n \text{Again differentiating w.r.t. x} \n z_{xx} = \frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial u} [af'(u) - g'(v)]. \frac{\partial u}{\partial x} + \frac{\partial}{\partial v} [af'(u) - g'(v)]. \frac{\partial v}{\partial x} \n z_{xx} = a^2 f''(u) + a^2 g''(v).....(2) \n \text{Now } z_y = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y} = f'(u) + g'(v).....(3) \n \text{Differentiating again w.r.t. y} \n z_{yy} = \frac{\partial^2 z}{\partial y^2} = f''(u) + g''(v).....(4) \n \text{from (2) and (4)} \n z_{xx} = a^2 z_{yy}
$$

3. If
$$
u = xy^2 \log(\frac{y}{x})
$$
 then find du .
\n**Solution:** We know that $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$(1)
\nNow $\frac{\partial u}{\partial x} = y^2 \log(\frac{y}{x}) + xy^2 \frac{1}{y/x} (\frac{-1}{x^2})y = y^2 \log(\frac{y}{x}) - y^2$(2)
\n $\frac{\partial u}{\partial y} = 2xy \log(\frac{y}{x}) + xy^2 \frac{1}{y/x} (\frac{1}{x}) = 2xy \log(\frac{y}{x}) + xy$(3)
\nfrom (2) and (3)
\n $du = [y^2 \log(\frac{y}{x}) - y^2] dx + [2xy \log(\frac{y}{x}) + xy] dy$

4. if
$$
u = u(\frac{y-x}{xy}, \frac{z-x}{xz})
$$
, Show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$
\n**Solution:** Let $u = u(\frac{y-x}{xy}, \frac{z-z}{zx})$
\nPut $r = \frac{y-x}{xy} = \frac{1}{z} - \frac{1}{z}$
\nand $s = \frac{z-x}{xz} = \frac{1}{z} - \frac{1}{z}$
\n $\therefore u = u(r, s)$ is a composite function of x and y
\n \therefore by chain rule $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial u}{\partial s} \frac{\partial s}{\partial x}$(1)
\nSince $\frac{\partial r}{\partial x} = -\frac{1}{x^2}, \frac{\partial s}{\partial y} = \frac{1}{y^2}, \frac{\partial s}{\partial z} = 0$
\nAnd $\frac{\partial s}{\partial x} = -\frac{1}{x^2}, \frac{\partial s}{\partial y} = 0, \frac{\partial s}{\partial z} = \frac{1}{z^2}$
\nEquation (1) becomes
\n $x^2 \frac{\partial u}{\partial x} = -\frac{\partial u}{\partial r} - \frac{\partial u}{\partial s}$(2)
\n $\frac{\partial u}{\partial y} = \frac{\partial u}{\partial r} - \frac{\partial u}{\partial s} \frac{\partial u}{\partial y}$
\n $\therefore y^2 \frac{\partial u}{\partial y} = \frac{\partial u}{\partial r} \frac{\partial v}{\partial z} + \frac{\partial u}{\partial s} \frac{\partial s}{\partial z}$
\n $\therefore z^2 \frac{\partial u}{\partial z} = \frac{\partial u}{\partial x} \dots (4)$
\nAdding (2), (3), (4) we get
\n $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$
\n5. If $u = f(r)$ and $x = r \cos \theta$, $y = r \sin \theta$ then prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = f''(r) +$

$$
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{d^2 f}{dr^2} \cdot 1 + \frac{df}{dr} \frac{r^2}{r^3}
$$

$$
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{d^2 f}{dr^2} + \frac{df}{dr} \frac{1}{r}
$$

$$
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r} f'(r)
$$

Directional derivatives:

If $f(x, y)$ is differentiable function and $x = \phi(t)$, $y = \psi(t)$ then $\frac{df}{dt} = \frac{\partial f}{\partial x}$ ∂x $\frac{dx}{dt}+\frac{\partial f}{\partial y}$ ∂y $\frac{dy}{dt}$ gives the rate of change of f with respect to t . This depends on the direction of motion along the curve. If curve is a straight line and parameter t is the arc length measured from point $p_0(x_0, y_0)$ in the direction of a given unit vector u then $\frac{df}{dt}$ is the rate of change of f with respect to distance in the direction of \bar{u} . These values of $\frac{df}{dt}$ through p_0 are called directional derivatives.

Definition: Directional derivatives in the planes

Suppose the function $f(x, y)$ is defined on a region R in the xy plane. $p_0(x_0, y_0)$ is a point in R and $u = u_1 \overline{i} + u_2 \overline{j}$ is a unit vector. $x = x_0 + su_1, y = y_0 + su_2$ are the parametric equations of a line passing through p_0 parallel to \bar{u} ; where s is the arc length measured from point p_0 in the direction of \bar{u} .

The derivative of f at point $p_0(x_0, y_0)$ in the direction of \bar{u} is

(df $\frac{df}{ds}$ _{u,p₀} = $\lim_{s\to 0}$ ($\frac{f(x_0 + su_1, y_0 + su_2) - f(x_0, y_0)}{s}$ s) if R.H.S. exist is called the directional derivative of f at point p_0 . It is denoted by $(D_u f)_{p_0}$.

Note: If $\bar{u} = \bar{i}$ then $(D_u f)_{p_0}$ gives $\frac{\partial f}{\partial x}$ at p_0 , and If $\bar{u} = \bar{u}$ then $(D_u f)_{p_0}$ gives $\frac{\partial f}{\partial y}$ at p_0

Examples:

1. Find the directional derivative of $f(x, y) = x^2 + xy$ at point $(1, 2)$ in th direction of a unit vector $\bar{u} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}\overline{i}+\frac{1}{\sqrt{2}\overline{j}}$ **Solution:** Let $f(x,y) = x^2 + xy$, $p_0 = (1,2)$ and $\bar{u} = u_1 \bar{i} + u_2 \bar{j} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}\overline{i}+\frac{1}{\sqrt{2}}$ $\frac{1}{2} \overline{j}$ Since $\left(\frac{df}{dx}\right)$ $\frac{df}{ds}$)_{u,p0} = $\lim_{s\to 0}$ ($\frac{f(x_0 + su_1, y_0 + su_2) - f(x_0, y_0)}{s}$ s) $=\lim_{s\to 0}$ $f(1+\frac{s}{\sqrt{2}},2+\frac{2}{\sqrt{2}})-f(1,2)$ 2 s) $=\lim_{s\to 0}$ [$((1+\frac{s}{\sqrt{2}})^2 + (1+\frac{s}{\sqrt{2}})(2+\frac{s}{\sqrt{2}})) - (1^2+1.2)$ $\left[\frac{\sqrt{2^{7}}}{s}\right] = \lim_{s\to 0}$ $\frac{5}{4}$ $\frac{5}{2} + s^2$ s] $=$ $lim_{s\rightarrow 0}$ ($\frac{5}{\sqrt{2}}$ 2 $+ s) = \frac{5}{4}$ 2 $\therefore (\frac{df}{ds})_{\bar{u},p_0} = (D_uf)_{p_0} = \frac{5}{\sqrt{2}}$ 2

2. Find the directional derivative of $f(y, z) = x^2 + 2y^2 + 3z^2$ at the point $(1, 1, 0)$ in the direction of $\bar{u} = \bar{i} - \bar{j} + 2\bar{k}$ **Solution:** Let $f(0, y, z) = x^2 + 2y^2 + 3z^2$, $p_0 = (1, 1, 0)$ and $\bar{u} = \bar{i} - \bar{j} + 2\bar{k}$ Since \bar{u} is not a unit vector so $\hat{u} = \frac{1}{\sqrt{2}}$ $\frac{1}{6}(\overline{i}-\overline{j}+2\overline{k})$

$$
\begin{aligned}\n(\frac{df}{ds})_{\hat{u},p_0} &= \lim_{s \to 0} \left[\frac{f(x_0 + su_1, y_0 + su_2, z_0 + su_3) - f(x_0, y_0, z_0)}{s} \right] \\
&= \lim_{s \to 0} \left[\frac{f(1 + \frac{s}{\sqrt{6}}, 1 - \frac{s}{\sqrt{6}}, \frac{2s}{\sqrt{6}}) - f(1, 1, 0)}{s} \right] \\
&= \lim_{s \to 0} \left[\frac{((1 + \frac{s}{\sqrt{6}})^2 + 2(1 - \frac{s}{\sqrt{6}})^2 + 3(\frac{2s}{\sqrt{6}})^2) - 3}{s} \right] \\
&= \lim_{s \to 0} \left[\frac{(-2s + \frac{15s^2}{\sqrt{6}})}{s} \right] \\
&= \lim_{s \to 0} (\frac{-2}{\sqrt{6}} + \frac{15s}{\sqrt{6}}) = \frac{-2}{\sqrt{6}} \\
\therefore (\frac{df}{ds})_{\hat{u},p_0} &= (D_u f)_{p_0} = \frac{-2}{\sqrt{6}}\n\end{aligned}
$$

The Gradient Vector Definition: The gradient vector of $f(x, y)$ at a point $p_0(x_0, y_0)$ is the vector $\nabla f = \frac{\partial f}{\partial x}$ ∂x $\overline{i} + \frac{\partial f}{\partial}$ ∂y \overline{j}

Note: We can find the directional derivative of f in the direction of \bar{u} at point p_0 using the dot product of \bar{u} with gradient of f at p_0 :

Since by chain rule we can write $\left(\frac{df}{ds}\right)_{u,p_0} = \left(\frac{\partial f}{\partial x}\right)_{p_0}$. $\frac{dx}{ds} + (\frac{\partial f}{\partial y})_{p_0}.$ dy ds

$$
\begin{aligned}\n(\frac{df}{ds})_{u,p_0} &= (\frac{\partial f}{\partial x})_{p_0}.u_1 + (\frac{\partial f}{\partial y})_{p_0}.u_2\\
(\frac{df}{ds})_{u,p_0} &= ((\frac{\partial f}{\partial x})_{p_0}\bar{i} + (\frac{\partial f}{\partial y})_{p_0}.\bar{j}).(u_1\bar{i} + u_2\bar{j})\n\end{aligned}
$$

Examples:

1. Find the directional derivative of $f(x, y) = xe^y + cos(xy)$ at the point $(2, 0)$ in the direction of $3\overline{i} - 4\overline{j}$.

Solution: Let $f(x, y) = xe^y + cos(xy)$, $p_0 = (2, 0)$ and $\bar{u} = 3\bar{i} - 4\bar{j}$ Since u is not a unit vector so

 $\hat{u}=\frac{3}{5}$ $\frac{3}{5}\overline{i} - \frac{4}{5}$ $\frac{4}{5}$ \overline{j} Now $f_x = e^y - \sin(xy) \cdot y$ and $f_y = xe^y - \sin(xy) \cdot x$ $f_x(2,0) = 1, f_y(2,0) = 2$ The gradient of f at $(2,0) = (\nabla f)_{(2,0)} = f_x(2,0)\overline{i} + f_y(2,0)\overline{j} = \overline{i} + 2\overline{j}$ The directional derivative of f at $(2, 0)$ in the direction of $3\overline{i} - 4\overline{j}$ is ($\frac{df}{ds}$)_{$\hat{u}, p_0 = (D_u f)_{p_0} = (\nabla f)_{p_0} \cdot \hat{u} = (i + 2j) \cdot (\frac{3}{5})$} $\frac{3}{5}\overline{i} - \frac{4}{5}$ $\frac{4}{5}\bar{j}$) = -1

2. Find the derivative of $f(x, y) = 2xy - 2y^2$ at the point (5,5) in the direction of $4\overline{i} + 3\overline{j}$.

Solution: Let $f(x,y) = 2xy - 2y^2$, $p_0 = (5,5)$ and $\bar{u} = 4\bar{i} + 3\bar{j}$ Since u is not a unit vector so $\hat{u} = \frac{4}{5}$ $\frac{4}{5}\overline{i}+\frac{3}{5}$ $rac{3}{5}j$ Now $f_x = 2y$, $\tilde{f}_x(5, \tilde{5}) = 10$, $f_y = 2x - 6y$, $f_y(5, 5) = -20$ ∴ the gradient of f at $(5, 5) = (\nabla f)_{(5,5)} = 10\overline{i} - 20\overline{j}$ $\therefore (\frac{df}{dx})_{\hat{u},p_0} = (D_uf)_{p_0} = (\triangledown f)_{p_0}.\hat{u} = (10\overline{\hat{i}} - 20\overline{\hat{j}})(\frac{4}{5}\overline{\hat{i}} + \frac{3}{5}$ $\frac{3}{5}\overline{j}) = -4.$

3. Find the derivative of $f(x, y, z) = x^2 + 2y^2 - 3z^2$ at the point $(1, 1, 1)$ in the direction of $\bar{i} + \bar{j} + \bar{k}$.

Solution: Let $f(x, y, z) = x^2 + 2y^2 - 3z^2$, $p_0 = (1, 1, 1)$ and $\bar{u} = \bar{i} + \bar{j} + \bar{k}$ Since \bar{u} is not a unit vector so $\hat{u} = \frac{1}{\sqrt{2}}$ $\frac{1}{3}(\overline{i}+\overline{j}+\overline{k})$ Now $f_x = 2x, f_x(1, 1, 1) = 2, f_y = 4y, f_y(1, 1, 1) = 4, f_z = -6z, f_z(1, 1, 1) = -6$ The gradient of f at $(1, 1, 1) = (\nabla f)_{(1,1,1)} = 2\overline{i} + 4\overline{j} - 6\overline{k}$ The derivative of f at point p_0 is $(\frac{df}{ds})_{\hat{u},p_0} = (D_u f)_{p_0} = (\nabla f)_{p_0} \cdot \hat{u} = (2\overline{i} + 4\overline{j} - 6\overline{k}) \cdot \frac{1}{\sqrt{k}}$ $\frac{1}{3}(\bar{i}+\bar{j}+\bar{k})=0$

Properties of directional derivatives:

The directional derivative definition revels that

 $D_u f = \nabla f u = |\nabla f||u| \cos\theta = |\nabla f| \cos\theta$ As u is unit vector.

It has following properties: 1. The function f increase most rapidly when $\cos\theta = 1$ or when \bar{u} is in the direction of ∇f .

that is $D_u f = |\nabla f| cos(0) = |\nabla f|$.

2. The function f decreases most rapidly when $\cos\theta = -1$ or when \bar{u} is in the direction of $-\nabla f$.

that is $D_{u} f = |\nabla f| cos(\pi) = -|\nabla f|$.

3.Any direction \bar{u} orthogonal to the gradient is a direction of zero change in f when $\theta = \frac{\pi}{2}$ 2 that is $D_u f = |\nabla f| cos(\frac{\pi}{2})$ $(\frac{\pi}{2}) = |\nabla f|.0 = 0.$

Examples:

1. Find the direction in which $f(x, y) = \frac{x^2}{2} + \frac{y^2}{2}$ 2 a)increase most rapidly at point (1,1) b)decrease most rapidly at point (1,1) c)What are the directions of zero change in f at $(1,1)$? **Solution:** We have $\underline{f}(x, y) = \frac{x^2}{2} + \frac{y^2}{2}$ **BOILET EXECUTE:** WE have $\int (x, y) = \frac{2}{2} - \frac{2}{4} + \frac{1}{9}$
a) $(\nabla f)_{(1,1)} = f_x(1, 1)\overline{i} + f_y(1, 1)\overline{j} = \overline{i} + \overline{j}$ Its direction is $|(\nabla f)_{(1,1)}| = \frac{1}{\sqrt{2}}$ $\frac{1}{2}\overline{i}+\frac{1}{\sqrt{2}}$ $\overline{z}^{\overline{j}} = \overline{u}$ b) f decreases most rapidly in the direction of $-(\nabla f)_{(1,1)}$ $-\bar{u}=-\frac{1}{\sqrt{2}}$ $\frac{1}{2}\overline{i}-\frac{1}{\sqrt{2}}$ \overline{z} c) The directions of zero change at $(1, 1)$ are the directions orthogonal to ∇f $\therefore \bar{n} = -\frac{1}{\sqrt{2}}$ $\frac{1}{2}\overline{i}+\frac{1}{\sqrt{2}}$ $\frac{1}{2}\overline{j}$ and $-\overline{n}=\frac{1}{\sqrt{j}}$ $\frac{1}{2}\overline{i}-\frac{1}{\sqrt{2}}$ $\frac{1}{2} \overline{j}$

2. a) Find the derivative of $f(x, y, z) = x^3 - xy^2 - z$ at point $(1, 1, 0)$ in the direction of $2\bar{i} - 3\bar{j} + 6\bar{k}$

b) In what direction f change most rapidly at point $(1, 1, 0)$ and what are the rate of change in these directions?

Solution: a) Suppose $\bar{u} = 2\bar{i} - 3\bar{j} + 6\bar{k}$ and $\hat{u} = \frac{2}{7}$ $\frac{2}{7}\overline{i} - \frac{3}{7}$ $\frac{3}{7}\bar{j}+\frac{6}{7}$ $rac{6}{7}\overline{k}$ $f_x(1, 1, 0) = 2, f_y(1, 1, 0) = -2, f_z(1, 1, 0) = -1$ ∴ $(\nabla f)_{(1,1,0)} = 2\overline{i} - 2\overline{j} - \overline{k}$

Hence the derivative of f at given point is

 $(D_u f)_{(1,1,0)} = (\nabla f)_{(1,1,0)} \hat{u} = (\tilde{2}\overline{i} - 2\overline{j} - \overline{k}).(\frac{2}{7})$ $\frac{2}{7}\bar{i} - \frac{3}{7}$ $\frac{3}{7}\bar{j}+\frac{6}{7}$

 $(D_u f)_{(1,1,0)} = (\nabla f)_{(1,1,0)} \hat{u} = (\tilde{2}\bar{i} - 2\bar{j} - \bar{k}).(\frac{2}{7}\bar{i} - \frac{3}{7}\bar{j} + \frac{6}{7}\bar{k}) = \frac{4}{7}$
b)The function f increase most rapidly in the direction of $\nabla f = 2\bar{i} - 2\bar{j} - \bar{k}$ and decreases most rapidly in the direction of $-\nabla f$. The rate of change in the directions are $|\nabla f| = 3$ and $-|\nabla f| = -3$