
Differentiability

Introduction:

In case of function of one variable, we know that if y = f(x) is a function of one
variable x then we say that the function f is differentiable at x = x0 if the increment or
change in f from x to x0 +4x.
4y = f(x0 +4x)− f(x0) is expressed as
4y = f ′(x0)4x+ ε14x; where as 4x→ 0, ε1 → 0.
Here, f ′(x0) is called the differential (total) of function f . It is denoted by df .
Thus, df = differential of f = f ′(x0)h.
Now we shall extend this concept for the function of two variables.
Suppose f(x, y) is a function of two variables x and y. Let (x0, y0) be a point in the
domain R2 of f(x, y) and (x0 +4x, y0 +4y) be any point in a neighbourhood of point
(x0, y0) and in the domain of f .
The increment (or change) in the function f is the difference
f(x0 +4x, y0 +4y)− f(x0, y0) from point (x0, y0) to (x0 +4x, y0 +4y).
This is denoted by (4)f(x0, y0) or 4f .
Thus 4f(x0, y0) = f(x0 +4x, y0 +4y)− f(x0, y0)
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Example:
If f(x, y) = x2y
4f(x0, y0) = f(x0 +4x, y0 +4y)− f(x0, y0)
= (x0 +4x)2(y0 +4y)− x2

0y0

4f(x0, y0) = 2x0y04x+ x2
04y + y0(4x)2 + 2x04x4y + (4x)24y...(i)

Now if we put A = 2x0y0, B = x2
0, ε1 = y04x+ x04y and

ε2 = x04x+ (4x)2 then expression (i) can be written as
4f(x0, y0) = A4x+B4y + ε14x+ ε24y...(ii)
where A and B are independent of 4x and 4y, and

lim
(4x,4y)→(0,0)

ε1 = 0, lim
(4x,4y)→(0,0)

ε2 = 0.

Here, the function f(x, y) is said to have a differential at point (x0, y0). It is denoted by
df .
Thus df = A4x+B4y.
Note that when 4x and 4y are sufficiently small df gives a good approximation of
4f(x0, y0).
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3.1: Definition (Differentiability)
A function f(x, y) is said to be differentiable at a point (x0, y0) if there exists a neighbour-
hood (x0 +4x, y0 +4y) of (x0, y0) in which the increment 4f(x0, y0) can be expressed
in the form
4f(x0, y0) = f(x0 +4x, y0 +4y) − f(x0, y0) = A4x + B4y + ε14x + ε24y where A
and B are independent of 4x and 4y, and

lim
(4x,4y)→(0,0)

ε1 = 0, lim
(4x,4y)→(0,0)

ε2 = 0.

Theorem 1: (Necessary conditions for differentiability :-)
Suppose f(x, y) is a real valued function defined on a neighbourhood of (x0, y0). If f(x, y)
is differentiable at (x0, y0) then
(i)fx(x0, y0) and fy(x0, y0) both exists
(ii)f(x, y) is continuous at (x0, y0).
Proof :
Assume that f(x, y) is differentiable at point (x0, y0).
(i) ∴ By the definition of differentiability at (x0, y0)
4f(x0, y0) = f(x0 +4x, y0 +4y)− f(x0, y0)
= A4x+B4y + ε14x+ ε24y...(1)
where A and B are independent of 4x and 4y, and

lim
(4x,4y)→(0,0)

ε1 = 0, lim
(4x,4y)→(0,0)

ε2 = 0.

Equation (1) is true for small values of 4x and 4y.
Put 4y = 0 in equation (1), we get
f(x0 +4x, y0 +4y)− f(x0, y0) = A4x+ ε14x
(A+ ε1)4x = f(x0 +4x, y0 +4y)− f(x0, y0)

A+ ε1 = f(x0+4x,y0+4y)−f(x0,y0)
4x

lim
4x→0

[A+ ε1] = lim
4x→0

[f(x0+4x,y0+4y)−f(x0,y0)
4x ]

∴ A = lim
4x→0

(f(x0+4x,y0+4y)−f(x0,y0)
4x )

A = fx(x0, y0).
i.e. A = fx(x0, y0) exist.
Similarly by putting 4x = 0 in equation (1) we get B = fy(x0, y0).
This proves condition (i).
(ii) Taking limit as (4x,4y)→ (0, 0) of Equation (1) we get

lim
(4x,4y)→(0,0)

[f(x0 +4x, y0 +4y)− f(x0, y0)] = 0

∵ the limit of each term on R.H.S. is 0.
lim

(4x,4y)→(0,0)
[f(x0 +4x, y0 +4y)] = f(x0, y0)

This shows that f(x, y) is continuous at (x0, y0).
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Remark 1: A function f(x, y) is differentiable at (x0, y0) iff the partial derivatives
fx(x0, y0) and fy(x0, y0) exists and
4f = f(x0 +4x, y0 +4y)− f(x0, y0)
= fx(x0, y0)4x+ fy(x0, y0)4y + ε14x+ εy4y;
where ε1 → 0, ε2 → 0 as (4x,4y)→ (0, 0)

Remark 2: The converse of the above theorem is not true i.e. above conditions are
not sufficient.

Example 1: Show that the function f(x, y) =
√
|xy| has first partial derivatives at

the origin but it is not differentiable at the origin.
Solution : Given that f(x, y) =

√
|xy|(x0, y0) = (0, 0).

First let us find the first partial derivatives of f(x, y) at the origin.

∴ fx(0, 0) = lim
4x→0

(f(0+4x,0)−f(0,0)
4x )

∴ fx(0, 0) = lim
4x→0

(

√
|4x,0|·

√
|0|

4x )

= lim
4x→0

( 0
4x) = 0

fx(0, 0) = 0...(i)
Similarly, fy(0, 0) = 0...(ii)
From (i) and (ii) both the first partial derivatives of f(x, y) exists at (0, 0).
Now, suppose that f is differentiable at (0, 0) then by the definition of differentiability
f(4x,4y)− f(0, 0) = fx(0, 0)4x+ fy(0, 0)4y + ε14x+ ε24y

∴
√
|4x · 4y| −

√
|0| = 0 · 4x+ 0 · 4y + ε14x+ ε24y...(iii)

ε1 → 0, ε2 → 0 as (4x,4y)→ (0, 0).
Since (iii) holds for all small values of 4x and 4y, put 4y = 4x in (iii), we get√
|(4x)2| = ε14x+ ε24x

∴ |4x| = 4x(ε1 + ε2)

∴ |4x|
4x = ε1 + ε2

Taking limit as 4x→ 0 of both sides.
∴ lim
4x→0

|4x|
4x = lim

4x→0
ε1 + ε2

∴ ±1 = 0
which is absurd. Hence f is not differentiable at (0, 0).
Moreover,
For continuity of f(x, y) at (0, 0). Consider
|f(x, y)− f(0, 0)| = |

√
|xy|| =

√
x · √y ≤ x2 + y2 < ε

∵
√
x ≤

√
x2 + y2

√
y ≤

√
x2 + y2

⇒
√
x2 + y2 <

√
ε(= δ) Thus, |f(x, y)− f(0, 0)| < ε whenever

√
x2 + y2 < δ.

⇒ f(x, y) is continuous at (0, 0).
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Example 2: Show that the function f(x, y) = |x|(1 + y) is not differentiable at (0, 0)
but is continuous at (0, 0).
Solution :
Given that f(x, y) = |x|(1 + y).
(x0, y0) = (0, 0) ∴ f(x0, y0) = f(0, 0)

= 0
lim
4x→0

(f(x0+4x,y0)−f(x0,y0)
4x ) = lim

4x→0

(4x,0)−f(0,0)
4x

= lim
4x→0

|4x|(1+0)−0
4x

= lim
4x→0

|4x|
4x

Now
= lim
4x→0+

|4x|
4x = lim

4x→0+
(4x4x) = 1...(i)

= lim
4x→0−

|4x|
4x = lim

4x→0−
(−4x4x ) = −1...(ii)

∴ lim
4x→0

|4x|
4x does not exist. (∵ by(i) and (ii))

i.e. lim
4x→0

f(4x,0)−f(0,0)
4x does not exist, which means that fx(0, 0) does not exist.

Since existence of fx(0, 0) and fy(0, 0) is a necessary condition for differentiability, there-
fore f is not differentiable at (0, 0).
To show that f(x, y) is continuous at (0, 0) we will use ε− δ definition.
Let ε > 0. Consider
|f(x, y)− f(0, 0)| = |f(x, y)− 0| = |x(1 + y)| = |x|.|1 + y| ≤ 2|x|, if |y| < 1
∴ |f(x, y)− f(0, 0)| ≤ 2|x| < ε
∴ |f(x, y)− f(0, 0)| < ε, if |x| < ε

2
= δ

take δ = min{ ε
2
, 1} then |f(x, y)− f(0, 0)| < ε when |x| < δ, |y| < δ

lim
4x→0

f(x, y) = 0 = f(0, 0)⇒ f(x, y) is continuous at (0, 0)

∴ lim
4x→0

f(x, y) = 0 = f(0, 0)⇒ f(x, y) is continuous at (0, 0).

Example 3: Let
f(x, y) = 2xy

x2+y2
, if f(x, y) 6= (0, 0)

= 0 if f(x, y) = (0, 0)
Show that f(x, y) is not differentiable at (0, 0) even though fx(0, 0) and fy(0, 0) exists
Solution:
First let us show that fx(0, 0)&fy(0, 0) exist

fx(0, 0) = lim
4x→0

f(4x,0)−f(0,0)
4x

fx(0, 0) = lim
4x→0

0−0
4x = 0

Similarly fy(0, 0) = 0 i.e. both fx(0, 0)&fy(0, 0) exist.
Now, we will find the limit of f(x, y) along a path y = mx,m 6= 0.
∴ lim

(x,y)→(0,0)
f(x, y) = lim

(x,mx)→(0,0)
f(x,mx)
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= lim
x→0

( 2x·mx
x2+m2x2

)

= 2m
1+m2

which depends upon the path. i.e. lim
(x,y)→(0,0)

f(x, y) does not exist. Hence, f is not con-

tinuous at (0, 0).
Therefore f is not differentiable at (0, 0).

Example 4:
f(x, y) = 2xy x

2−y2
x2+y2

, (x, y) 6= (0, 0)

= 0, (x, y) = (0, 0)
Show that f(x, y) is differentiable at (0, 0).
Solution :
fx(0, 0) = lim

4x→0

f(4x,0)−f(0,0)
4x

fx(0, 0) = lim
4x→0

0−0
4x = 0

Similarly fy(0, 0) = 0 i.e. both fx(0, 0)&fy(0, 0) exist.
Now 4f = f(x0 +4x, y0 +4y)− f(x0, y0)
4f = f(4x,4y)− f(0, 0)
∴ f(4x,4y)− f(0, 0) = 0 · 4x+ 0.4y + ε14x+ ε24y; where

ε1 = 2(4x)24y
(4x)2+(4y)2

, if (4x,4y) 6= (0, 0)

= 0 if (4x,4y) = (0, 0)

ε2 = −2(4x)(4y)2

(4x)2+(4y)2
, if (4x,4y) 6= (0, 0)

= 0 if (4x,4y) = (0, 0)

Here as (4x,4y)→ (0, 0), ε1 → 0, ε2 → 0.
∴ (4x,4y) − f(0, 0) = fx(0, 0)4x + fy(0, 0)4y + ε14x + ε24y; ε1 → 0, ε2 → 0 as
(4x,4y)→ (0, 0)

Hence by the definition, f(x, y) is differentiable at (0, 0).
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Theorem 3: (Sufficient Conditions for Differentiability) :
If f(x, y) is a function of two variables x and y such that
(i)fx(a, b) and fy(a, b) exist
(ii) One of the first partial derivatives fx, fy is continuous at (a, b).
Then f(x, y) is differentiable at (a, b).

Proof :
Suppose fy is continuous at (a, b)⇒ fy exist in the neighbourhood of (a, b), (say square
δ neighbourhood of (a, b))
i.e.∃δ > 0 so that the point (a + h, b + k) lies in the δ-neighbourhood of (a, b) where
|h| < δ, |k| < δ.
Now 4f = f(a+ h), b+ k)− f(a, b)
= f(a+ h, b+ k)− f(a+ h, b) + f(a+ h, b)− f(a, b)...∗
Define the function g(y) as g(y) = f(a+ h, y)
Here g is derivable in (b, b+ k) and we have g′(y) = fy(a+ h, y).
Also g is continuous in [b, b+ k].
Hence by LMVT (IInd form)
g(b+ k)− g(b) = kg′(b+ kθ); 0 < θ < 1.
i.e. f(a+ h, b+ k)− f(a+ h, b) = kfy(a+ h, b+ kθ)...(1)

Since fy is continuous at (a, b)
lim

(h,k)→(0,0)
fy(a+ h, b+ kθ) = fy(a, b)

lim
(h,k)→(0,0)

fy(a+ h, b+ kθ)− fy(a, b) = 0

If we put fy(a+ h, b+ kθ)− fy(a, b) = ψ(h, k)
lim

(h,k)→(0,0)
ψ(h, k) = 0.

With this equation (1) becomes,
f(a+ h, b+ k)− f(a+ h, b) = k(fy(a, b) + ψ(h, k))
f(a+ h, b+ k)− f(a+ h, b) = kfy(a, b) + kψ(h, k)...(2)

Now, we have, fx(a, b) = lim
h→0

f(a+h,b)−f(a,b)
h

∴ lim
h→0

[f(a+h,b)−f(a,b)
h

− fx(a, b)] = 0

Put φ(h) = f(a+h,b)−f(a,b)
h

− fx(a, b) then lim
h→0

φ(h) = 0 i.e. φ(h)→ 0 as (h, k)→ (0, 0).

∴ f(a+ h, b)− f(a, b) = hfx(a, b) + hφ(h, k)...(3)
Putting (2), (3) and (1) in ∗ we get

4f = f(a + h, b + k) − f(a, b) = hfx(a, b) + kfy(a, b) + hφ(h, k) + kψ(h, k); where
φ(h, k)→ 0 and ψ(h, k)→ 0 as (h, k)→ (0, 0).
Hence, by the definition of differentiability, f(x, y) is differentiable at (a, b).
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Differentials : Let z = f(x, y) be a differentiable function of two variables x and y.
The differential or total differential of z; denoted by dz; is defined as
dz = ∂z

∂x
dx+ ∂z

∂y
dy

where dx and dy (are called the differentials of x and y) are two new independent vari-
ables.
Suppose z = f(x, y) is differentiable at (x0, y0). Then
4z = f(x0 +4x, y0 +4y)− f(x0, y0)
4z = ∂z

∂x
4x+ ∂z

∂y
4y + ε14x+ ε24y;

ε1, ε2 → 0 as (4x,4y)→ (0, 0).
For small values of 4x&4y
4z = dz + ε14x+ ε24y; where
4x,4y are increments in x and y respectively.
Hence, the increment 4z is approximately equal to the differential dz.
i.e. we can compute the approximate value of the given function by using differential.
Formula is
f(x0 +4x, y0 +4y) ≈ f(x0, y0) + df ; where
df = ∂f

∂x
(x0, y0)4x+ ∂f

∂y
(x0, y0)4y

Working Rule : Given any function f(x, y)
(i) Decide x0, y0 and 4x,4y.
(ii) Find f(x0, y0).
(iii)(∂f

∂x
)(x0, y0), (∂f

∂y
)(x0, y0) obtain these values. (iv) Use the formula.
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Example 1: Using differentials find the approximate value of (2.01)(3.02)2.
Solution :
Let f(x, y) = xy2

f(x0 +4x, y0 +4y) = (2.01)(3.02)2

Here, x0 = 2, y0 = 3 and 4x = 0.01,4y = 0.02.
f(x0, y0) = f(2, 3) = 2(3)2 = 18
fx(x0, y0) = (∂f

∂x
)(x0, y0) = y2

0

∴ fx(2, 3) = 32 = 9
fy(x0, y0) = (∂f

∂y
)(x0, y0) = 2x0y0

∴ fy(2, 3) = 2(2)(3)12.
∴ df = fx(x0, y0)4x+ fy(x0, y0)4y
∴ df = y2

04x+ 2x0y04y
= 9(0.01) + 12(0.02)

df = 0.33.
Hence
f(x0 +4x, y0 +4y) ≈ f(x0, y0) + df
∴ (2.01)(3.02)2 ≈ 18 + 0.33

= 18.33.

Example 2: Find approximate value of
√

4.1
25.01

by using differentials.

Solution :
Let f(x, y) =

√
x
y
.

Here, x0 = 4, y0 = 25 and 4x = 0.1,4 = 0.01

∴ f(x0, y0) = f(4.25) =
√

4
25

= 2
5
.

fx(x0, y0) = 1
2
√
x0,y0

∴ fx(4.25) = 1
2
√

4.25
= 1

20

fy(x0, y0) = −1
2

√
x0
y30

∴ fy(4.25) = −1
2

√
4

253
= −1

25

∴ df = fx(x0, y0)4x+ fy(x0, y0)4y
∴ 1

20
(0.1)− 1

125
(0.01)

= 0.005− 0.00008
∴ df = 0.00492.
Hence,
f(x0 +4x, y0 +4y) ≈ f(x0, y0) + df

∴
√

4.1
25.01
≈ 2

3
+ 0.00492

= 0.4 + 0.00492 = 0.40492.
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Composite Function:Chain Rule
For a function of one variable y = f(x) and = φ(t) then y = f(φ(t)) is called composite
function of t
its derivative w.r.t. t is given by dy

dt
= dy

dx
.dx
dt

which is known as chain rule.
For a function of two variables also we have composite function and chain rule.
1. Suppose u = f(x, y) is a function of two independent variables x, y and x, y are them-
selves function of single variable t
that is x = φ(t) and y = ψ(t) then u = f(φ(t), ψ(t)) = F (t)
is called a composite function of a single variable t
For eg. 1.u = f(x, y) = x+ y and x = at, y = bt2

then u = f(at, bt2) = at+ bt2 is a composite function of a single variable t
2. u = sin(x+ y2) and x = cost, y = t2

then u = sin(cost+ t4) is a composite function of t
3. Suppose W = f(u, v) is a function of two variables u, v and u, v are functions of two
variables x, y
that is u = φ(x, y) and v = ψ(x, y)
W = f [φ(x, y), ψ(x, y)] = F (x, y) is called a composite function of two variables x, y
for eg. W = f(u, v) and u = x+ y, v = x− y then
W = f(x+ y, x− y) is a composite function of two variables x and y.
4. Suppose Z = f(x) is a function in one variable x and x itself a function of two vari-
ables u and v i.e. x = φ(u, v)
then Z = f(φ(u, v)) is a composite function of two variables u and v.
for eg. Z = f(u) : u = ax+ by then Z = f(ax+ by) is a composite function of x and y.
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Theorem : Chain Rule (I):-
If u = f(x, y) is a differentiable function of x and y, x = φ(t) and y = ψ(t) are themselves
a functions of single variable t then composite function u = f [φ(t), ψ(t)] is a differentiable
function of a single variable t and its total derivative is given by
du

dt
=
∂u

∂x

dx

dt
+
∂u

∂y

dy

dt
.

Proof: Given: u = f(x, y) and x = φ(t) and y = ψ(t).
Let 4x = φ(t +4t) − φ(t) and 4y = ψ(t +4t) − ψ(t) be the increments in x and y
respectively corresponds to an increment 4t in t
Since u = f(x, y) is differentiable, then by increment theorem

4u =
∂u

∂x
4x+

∂u

∂y
4y + ε14x+ ε24y.....(1)

where ε1 → 0, ε2 → 0 as (4x,4y)→ (0, 0)

4u = (
∂u

∂x
+ ε1)4x+ (

∂u

∂y
+ ε2)4y

4u
4t

= (
∂u

∂x
+ ε1)

4x
4t

+ (
∂u

∂y
+ ε2)

4y
4t

.....(2)

As x = φ(t), y = ψ(t) are differentiable functions in t
∴ they are continuous at t and hence 4x,4y → 0 as 4→ 0
∴ ε1 → 0, ε2 → 0 as 4→ 0

Also lim
4t→0

4x
4t

=
dx

dt
and lim

4t→0

4y
4t

=
dy

dt
Taking limit as 4t→ 0 of equation (2)

lim
4t→0

4u
4t

= lim
4t→0

(
∂u

∂x
+ ε1) lim

4t→0

4x
4t

+ lim
4t→0

(
∂u

∂y
+ ε2) lim

4t→0

4y
4t

∴
du

dt
=
∂u

∂x

dx

dt
+
∂u

∂y

dy

dt
.
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Theorem: Chain Rule(II):-
If w = f(u, v) is a differentiable function of two variables u and v ,u = φ(x, y) and
v = ψ(x, y) are differentiable functions of x and y then the composite function W =
f [φ(x, y), ψ(x, y)] = F (x, y) is also differentiable and
∂w

∂x
=
∂w

∂u

∂u

∂x
+
∂w

∂v

∂v

∂x

∂w

∂y
=
∂w

∂u

∂u

∂y
+
∂w

∂v

∂v

∂y

Proof:Since u, v, w are differentiable functions, by Chain rule(I)

4u =
∂u

∂x
4x+

∂u

∂y
4y + ε14x+ ε24y.....(1)

4v =
∂v

∂x
4x+

∂v

∂y
4y + ε34x+ ε44y.....(2)

4w =
∂w

∂x
4u+

∂w

∂y
4v + ε54u+ ε64v.....(3)

Where ε1, ε2, ε3, ε4 → 0 as (4x,4y)→ (0, 0)
and ε5, ε6 → 0 as (4u,4v)→ (0, 0)

Now by (3) 4w = (
∂w

∂u
+ ε5)4u+ (

∂w

∂v
+ ε6)4v

4w = (
∂w

∂u
+ε5)(

∂u

∂x
4x+

∂u

∂y
4y+ε14x+ε24y)+(

∂w

∂v
+ε6)(

∂v

∂x
4x+

∂v

∂y
4y+ε34x+ε44y)

4w =
∂w

∂u

∂u

∂x
4x +

∂w

∂u

∂u

∂y
4y +

∂w

∂u
ε14x +

∂w

∂u
ε24y +

∂u

∂x
4xε5 +

∂u

∂y
4yε5 + ε1ε54x +

ε2ε54y+
∂w

∂v

∂v

∂x
4x+

∂w

∂v

∂v

∂y
4y+

∂w

∂u
ε34x+

∂w

∂v
ε44y+

∂v

∂x
4xε6 +

∂v

∂y
4yε6 + ε3ε64x+

ε4ε64y
4w = (

∂w

∂u

∂u

∂x
+
∂w

∂v

∂v

∂x
)4x+ (

∂w

∂u

∂u

∂y
+
∂w

∂v

∂v

∂y
)4y + α14x+ α24y.....(4)

where α1, α2 are sum of terms containing the factors ε1, ε2, ..., ε6
∴ α1 → 0, α2 → 0 as (4x,4y)→ (0, 0).
From (4) w = F (x, y) is differentiable at (x, y)
Now put 4y = 0 and divide by 4x;

Equation (4) becomes
4w
4x

=
∂w

∂u

∂u

∂x
+
∂w

∂v

∂v

∂x
+ α1

Taking limit as 4x→ 0 we get
∂w

∂x
=
∂w

∂u

∂u

∂x
+
∂w

∂v

∂v

∂x
Similarly put 4x = 0 and divide by 4y to equation (4); taking limit as 4y → 0 we get
4w
4y

=
∂w

∂u

∂u

∂y
+
∂w

∂v

∂v

∂y
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Theorem: Chain rule for the functions of three variables
If W = f(x, y, z) is a differentiable function of three variables x, y, z and x, y, z are dif-
ferentiable functions of single variable t then the composite function w = f(t) is also
differentiable function of t and its derivative is
dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt

Theorem: Chain rule for the functions of many variables
If W = f(x1, x2, ...xn) is a differentiable function of finite set of variables x1, x2, ...xn and
each x1, x2, ...xn is a differentiable function of finite set of variables p1, p2, ...pr. Then
w = f [p1, p2, ...pr] is differentiable function of finite set of variables p1, p2, ...pr and we
have
∂w

∂p1

=
∂w

∂x1

∂x1

∂p1

+
∂w

∂x2

∂x2

∂p1

+
∂w

∂x3

∂x3

∂p1

+ ...+
∂w

∂xn

∂xn
∂p1

∂w

∂p2

=
∂w

∂x1

∂x1

∂p2

+
∂w

∂x2

∂x2

∂p2

+
∂w

∂x3

∂x3

∂p2

+ ...+
∂w

∂xn

∂xn
∂p2

and so on
∂w

∂pr
=
∂w

∂x1

∂x1

∂pr
+
∂w

∂x2

∂x2

∂pr
+
∂w

∂x3

∂x3

∂pr
+ ...+

∂w

∂xn

∂xn
∂pr
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Examples:

1. If w = f(ax+ by) then show that b
∂w

∂x
− a∂w

∂y
= 0

Solution: We have given that w = f(ax+ by) and put u = ax+ by then w = f(u).
Then by chain rule
∂w

∂x
=
dw

du
.
∂u

∂x
= a

dw

du

∴ b
∂w

∂x
= ab

dw

du
.....(1)

∂w

∂y
=
dw

du
.
∂u

∂y
= b

dw

du

∴ a
∂w

∂y
= ab

dw

du
.....(2)

From (1) and (2)

b
∂w

∂x
− a∂w

∂y
= 0

2. If z = f(y + ax) + g(y − ax) prove that zxx = a2zyy, assuming that second order
partial derivatives of f, g exist and a is constant.
Solution: Put u = y + ax, v = y − ax hence z = f(u) + g(v)
Where u = φ(y, x) = y + ax, v = ψ(y, x) = y − ax
∴ by chain rule

zx =
∂z

∂x
=
∂z

∂u

∂u

∂x
+
∂z

∂v

∂v

∂x
= f ′(u)a+ g′(v)(−a)

zx = a(f ′(u)− g′(v)).....(1)
Again differentiating w.r.t. x

zxx =
∂z

∂x2
=

∂

∂u
[af ′(u)− g′(v)].

∂u

∂x
+

∂

∂v
[af ′(u)− g′(v)].

∂v

∂x
zxx = a2f”(u) + a2g”(v).....(2)

Now zy =
∂z

∂y
=
∂z

∂u

∂u

∂y
+
∂z

∂v

∂v

∂y
= f ′(u) + g′(v).....(3)

Differentiating again w.r.t. y

zyy =
∂z

∂y2
= f”(u) + g”(v)....(4)

from (2) and (4)
zxx = a2zyy

3.If u = xy2 log( y
x
) then find du.

Solution: We know that du = ∂u
∂x
dx+ ∂u

∂y
dy.....(1)

Now ∂u
∂x

= y2 log( y
x
) + xy2 1

y/x
(−1
x2

)y = y2 log( y
x
)− y2....(2)

∂u
∂y

= 2xy log( y
x
) + xy2 1

y/x
( 1
x
) = 2xy log( y

x
) + xy....(3)

from (2) and (3)
du = [y2 log( y

x
)− y2]dx+ [2xy log( y

x
) + xy]dy

14



4.if u = u(
y − x
xy

,
z − x
xz

), Show that x2∂u

∂x
+ y2∂u

∂y
+ z2∂u

∂z
= 0

Solution: Let u = u(y−x
xy
, z−x
xz

)

Put r = y−x
xy

= 1
x
− 1

y

and s = z−x
xz

= 1
x
− 1

z

∴ u = u(r, s) is a composite function of x and y

∴ by chain rule
∂u

∂x
=
∂u

∂r

∂r

∂x
+
∂u

∂s

∂s

∂x
.....(1)

Since
∂r

∂x
= − 1

x2
,
∂r

∂y
=

1

y2
,
∂r

∂z
= 0

And
∂s

∂x
= − 1

x2
,
∂s

∂y
= 0,

∂s

∂z
=

1

z2

Equation (1) becomes

x2∂u

∂x
= −∂u

∂r
− ∂u

∂s
.....(2)

∂u

∂y
=
∂u

∂r

∂r

∂y
+
∂u

∂s

∂s

∂y

∴ y2∂u

∂y
=
∂u

∂r
....(3)

Also
∂u

∂z
=
∂u

∂r

∂r

∂z
+
∂u

∂s

∂s

∂z

∴ z2∂u

∂z
=
∂u

∂s
.....(4)

Adding (2),(3),(4) we get

x2∂u

∂x
+ y2∂u

∂y
+ z2∂u

∂z
= 0

5. If u = f(r) and x = rcosθ, y = rsinθ then prove that
∂2u

∂x2
+
∂2u

∂x2
= f”(r) +

1

r
f ′(r).

Solution: Given that u = f(r) and x = rcosθ, y = rsinθ then r2 =2 +y2 and ∂r
∂x

= x
r

Now
∂u

∂x
=
df

dr

∂r

∂x
and

∂u

∂y
=
df

dr

∂r

∂y

∴
∂u

∂x
=
df

dr

x

r
∂2u

∂x2
= (

d2f

dr2

∂r

∂x
)
x

r
+
df

dr
(
r − x ∂r

∂x

r2
)

∂2u

∂x2
= (

d2f

dr2

x

r
)
x

r
+
df

dr
(
r − x ∂r

∂x

r2
)

∂2u

∂x2
= (

d2f

dr2

x2r2

+

df

dr

r2 − x2

r3

∂2u

∂x2
= (

d2f

dr2

x2r2

+

df

dr

y2

r3
.....(1)

Similarly
∂2u

∂x2
= (

d2f

dr2

y2r2

+

df

dr

x2

r3
.....(2)

Adding (1) and (2) we get
∂2u

∂x2
+
∂2u

∂y2
= (

d2f

dr2

x2 + y2r2

+

df

dr

x2 + y2

r3
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∂2u

∂x2
+
∂2u

∂y2
=
d2f

dr2
.1 +

df

dr

r2

r3

∂2u

∂x2
+
∂2u

∂y2
=
d2f

dr2
+
df

dr

1

r
∂2u

∂x2
+
∂2u

∂y2
= f”(r) +

1

r
f ′(r)
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Directional derivatives:
If f(x, y) is differentiable function and x = φ(t), y = ψ(t) then df

dt
= ∂f

∂x
dx
dt

+ ∂f
∂y

dy
dt

gives
the rate of change of f with respect to t. This depends on the direction of motion along
the curve. If curve is a straight line and parameter t is the arc length measured from
point p0(x0, y0) in the direction of a given unit vector u then df

dt
is the rate of change of

f with respect to distance in the direction of ū. These values of df
dt

through p0 are called
directional derivatives.
Definition: Directional derivatives in the planes
Suppose the function f(x, y) is defined on a region R in the xy plane. p0(x0, y0) is a point
in R and u = u1ī + u2j̄ is a unit vector. x = x0 + su1, y = y0 + su2 are the parametric
equations of a line passing through p0 parallel to ū; where s is the arc length measured
from point p0 in the direction of ū.
The derivative of f at point p0(x0, y0) in the direction of ū is

(
df

ds
)u,p0 = lim

s→0
(
f(x0 + su1, y0 + su2)− f(x0, y0)

s
) if R.H.S. exist is called the directional

derivative of f at point p0. It is denoted by (Duf)p0 .

Note: If ū = ī then (Duf)p0 gives ∂f
∂x

at p0, and If ū = ū then (Duf)p0 gives ∂f
∂y

at
p0
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Examples:
1. Find the directional derivative of f(x, y) = x2 + xy at point (1, 2) in th direction of a
unit vector ū = 1√

2
ī+ 1√

2j̄

Solution: Let f(x, y) = x2 + xy, p0 = (1, 2) and ū = u1ī+ u2j̄ = 1√
2
ī+ 1√

2
j̄

Since (
df

ds
)u,p0 = lim

s→0
(
f(x0 + su1, y0 + su2)− f(x0, y0)

s
)

= lim
s→0

(
f(1 + s√

2
, 2 + 2√

2
)− f(1, 2)

s
)

= lim
s→0

[
((1 + s√

2
)2 + (1 + s√

2
)(2 + s√

2
))− (12 + 1.2)

s
] = lim

s→0
[

5√
2

+ s2

s
]

= lims→0(
5√
2

+ s) =
5√
2

∴ ( df
ds

)ū,p0 = (Duf)p0 = 5√
2

2. Find the directional derivative of f(, y, z) = x2 + 2y2 + 3z2 at the point (1, 1, 0)
in the direction of ū = ī− j̄ + 2k̄
Solution: Let f(, y, z) = x2 + 2y2 + 3z2 , p0 = (1, 1, 0) and ū = ī− j̄ + 2k̄ Since ū is not
a unit vector so û = 1√

6
(̄i− j̄ + 2k̄)

(
df

ds
)û,p0 = lim

s→0
[
f(x0 + su1, y0 + su2, z0 + su3)− f(x0, y0, z0)

s
]

= lim
s→0

[
f(1 + s√

6
, 1− s√

6
, 2s√

6
)− f(1, 1, 0)

s
]

= lim
s→0

[
((1 + s√

6
)2 + 2(1− s√

6
)2 + 3( 2s√

6
)2)− 3

s
]

= lim
s→0

[
(−2s√

6
+ 15s2√

6
)

s
]

= lim
s→0

(
−2√

6
+

15s√
6

) =
−2√

6

∴ (
df

ds
)û,p0 = (Duf)p0 =

−2√
6
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The Gradient Vector Definition: The gradient vector of f(x, y) at a point p0(x0, y0)

is the vector Of =
∂f

∂x
ī+

∂f

∂y
j̄

Note: We can find the directional derivative of f in the direction of ū at point p0 using
the dot product of ū with gradient of f at p0 :

Since by chain rule we can write (
df

ds
)u,p0 = (

∂f

∂x
)p0 .

dx

ds
+ (

∂f

∂y
)p0 .

dy

ds

(
df

ds
)u,p0 = (

∂f

∂x
)p0 .u1 + (

∂f

∂y
)p0 .u2

(
df

ds
)u,p0 = ((

∂f

∂x
)p0 ī+ (

∂f

∂y
)p0 .j̄).(u1ī+ u2j̄)

19



Examples:
1. Find the directional derivative of f(x, y) = xey + cos(xy) at the point (2, 0) in the
direction of 3̄i− 4j̄.
Solution: Let f(x, y) = xey + cos(xy) , p0 = (2, 0) and ū = 3̄i− 4j̄ Since u is not a unit
vector so
û = 3

5
ī− 4

5
j̄

Now fx = ey − sin(xy).y and fy = xey − sin(xy).x
∴ fx(2, 0) = 1, fy(2, 0) = 2
The gradient of f at (2, 0) = (Of)(2,0) = fx(2, 0)̄i+ fy(2, 0)j̄ = ī+ 2j̄
The directional derivative of f at (2, 0) in the direction of 3̄i− 4j̄ is

(
df

ds
)û,p0 = (Duf)p0 = (Of)p0 .û = (i+ 2j).(3

5
ī− 4

5
j̄) = −1

2. Find the derivative of f(x, y) = 2xy − 2y2 at the point (5, 5) in the direction of
4̄i+ 3j̄.
Solution: Let f(x, y) = 2xy − 2y2, p0 = (5, 5) and ū = 4̄i + 3j̄ Since u is not a unit
vector so û = 4

5
ī+ 3

5
j̄

Now fx = 2y, fx(5, 5) = 10, fy = 2x− 6y, fy(5, 5) = −20
∴ the gradient of f at (5, 5) = (Of)(5,5) = 10̄i− 20j̄

∴ ( df
dx

)û,p0 = (Duf)p0 = (Of)p0 .û = (10̄i− 20j̄)(4
5
ī+ 3

5
j̄) = −4.

3. Find the derivative of f(x, y, z) = x2 + 2y2 − 3z2 at the point (1, 1, 1) in the di-
rection of ī+ j̄ + k̄.
Solution: Let f(x, y, z) = x2 + 2y2 − 3z2, p0 = (1, 1, 1) and ū = ī+ j̄ + k̄
Since ū is not a unit vector so û = 1√

3
(̄i+ j̄ + k̄)

Now fx = 2x, fx(1, 1, 1) = 2, fy = 4y, fy(1, 1, 1) = 4, fz = −6z, fz(1, 1, 1) = −6
The gradient of f at (1, 1, 1) = (Of)(1,1,1) = 2̄i+ 4j̄ − 6k̄
The derivative of f at point p0 is
( df
ds

)û,p0 = (Duf)p0 = (Of)p0 .û = (2̄i+ 4j̄ − 6k̄). 1√
3
(̄i+ j̄ + k̄) = 0
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Properties of directional derivatives:
The directional derivative definition revels that
Duf = Of.u = |Of ||u|cosθ = |Of |cosθ As u is unit vector.
It has following properties: 1.The function f increase most rapidly when cosθ = 1 or
when ū is in the direction of Of .
that is Duf = |Of |cos(0) = |Of |.
2.The function f decreases most rapidly when cosθ = −1 or when ū is in the direction of
−Of .
that is Duf = |Of |cos(π) = −|Of |.
3.Any direction ū orthogonal to the gradient is a direction of zero change in f when θ = π

2

that is Duf = |Of |cos(π
2
) = |Of |.0 = 0.

Examples:
1. Find the direction in which f(x, y) = x2

2
+ y2

2

a)increase most rapidly at point (1,1)
b)decrease most rapidly at point (1,1)
c)What are the directions of zero change in f at (1,1)?

Solution: We have f(x, y) = x2

2
+ y2

2

a)(Of)(1,1) = fx(1, 1)̄i+ fy(1, 1)j̄ = ī+ j̄
Its direction is |(Of)(1,1)| = 1√

2
ī+ 1√

2
j̄ = ū

b) f decreases most rapidly in the direction of −(Of)(1,1)

−ū = − 1√
2
ī− 1√

2
j̄

c) The directions of zero change at (1, 1) are the directions orthogonal to Of
∴ n̄ = − 1√

2
ī+ 1√

2
j̄ and −n̄ = 1√

2
ī− 1√

2
j̄

2. a) Find the derivative of f(x, y, z) = x3 − xy2 − z at point (1, 1, 0) in the direc-
tion of 2̄i− 3j̄ + 6k̄
b) In what direction f change most rapidly at point (1, 1, 0) and what are the rate of
change in these directions?
Solution: a) Suppose ū = 2̄i− 3j̄ + 6k̄ and û = 2

7
ī− 3

7
j̄ + 6

7
k̄

fx(1, 1, 0) = 2, fy(1, 1, 0) = −2, fz(1, 1, 0) = −1
∴ (Of)(1,1,0) = 2̄i− 2j̄ − k̄
Hence the derivative of f at given point is
(Duf)(1,1,0) = (Of)(1,1,0)û = (2̄i− 2j̄ − k̄).(2

7
ī− 3

7
j̄ + 6

7
k̄) = 4

7

b)The function f increase most rapidly in the direction of Of = 2̄i−2j̄− k̄ and decreases
most rapidly in the direction of −Of . The rate of change in the directions are |Of | = 3
and −|Of | = −3
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