Partial derivatives

Partial derivative of a function w.r.t.x

A partial derivative of function $f(x, y)$ w.r.t. x at point (x_0, y_0) is $\frac{\partial f}{\partial x}|_{(x_0,y_0)} = \lim_{h \to 0}$ $f(x_0 + h, y_0) - f(x_0, y_0)$ h , if limit exists It is denoted by $f_x(x_0, y_0)$ Partial derivative of a function w.r.t.y A partial derivative of function $f(x, y)$ w.r.t. y at point (x_0, y_0) is $\frac{\partial f}{\partial y}|_{(x_0,y_0)} = \lim_{k \to 0}$ $f(x_0, y_0 + k) - f(x_0, y_0)$ k , if limit exists It is denoted by $f_y(x_0, y_0)$

Examples:

1. Find partial derivatives of the following functions.
\na)
$$
f(x, y) = 5xy - 7x^2 - y^2 + 3x - 6y + 2
$$
 at point $(2, -3)$
\nb) $f(x, y) = \sin^2(x - 3y)$
\nSolution: (a) Let $f(x, y) = 5xy - 7x^2 - y^2 + 3x - 6y + 2$ at point $(2, -3)$
\n $\frac{\partial f}{\partial x} = 5y - 14x + 3$
\n $\frac{\partial f}{\partial x}|_{(2, -3)} = 5(-3) - 14(2) + 3 = -40$
\n $\frac{\partial f}{\partial y} = 5x - 2y - 6$
\n $\frac{\partial f}{\partial y}|_{(2, -3)} = 5(2) - 2(-3) - 6 = 10$
\n(b) Let $f(x, y) = \sin^2(x - 3y)$
\n $\frac{\partial f}{\partial x} = 2\sin(x - 3y)\frac{\partial[\sin(x - 3y)]}{\partial x}$
\n $\frac{\partial f}{\partial x} = 2\sin(x - 3y)\cos(x - 3y)\frac{\partial(x - 3y)}{\partial x}$
\n $\frac{\partial f}{\partial x} = \sin[2(x - 3y)]$
\n $\frac{\partial f}{\partial x} = \sin[2(x - 3y)]$
\n $\frac{\partial f}{\partial x} = \sin[(2(x - 3y) - 3y)]$
\n $\frac{\partial f}{\partial y} = 2\sin(x - 3y)\cos(x - 3y)\frac{\partial(x - 3y)}{\partial y}$
\n $\frac{\partial f}{\partial x} = 2\sin(x - 3y)\cos(x - 3y)(-3)$
\n $\frac{\partial f}{\partial x} = -3\sin[2(x - 3y)]$

2. Find
$$
f_x
$$
, f_y , f_z of the following functions
\n(a) $f(x, y, z) = x - \sqrt{y^2 + z^2}$
\n(b) $f(x, y, z) = \sin^{-1}(xyz)$
\nSolution: (a) Let $f(x, y, z) = x - \sqrt{y^2 + z^2}$
\n $f_x = 1$
\n $f_y = \frac{\partial(x - \sqrt{y^2 + z^2})}{\partial y}$
\n $f_y = -\frac{2y}{2\sqrt{y^2 + z^2}} = -\frac{y}{\sqrt{y^2 + z^2}}$
\n $f_z = \frac{\partial(x - \sqrt{y^2 + z^2})}{\partial z}$
\n $f_z = -\frac{1}{2\sqrt{y^2 + z^2}} \frac{\partial(y^2 + z^2)}{\partial z} = -\frac{2z}{2\sqrt{y^2 + z^2}} = -\frac{z}{\sqrt{y^2 + z^2}}$
\n(b) Let $f(x, y, z) = \sin^{-1}(xyz)$

$$
f_x = \frac{1}{\sqrt{1 - x^2 y^2 z^2}} \frac{\partial (xyz)}{\partial x} = \frac{yz}{\sqrt{1 - x^2 y^2 z^2}}
$$

\n
$$
f_y = \frac{xz}{\sqrt{1 - x^2 y^2 z^2}}
$$

\n
$$
f_z = \frac{xy}{\sqrt{1 - x^2 y^2 z^2}}
$$

3. By using limit definition of partial derivatives, Compute the partial derivatives of $f(x, y) = 4 + 2x - 3y - xy^2$ at $(2, -1)$

Solution: Let
$$
f(x, y) = 4 + 2x - 3y - xy^2
$$

\nSince $\frac{\partial f}{\partial x}|_{(x_0, y_0)} = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$
\n $\frac{\partial f}{\partial x}|_{(-2,1)} = \lim_{h \to 0} \frac{f(-2 + h, 1) - f(-2, 1)}{h}$
\n $= \lim_{h \to 0} \frac{[4 + 2(-2 + h) - 3 - (-2 + h)] - [4 - 4 - 3 + 2]}{h}$
\n $= \lim_{h \to 0} \frac{[4 - 4 + 2h - 3 + 2 - h] - [-1]}{h}$
\n $= \lim_{h \to 0} \frac{h}{h} = 1$
\nSimilarly $\frac{\partial f}{\partial y}|_{(x_0, y_0)} = \lim_{k \to 0} \frac{f(x_0, y_0 + k) - f(x_0, y_0)}{k}$
\n $\frac{\partial f}{\partial x}|_{(-2,1)} = \lim_{k \to 0} \frac{f(-2, 1 + k) - f(-2, 1)}{k}$
\n $\frac{\partial f}{\partial y}|_{(-2,1)} \lim_{k \to 0} \frac{[4 + 2(-2) - 3(1 + k) - (-2)(1 + k)^2] - [1 - 1]}{k}$
\n $\lim_{k \to 0} \frac{2k^2 + k}{k} = \lim_{k \to 0} 2k + 1 = 1$

4. Find $\frac{\partial x}{\partial z}$ at $(1, -1, -3)$, if the equation $xz + ylnx - x^2 + 4 = 0$ defines x as a function of y, z ad partial derivative exists.

Solution: Let $xz + ylnx - x^2 + 4 = 0$ differentiating partially w.r.t. z $x + z \frac{\partial x}{\partial z} + \frac{y}{x}$ x $\frac{\partial x}{\partial z} - 2x \frac{\partial x}{\partial z} = 0$ $\therefore x + (z + \frac{y}{x} - 2x) \frac{\partial x}{\partial z} = 0$ $\therefore \frac{\partial x}{\partial z} = \frac{z}{zx+y}$ $\overline{zx+y-2x^2}$ At a point $(1, -1, -3)$ $\frac{\partial x}{\partial z}=\frac{1}{6}$ 6

5. If resistors of R_1, R_2, R_3 ohms are connected i parallel to make an R ohm resistors, the value of R as $\frac{1}{R} = \frac{1}{R}$ $\frac{1}{R_1} + \frac{1}{R_1}$ $\frac{1}{R_2} + \frac{1}{R_1}$ $\frac{1}{R_3}$. Find $\frac{\partial R}{\partial R_2}$, when $R_1 = 30, R_2 = 45, R_3 = 900hms$. **Solution:** Since $\frac{1}{R} = \frac{1}{R}$ $\frac{1}{R_1} + \frac{1}{R_1}$ $\frac{1}{R_2} + \frac{1}{R_1}$ $\frac{\partial}{\partial}$ (1) = $\frac{\partial}{\partial}$ (1 + 1 + 1) $\frac{\partial}{\partial R_2}(\frac{1}{R}$ $\frac{1}{R}$) = $\frac{\partial}{\partial R_2}(\frac{1}{R})$ $\frac{1}{R_1} + \frac{1}{R_1}$ $\frac{1}{R_2} + \frac{1}{R_1}$ $\frac{1}{R_3}$ $-\frac{1}{R}$ $\overline{R^2}$ ∂ $\frac{\partial}{\partial R_2} = -\frac{1}{R_2^2}$ ∂ $\frac{\partial}{\partial R_2} = (\frac{R}{R_2})^2$ If $R_1 = 30, R_2 = 45, R_3 = 90 ohms \frac{\partial R}{\partial R_2} = 1/9$

Second order partial derivatives

If we partially differentiate $f(x, y)$ twice, we get second order partial derivatives.

It is denoted by $\frac{\partial}{\partial x}(\frac{\partial f}{\partial x})=\frac{\partial^2 f}{\partial x^2}=(f_x)_x=f_{xx}=f_{x^2}$ $\frac{\partial}{\partial x}(\frac{\partial f}{\partial y}) = \frac{\partial^2 f}{\partial x \partial y} = (f_y)_x = f_{yx}$ $\frac{\partial}{\partial y}(\frac{\partial f}{\partial x}) = \frac{\partial^2 f}{\partial y \partial x} = (f_x)_y = f_{xy}$ $\frac{\partial}{\partial y}(\frac{\partial f}{\partial y})=\frac{\partial^2 f}{\partial y^2}=(f_y)_y=f_{yy}=f_{y^2}$ The second order partial derivative at point (x_0, y_0) are defined as

$$
f_{xx}(x_0, y_0) = \lim_{h \to 0} \frac{f_x(x_0 + h, y_0) - f_x(x_0, y_0)}{h}
$$

\n
$$
f_{xy}(x_0, y_0) = \lim_{k \to 0} \frac{f_x(x_0, y_0 + k) - f_x(x_0, y_0)}{k}
$$

\n
$$
f_{yx}(x_0, y_0) = \lim_{h \to 0} \frac{f_y(x_0 + h, y_0) - f_y(x_0, y_0)}{h}
$$

\n
$$
f_{yy}(x_0, y_0) = \lim_{k \to 0} \frac{f_y(x_0, y_0 + k) - f_y(x_0, y_0)}{k}
$$

Example

1. Find all second order partial derivatives of function $f(x, y) = \tan^{-1}(\frac{y}{x})$ $\frac{y}{x}$ **Solution:** Let $f(x, y) = tan^{-1}(\frac{y}{x})$ $\frac{y}{x}$

$$
\frac{\partial f}{\partial x} = \frac{1}{1 + (\frac{y}{x})^2} \frac{\partial}{\partial x} (\frac{y}{x})
$$
\n
$$
= \frac{x^2}{x^2 + y^2} (\frac{-y}{x^2})
$$
\n
$$
= \frac{-y}{x^2 + y^2}
$$
\n
$$
\frac{\partial f}{\partial y} = \frac{1}{1 + (\frac{y}{x})^2} \frac{\partial}{\partial y} (\frac{y}{x})
$$
\n
$$
= \frac{x^2}{x^2 + y^2} (\frac{1}{x^2})
$$
\n
$$
= \frac{x^2}{x^2 + y^2}
$$
\n
$$
\frac{\partial f}{\partial x} = \frac{1}{1 + (\frac{y}{x})^2} \frac{\partial}{\partial x} (\frac{y}{x})
$$
\n
$$
= \frac{x^2}{x^2 + y^2} (\frac{-y}{x^2})
$$
\n
$$
= \frac{-y}{x^2 + y^2}
$$
\n
$$
\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (\frac{\partial f}{\partial x}) = \frac{\partial}{\partial x} (\frac{-y}{x^2 + y^2}) = \frac{2xy}{(x^2 + y^2)^2}
$$
\n
$$
\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} (\frac{\partial f}{\partial y}) = \frac{\partial}{\partial x} (\frac{x}{x^2 + y^2}) = \frac{y^2 - x^2}{(x^2 + y^2)^2}
$$
\nSimilarly, $\frac{\partial^2 f}{\partial y \partial x} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$ \n
$$
\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (\frac{\partial f}{\partial y}) = \frac{\partial}{\partial x} (\frac{x}{x^2 + y^2}) = \frac{-2xy}{(x^2 + y^2)^2}
$$

2. Verify that $W_{xy} = W_{yx}$ for $W = e^x + xlny + ylnx$ **Solution:** let $W = e^x + xlny + ylnx$ ∂W $\frac{\partial W}{\partial x} = W_x = e^x + ln y + \frac{y}{x}$ \boldsymbol{x} ∂W $\frac{\partial W}{\partial x} = W_y =$ \overline{x} \hat{y} $+ ln x$ $\partial^2 W$ $\frac{\partial V}{\partial x \partial y} = W_{yx} =$ ∂ $rac{\delta}{\partial x}$ (\overline{x} \hat{y} $+ ln x$) = $\frac{1}{2}$ \hat{y} $+$ 1 \overline{x} $\partial^2 W$ $\frac{\partial W}{\partial y \partial x} = W_{xy} =$ ∂ $rac{\partial}{\partial y}(e^x + \frac{y}{x})$ \boldsymbol{x} $+ ln y) = \frac{1}{x}$ \hat{y} $+$ 1 \boldsymbol{x} $\check{W}_{x} = W_{yx}$

Theorem:The Mixed derivative theorem (Clairaut's) theorem

Statement: If $f(x, y)$ and its partial derivatives f_x, f_y, f_{xy}, f_{yx} are defined throughout an open region containing a point (a, b) and all are continuous at (a, b) then $f_{xy}(a, b)$ $f_{ux}(a, b)$

Proof: Let f_x, f_y, f_{xy}, f_{yx} are defined throughout an open region containing a point (a, b) and all are continuous at (a, b)

Claim: $f_{xy}(a, b) = f_{yx}(a, b)$

Since $f, f_x, f_y, f_{xy}, f_{yx}$ are defined in the interior of rectangle R in the xy plane containing point (a, b)

Let h and k be the numbers such that the point $(a+h, b+k)$ lies also in the interior of R Consider $\triangle = F(a + h) - F(a)...(1)$

Where
$$
F(x) = f(x, b + k) - f(x, b)...(2)
$$

Apply the mean value theorem to F on $(a, a + h)$, which is continuous because it is differentiable. ∴ equation (1) becomes

 $\Delta = hF'(c_1), c_1 \in (a, a+h) \dots (3)$ From equation (2) $F'(x) = f_x(x, b + k) - f_x(x, b)$ Equation (3) becomes $\Delta = h[f_x(c_1, b + k) - f_x(c_1, b)] \dots (4)$ Apply mean value theorem to function $g(y) = f_x(c_1, y)$ ∴ $g(b+k) - g(b) = kg'(d_1), d_1 \in (b, b+k)$ ∴ $f_x(c_1, b + k) - f_x(c_1, b) = k f_{xy}(c_1, d_1)$ equation (4) becomes $\Delta = hk f_{xy}(c_1, d_1)$ for some point $(c_1, d_1) \in R'.....(5)$ now by using equation (2) equation (1) becomes $\Delta = f(a+h, b+k) - f(a+h, b) - f(a, b+k) + f(a, b)$ $\Delta = [f(a+h, b+k) - f(a, b+k)] - [f(a+h, b) - f(a, b)]$ Let $\Delta = \phi(b + k) - \phi(b)$(6) where $\phi(y) = f(a+h, y) - f(a, y)$(7) Apply mean value theorem to equation (6) we get $\Delta = k\phi'(d_2), d_2 \in (b, b+k).....(8)$ from equation (7) $\phi'(y) = f_y(a+h, y) - f_y(a, y) \dots (9)$ equation (8) becomes $\Delta = k[f_y(a+h, d_2) - f_y(a, d_2)]$ Apply mean value theorem to $f_y(x \cdot d_2)$ we get

 $f_y(a+h, d_2) - f_y(a, d_2) = hf_{yx}(c_2, d_2), c_2 \in (a, a+h)$ $\therefore \Delta = kh f_{vx}(c_2, d_2) \dots (10)$ from equation (5) and (10) $f_{xy}(c_1, d_1) = f_{yx}(c_2, d_2)$ where c_1, d_1 both lies in R' Since f_{xy} and f_{yx} are both continuous at point (a, b) $f_{xy}(c_1, d_1) = f_{xy}(a, b) + \epsilon_1$ and \therefore $f_{yx}(c_2, d_2) = f_{yx}(a, b) + \epsilon_2$ Since $(\epsilon_1, \epsilon_2) \rightarrow (0, 0)$ as $(h, k) \rightarrow (0, 0)$ \therefore as(h, k) \rightarrow (0, 0) $f_{xy}(a, b) = f_{yx}(a, b)$

Higher order Partial derivative

Higher order partial derivatives are $f_{xyxx}, f_{xxxx}, f_{yyyyx}$ For example: Find f_{yxyz} if $f(x, y, z) = 1 - 2xy^2z + x^2y$ Solution: Let $f(x, y, z) = 1 - 2xy^2z + x^2y$ First we differentiate $f(x, y, z)$ with respect to y then x then y and then z $\therefore f_y = -4xyz + x^2$ $f_{yx} = -4yz + 2x$ $f_{uxy} = -4z$ $f_{yxyz} = -4$

Example: Show that $f(x, y, z) = 2z^3 - 3(x^2 + y^2)z$ satisfies a Laplace equation. **Solution:** Let $f(x, y, z) = 2z^3 - 3(x^2 + y^2)z$

Solution: Let
$$
f(x, y, z) = 2z^2 - 3(x + y^2)z
$$

\n
$$
\frac{\partial f}{\partial x} = -6xz
$$
\n
$$
\frac{\partial^2 f}{\partial y^2} = -6yz
$$
\n
$$
\frac{\partial^2 f}{\partial y^2} = -6z
$$
\n
$$
\frac{\partial^2 f}{\partial z^2} = 6z^2 - 3(x^2 + y^2)
$$
\n
$$
\frac{\partial^2 f}{\partial z^2} = 12z
$$
\n
$$
\therefore \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = -6z - 6z + 12z = 0
$$