
Partial derivatives

Partial derivative of a function w.r.t.x
A partial derivative of function f(x, y) w.r.t. x at point (x0, y0) is
∂f

∂x
|(x0,y0) = lim

h→0

f(x0 + h, y0)− f(x0, y0)

h
, if limit exists

It is denoted by fx(x0, y0)
Partial derivative of a function w.r.t.y
A partial derivative of function f(x, y) w.r.t. y at point (x0, y0) is
∂f

∂y
|(x0,y0) = lim

k→0

f(x0, y0 + k)− f(x0, y0)

k
, if limit exists

It is denoted by fy(x0, y0)

Examples:
1. Find partial derivatives of the following functions.
a)f(x, y) = 5xy − 7x2 − y2 + 3x− 6y + 2 at point (2,−3)
b)f(x, y) = sin2(x− 3y)
Solution: (a) Let f(x, y) = 5xy − 7x2 − y2 + 3x− 6y + 2 at point (2,−3)
∂f
∂x

= 5y − 14x+ 3
∂f
∂x
|(2,−3) = 5(−3)− 14(2) + 3 = −40

∂f
∂y

= 5x− 2y − 6
∂f
∂y
|(2,−3) = 5(2)− 2(−3)− 6 = 10

(b) Let f(x, y) = sin2(x− 3y)
∂f
∂x

= 2sin(x− 3y)∂[sin(x−3y)]
∂x

∂f
∂x

= 2sin(x− 3y)cos(x− 3y)∂(x−3y)
∂x

∂f
∂x

= 2sin(x− 3y)cos(x− 3y)(1)
∂f
∂x

= sin[2(x− 3y)]
∂f
∂y

= 2sin(x− 3y)∂[sin(x−3y)]
∂y

∂f
∂x

= 2sin(x− 3y)cos(x− 3y)∂(x−3y)
∂y

∂f
∂x

= 2sin(x− 3y)cos(x− 3y)(−3)
∂f
∂x

= −3sin[2(x− 3y)]

2.Find fx, fy, fz of the following functions

(a)f(x, y, z) = x−
√
y2 + z2

(b)f(x, y, z) = sin−1(xyz)
Solution: (a) Let f(x, y, z) = x−

√
y2 + z2

fx = 1

fy =
∂(x−
√

y2+z2)

∂y

fy = − 2y

2
√

y2+z2
= − y√

y2+z2

fz =
∂(x−
√

y2+z2)

∂z

fz = − 1

2
√

y2+z2

∂(y2+z2)
∂z

= − 2z

2
√

y2+z2
= − z√

y2+z2

(b) Let f(x, y, z) = sin−1(xyz)
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fx = 1√
1−x2y2z2

∂(xyz)
∂x

= yz√
1−x2y2z2

fy = xz√
1−x2y2z2

fz = xy√
1−x2y2z2

3. By using limit definition of partial derivatives, Compute the partial derivatives of
f(x, y) = 4 + 2x− 3y − xy2 at (2,−1)
Solution: Let f(x, y) = 4 + 2x− 3y − xy2

Since
∂f

∂x
|(x0,y0) = lim

h→0

f(x0 + h, y0)− f(x0, y0)

h
∂f

∂x
|(−2,1) = lim

h→0

f(−2 + h, 1)− f(−2, 1)

h

= lim
h→0

[4 + 2(−2 + h)− 3− (−2 + h)]− [4− 4− 3 + 2]

h

= lim
h→0

[4− 4 + 2h− 3 + 2− h]− [−1]

h

= lim
h→0

h

h
= 1

Similarly
∂f

∂y
|(x0,y0) = lim

k→0

f(x0, y0 + k)− f(x0, y0)

k
∂f

∂x
|(−2,1) = lim

k→0

f(−2, 1 + k)− f(−2, 1)

k
∂f

∂y
|(−2,1) lim

k→0

[4 + 2(−2)− 3(1 + k)− (−2)(1 + k)2]− []− 1

k

lim
k→0

2k2 + k

k
= lim

k→0
2k + 1 = 1

4. Find ∂x
∂z

at (1,−1,−3), if the equation xz + ylnx− x2 + 4 = 0 defines x as a function
of y, z ad partial derivative exists.
Solution: Let xz + ylnx− x2 + 4 = 0
differentiating partially w.r.t. z
x+ z ∂x

∂z
+ y

x
∂x
∂z
− 2x∂x

∂z
= 0

∴ x+ (z + y
x
− 2x)∂x

∂z
= 0

∴ ∂x
∂z

= −z
zx+y−2x2

At a point (1,−1,−3)
∂x
∂z

= 1
6

5. If resistors of R1, R2, R3 ohms are connected i parallel to make an R ohm resistors,
the value of R as 1

R
= 1

R1
+ 1

R2
+ 1

R3
. Find ∂R

∂R2
, when R1 = 30, R2 = 45, R3 = 90ohms.

Solution: Since 1
R

= 1
R1

+ 1
R2

+ 1
R3

∂
∂R2

( 1
R

) = ∂
∂R2

( 1
R1

+ 1
R2

+ 1
R3

)

− 1
R2

∂
∂R2

= − 1
R2

2

∂
∂R2

= ( R
R2

)2

If R1 = 30, R2 = 45, R3 = 90ohms ∂R
∂R2

= 1/9

Second order partial derivatives
If we partially differentiate f(x, y) twice , we get second order partial derivatives.
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It is denoted by
∂
∂x

(∂f
∂x

) = ∂2f
∂x2 = (fx)x = fxx = fx2

∂
∂x

(∂f
∂y

) = ∂2f
∂x∂y

= (fy)x = fyx
∂
∂y

(∂f
∂x

) = ∂2f
∂y∂x

= (fx)y = fxy
∂
∂y

(∂f
∂y

) = ∂2f
∂y2

= (fy)y = fyy = fy2

The second order partial derivative at point (x0, y0) are defined as

fxx(x0, y0) = lim
h→0

fx(x0 + h, y0)− fx(x0, y0)

h

fxy(x0, y0) = lim
k→0

fx(x0, y0 + k)− fx(x0, y0)

k

fyx(x0, y0) = lim
h→0

fy(x0 + h, y0)− fy(x0, y0)
h

fyy(x0, y0) = lim
k→0

fy(x0, y0 + k)− fy(x0, y0)
k

Example
1. Find all second order partial derivatives of function f(x, y) = tan−1( y

x
)

Solution: Let f(x, y) = tan−1( y
x
)

∂f

∂x
=

1

1 + ( y
x
)2
∂

∂x
(
y

x
)

=
x2

x2 + y2
(
−y
x2

)

=
−y

x2 + y2

∂f

∂y
=

1

1 + ( y
x
)2
∂

∂y
(
y

x
)

=
x2

x2 + y2
(

1

x2
)

=
x

x2 + y2

∂f

∂x
=

1

1 + ( y
x
)2
∂

∂x
(
y

x
)

=
x2

x2 + y2
(
−y
x2

)

=
−y

x2 + y2

∂2f

∂x2
=

∂

∂x
(
∂f

∂x
) =

∂

∂x
(
−y

x2 + y2
) =

2xy

(x2 + y2)2

∂2f

∂x∂y
=

∂

∂x
(
∂f

∂y
) =

∂

∂x
(

x

x2 + y2
) =

y2 − x2

(x2 + y2)2

Similarly
∂2f

∂y∂x
=

y2 − x2

(x2 + y2)2

∂2f

∂y2
=

∂

∂y
(
∂f

∂y
) =

∂

∂x
(

x

x2 + y2
) =

−2xy

(x2 + y2)2

3



2.Verify that Wxy = Wyx for W = ex + xlny + ylnx
Solution: let W = ex + xlny + ylnx
∂W

∂x
= Wx = ex + lny +

y

x
∂W

∂x
= Wy =

x

y
+ lnx

∂2W

∂x∂y
= Wyx =

∂

∂x
(
x

y
+ lnx) =

1

y
+

1

x
∂2W

∂y∂x
= Wxy =

∂

∂y
(ex +

y

x
+ lny) =

1

y
+

1

x
Wxy = Wyx

Theorem:The Mixed derivative theorem (Clairaut’s) theorem
Statement: If f(x, y) and its partial derivatives fx, fy, fxy, fyx are defined throughout an
open region containing a point (a, b) and all are continuous at (a, b) then fxy(a, b) =
fyx(a, b)
Proof: Let fx, fy, fxy, fyx are defined throughout an open region containing a point (a, b)
and all are continuous at (a, b)
Claim: fxy(a, b) = fyx(a, b)
Since f, fx, fy, fxy, fyx are defined in the interior of rectangle R in the xy plane containing
point (a, b)
Let h and k be the numbers such that the point (a+h, b+k) lies also in the interior of R
Consider 4 = F (a+ h)− F (a)...(1)
Where F (x) = f(x, b+ k)− f(x, b)...(2)
Apply the mean value theorem to F on (a, a + h), which is continuous because it is dif-
ferentiable. ∴ equation (1) becomes
4 = hF ′(c1), c1 ∈ (a, a+ h)......(3)
From equation (2) F ′(x) = fx(x, b+ k)− fx(x, b)
Equation (3) becomes 4 = h[fx(c1, b+ k)− fx(c1, b)].....(4)
Apply mean value theorem to function g(y) = fx(c1, y)
∴ g(b+ k)− g(b) = kg′(d1), d1 ∈ (b, b+ k)
∴ fx(c1, b+ k)− fx(c1, b) = kfxy(c1, d1)
equation (4) becomes 4 = hkfxy(c1, d1) for some point (c1, d1) ∈ R′.....(5)
now by using equation (2) equation (1) becomes
4 = f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b)
4 = [f(a+ h, b+ k)− f(a, b+ k)]− [f(a+ h, b)− f(a, b)]
Let 4 = φ(b+ k)− φ(b).....(6)
where φ(y) = f(a+ h, y)− f(a, y).....(7)
Apply mean value theorem to equation (6) we get
4 = kφ′(d2), d2 ∈ (b, b+ k).....(8)
from equation (7)
φ′(y) = fy(a+ h, y)− fy(a, y)....(9)
equation (8) becomes
4 = k[fy(a+ h, d2)− fy(a, d2)]
Apply mean value theorem to fy(x.d2) we get
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fy(a+ h, d2)− fy(a, d2) = hfyx(c2, d2), c2 ∈ (a, a+ h)
∴ 4 = khfyx(c2, d2).....(10)
from equation (5) and (10)
fxy(c1, d1) = fyx(c2, d2)
where c1, d1 both lies in R′

Since fxy and fyx are both continuous at point (a, b)
∴ fxy(c1, d1) = fxy(a, b) + ε1
and ∴ fyx(c2, d2) = fyx(a, b) + ε2
Since (ε1, ε2)→ (0, 0) as (h, k)→ (0, 0)
∴ as(h, k)→ (0, 0)
fxy(a, b) = fyx(a, b)

Higher order Partial derivative
Higher order partial derivatives are fxyxx, fxxxx, fyyyyx
For example:Find fyxyz if f(x, y, z) = 1− 2xy2z + x2y
Solution: Let f(x, y, z) = 1− 2xy2z + x2y
First we differentiate f(x, y, z) with respect to y then x then y and then z
∴ fy = −4xyz + x2

fyx = −4yz + 2x
fyxy = −4z
fyxyz = −4

Example: Show that f(x, y, z) = 2z3 − 3(x2 + y2)z satisfies a Laplace equation.
Solution: Let f(x, y, z) = 2z3 − 3(x2 + y2)z
∂f

∂x
= −6xz

∂2f

∂x2
= −6z

∂f

∂y
= −6yz

∂2f

∂y2
= −6z

∂f

∂z
= 6z2 − 3(x2 + y2)

∂2f

∂z2
= 12z

∴
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
= −6z − 6z + 12z = 0
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