
Field Theory

13.1 Basic Theory of Field extension

Characteristic of a field F
Definition: Characteristic of a field is the smallest positive integer n such that n.1F = 0, if such a n exist
otherwise it is defined to bo 0.
Notation: char(F )
Example: Char(R) = 0
Char(Zp) = p

Proposition: Char(F ) is either 0 or a prime p.
Proof : If Char(F ) = 0 then done.
If Char(F ) = n where n is positive integer
To prove n is prime.
If n is composite say n = ab then n.1F = 0
ab.1F = 0
a.1F b.1F = 0
Since F is a field so F has no zero divisors
so either a.1F = 0 or b.1F = 0
which is not possible since n is smallest positive integer such that n.1F = 0
Therefore n should be a prime.

Prime Subfield
Definition: A prime subfield of a field F is the smallest subfield of F generated by the multiplicative identity
1F of F .
Note: If char(F ) = 0 then prime subfield of field F is Q.
If char(F ) = p then prime subfield of field F is F .
Example: Prime subfield of Q and R is Q.

Extension field
Definition: If K is a field containing te subfield F then K is said to be extension field of F .
Notation: K/F .

Degree of extension Definition: The degree of a field extension K/F is the dimension of K
as a vector space over F .
Notation :[K:F]

Proposition: Let φ : F → F ′ be homomorphism of fields. Then φ is either 0 or is injective,
so the image of φ is either 0 or isomorphic to F .
Proof :Let φ : F → F ′ be a homomorphism of fields such that φ(x) ≡ 0 then done.
If not then there exist x such that φ(x) 6= 0.
Since F ′ is a field so their exist inverse of φ(x).
i.e. φ(x).φ(x)−1 = 1
⇒ φ(x.x−1) = 1
φ(1) = 1
Suppose φ(x) = φ(y)
⇒ φ(x)− φ(y) = 0
⇒ φ(x− y) = 0
Now we have to show x− y = 0
Suppose x− y 6= 0 as F is a field so x− y have inverse in F
so (x− y)(x− y)−1 = 1
⇒ φ((x− y)(x− y)−1) = φ(1)



⇒ φ(x− y)φ((x− y)−1) = 1
Since φ(x− y) = 0 so we get 0 = 1
which is not possible
x− y = 0
so x = y
Hence φ is injective.

Theorem:Let F be a field and p(x) ∈ F [x] be an irreducible polynomial. Then there exist a field K
containing an isomorphic copy of F in which p(x) has a root.
Proof : Let F be a field and p(x) be an irreducible polynomial in F [x].
As p(x) is an irreducible polynomial so ideal generated by < p(x) > is maximal ideal in F [x].
Then F [x]/ < p(x) > is a field.
Consider K = F [x]/ < p(x) >.
Consider canonical projection π of F [x] to K.
Now consider φ : π|F : F → K which is homomorphism and not identically zero. Since φ(1) = 1. Since If
there exist a homomorphism between two fields then that map is either identcally zero or is injective.
That is image of φ is isomorphic to F .
Therefore there exit an isomorphic copy of F in K.
Now to show that p(x) has a root in K.
Consider p(x) = a0 + a1x+ a2x

2 + ...+ anx
n.

So p(x̄) = a0 + a1x̄+ a2x̄
2 + ...+ anx̄

n.
p(x̄) = a0 + a1(x+ p(x)) + a2(x2 + p(x)) + ...+ an(xn + p(x)).
p(x̄) = p(x)(modp(x))
p(x̄) = 0 in K.
So p(x) has a root in K.
Therefore there exist a field K which contains an isomorphic copy of p(x) and a root of p(x).

Theorem: Let p(x) be an irreducible polynomial of degree n over the field F and K be the field
F [x]/ < p(x) >.Let θ ≡ mod (p(x)) ∈ K. Then the elements 1, θ, θ2, ...θn−1 are a basis for K as a vector
space over F , so the degree of extension is n, i.e. [K : F ] = n
Hence K = {a0 + a1θ + a2θ

2 + ...+ an−1θ
n−1|ai ∈ F}.

Proof : Let F and K be a field such that K = F [x]/ < p(x) >.
To show that: 1, θ, θ2, ...θn−1 are a basis for K as a vector space over F .
i.e. to show that: 1, θ, θ2, ...θn−1 spans K over F and is linearly independent.
Now as F is a field so F [x] is an Euclidean domain.
Let a(x) ∈ F [x] be a polynomial.
Apply division algorithm to a(x) and p(x) then there exist q(x) and r(x) such that a(x) = p(x)q(x) + r(x),
where r(x) ≡ 0 or degr(x) < n.
so we get a(x) ≡ r(x)mod(p(x))
This shows that every polynomial in K represents by a polynomial of degree less than n.
Hence the images 1, θ, θ2, ...θn−1 of 1, x, x2...xn−1 spans K over F
Now to show they are linearly independent.
Suppose b0 + b1θ + b2θ

2 + ...+ bn−1θ
n−1 = 0

this is equivalent to b0 + b1x+ b2x
2 + ...+ bn−1x

n−1 ≡ 0 mod p(x)
i.e. p(x) divides b0 + b1x+ b2x

2 + ...+ bn−1x
n−1 in F [x] As p(x) is of degree n so this is possible only when

all b′is are zero. Therefore 1, θ, θ2, ...θn−1 are a basis for K as a vector space over F .

Definition: Field generated by α, β, ... over F
Let K be an extension of the field F and let α, β, ... ∈ K be a collection of elements of K.Then the smallest
subfield of K containing both F and the elements α, β, ... ∈ K denoted by F (α, β, ...) is called the field
generated by α, β, ... over F .
Simple extension
Definition: If the field K is generated by a single element α over F , K = F (α), then K is said to be simple
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extension of F and the element α is called a primitive element for the extension.

Theorem:Let F be a field and let p(x) ∈ F [x] be an irreducible polynomial. Suppose K is an exten-
sion field of F containing a root of p(x). Let F (α) be a subfield of K generated over F by α. Then
F (α) ≈ F [x]/ < p(x) >.
Proof : Let φ : F [x]→ F (α) be a function defined by
φ(a(x)) = a(α)
Since φ(x)[a(x) + b(x)] = φ[(a+ b)(x)] = [a+ b](α) = a(α) + b(α)
= φ(a(x)) + φ(b(x))
and φ([a(x)b(x)]) = φ(c(x)) = c(α) = a(α)b(α).
Therefore φ is homomorphism. Now to find kernel of φ
ker(φ) = {p(x) ∈ F [x]|φ(p(x)) = 0}
ker(φ) = {p(x) ∈ F [x]|p(α) = 0}
Since p(α) = 0 so p(x) is in the kernel of φ As p(x) is an irreducible so F [x]/ < p(x) > is a field and φ is an
identity map on F so it is not zero map.
So φ is an isomorphism with its image. So φ is an isomorphism.
Therefore F (α) ≈ F [x]/ < p(x) >.

Theorem:Let φ : F → F ′ be an isomorphism of fields.Let p(x) be an irreducible polynomial in F [x]
and let p′(x) ∈ F ′[x] be the polynomial obtained by applying the map φ to the coefficients of p(x).Let α be
a root of p(x) and β be a root of p′(x). Then there is an isomorphism σ : F (α) → F ′(β) mapping α to β
such that σ restricted to F is the isomorphism φ.
Proof : Since φ be an isomorphism between F [x] and F ′[x] so image of maximal ideal < p(x) > is maximal
ideal < p′(x) > so there is an isomorphism between F [x]/ < p(x) > and F ′[x]/ < p′(x) >. and since
F [x]/ < p(x) >≈ F (α) and F ′[x]/ < p′(x) >≈ F ′(β).
Therefore F (α) ≈ F ′(β).

13.2 Algebraic Extensions
Algebraic element: Definition: The element α ∈ K is said to be algebraic over F if α is root of some
polynomial f(x) ∈ F [x].
Transcendental element: Definition:If α is not algebraic over F that is α is not a root of any polynomial
over F is called Transcendental element.
Algebraic extension: An extension K/F is said to be algebraic extension if every element of K is algebraic
over F .

Proposition: Let α be algebraic over F . Then there is unique monic irreducible polynomial f(x) ∈ F [x]
which has α as a root. A polynomial g(x) ∈ F [x] has α as a root if and if f(x) divides g(x) ∈ F [x].
Proof : Let α be algebraic over F so suppose α satisfies a polynomial h(x) of minimal degree in F [x]. As F
is a field so without loss of generality assume that h(x) is monic.
Now suppose h(x) is reducible then h(x) = a(x)b(x) such that degree of a(x) and b(x) is less than degree of
h(x).
Then h(α) = a(α)b(α), as h(α) = 0
so a(α)b(α) = 0 but F is a field so either a(α) = 0 or b(α) = 0
which is not possible since h(x) is minimal degree polynomial
So h(x) is irreducible.
Therefore h(x) is an irreducible monic polynomial having α as a root.
Now suppose g(x) ∈ F [x] is any polynomial having α as a root.
Then by Euclidean algorithm there exists q(x) and r(x) ∈ F [x] such that
h(x) = q(x)g(x) + r(x) with deg r(x) < deg g(x).
Then f(α) = q(α)g(α) + r(α).
Since α is root of h(x) and g(x) so r(α) = 0
Which contradict to the minimality of h(x) unless r(x) = 0
Therefore g(x) divides h(x).
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Now to prove h(x) is unique.
Suppose m(x) be another polynomial which satisfies the above conditions then m(x) divides h(x) and h(x)
divides m(x).
So m(x) = h(x). Hence there is unique monic irreducible polynomial which satisfied by α.

Corollary:If L/F extension of fields and α is algebraic over both F and L then minimal polynomial of
α over L divides minimal polynomial of α over F in L[x].
Proof : Let L/F is an extension of fields and as α is algebraic over F and L so there exist a minimal
polynomial over F and L say f(x) and g(x) respectively.
Since As f(x) ∈ F [x] and L is an extension of F so f(x) ∈ L[x] so g(x) divides f(x) as g(x) is a minimal
polynomial for α in L.
Minimal Polynomial for α over F Definition:The polynomial of minimal degree which is unique monic
and irreducible satisfied by α is called minimal polynomial for α over F .
Proposition: Let α be algebraic over field F and let F (α) be the field generated by α over F .
Then F (α) ≈ F [x]/ < f(x) >
so that in particular [F (α) : F ] = deg f(x) = degα.
i.e. the degree of α over F is the degree of extension it generates over F .
Proof : Since F (α) ≈ F [x]/ < p(x) > where p(x) is an irreducible polynomial over F satisfied by α so here
f(x) is a minimal polynomial for α so F (α) ≈ F [x]/ < f(x) >.
Proposition: The element α is algebraic over F if and only if the simple extension F (α)/F is finite.
Proof : Suppose α is algebraic over F .
Since if α is algebraic over F then the degree of extension F (α)/F is the degree of minimal polynomial for
α over F .
Since degree of polynomial is finite so degree of extension F (α)/F is finite.
Conversely, suppose degree of extension of F (α)/F is finite say [F (α) : F ] = n
Consider 1, α, α2, ..., αn i.e. n + 1 elements of F (α) which are linearly dependent over F so there exists
b0, b1, ..., bn ∈ F not all zero such that b0 + b1α+ b2α+ ...+ bnα = 0
So α is root of nonzero polynomial over F
hence α is algebraic over F .
Corollary: If the extension K/F is finite then it is algebraic.
Proof : If α ∈ K then F (α) is a subfield of K.
So [F (α) : F ] ≤ [K : F ].
Since degree of extension of K/F is finite so degree of extension of F (α)/F is finite
hence α is algebraic over F .

Quadratic extension over field of characteristic 6= 2:
Let F be a field of characteristic 6= 2 and let K be an extension of F such that [K : F ] = 2
Let α ∈ K such that α /∈ F so there exist a polynomial of degree 2 say f(x) = x2 + bx+ c.

So α = −b±
√
b2−4c
2 .

As b ∈ F so b
2 ∈ F and b2 − 4ac is not a perfect square So F (α) = F (

√
b2 − 4c) = K.

Theorem: Let F ⊆ K ⊆ L be fields.Then [L : F ] = [L : K][K : F ].
that is extension degrees are multiplicative, where if one side of equation is infinite
the other side is also infinite.
Proof : Suppose degree of extension are finite say [L : K] = m and [K : F ] = n .
So the number of elements in the basis for L over K is m and K over F is n say
α1, α2, ..., αm be a basis for L over K and
β1, β2, ..., βn be a basis for K over F .
So every element of L can be written as linear combination of elements of basis.
say x ∈ L so x = a1α1 + a2α2 + ...+ amαm where ai ∈ K
also every ai is linear combination of β′is that is
ai = bi1β1 + bi2β2 + ...+ binβn where i = 1, 2, ...,m
and bij are the elements of F
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If we substitute the values of ai in x so we get
∑

i=1,2,...,mj=1,2,...,n

bijαiβj

so these αiβj are total mn elements
Since we have to show that [L : F ] = m.n So consider linear combination∑
i=1,2,...,mj=1,2,...,n

bijαiβj = 0 where all bij are in F

since this linear combination is nothing but a1α1 + a2α2 + ...+ amαm = 0
Since α′is are the basis for L over K so all coefficients ai = 0
so bi1β1 + bi2β2 + ...+ binβn = 0 where i = 1, 2, ...,m
Since βj j = 1, 2, ..., n form a basis for K over F .
so every coefficient is equal to 0 that is bij = 0 for all i and j
So αiβj are linearly independent over F and
Since x ∈ L can be written as linear combination of elements over F
Hence αiβj forms a basis for L over F .
that is [L : F ] = m.n = [L : K][K : F ]
Now if [K : F ] is infinite then there are infinitely many elements of K, so elements of L which are linearly
independent over F , so that [L : F ] is infinite.
Similarly if [L : K] is infinite there are infinitely many elements of L linearly independent over Kso certainly
linearly independent over F , so [L : F ] is infinite
Hence if both [L : K] and [K : F ] are finite then [L : F ] is finite and if [L : F ] is infinite then atleast one of
them is infinite.

Corollary: Suppose L/F is a finite extension and let K be any subfield of L containing F , F ⊂ K ⊂ L.
Then [K : F ] divides [L : F ].
Proof : Since F ⊂ K ⊂ L so [L : F ] = [L : K][K : F ]
Hence [K : F ] divides [L : F ].

Finitely generated extension:
Definition: An extension K/F is finitely generated if there are elements α1, α2, ..., αk in K such that
K = F (α1, α2, ..., αk).

Lemma:F (α, β) = (F (α))(β)
Proof : Since F (α) is contained in F (α, β) and also β ∈ F (α, beta)
so (F (α))(β) ⊂ F (α, β).
Now since (F (α))(β) contains F, α, β but F (α, β) is the smallest field which contains this elements
so F (α, β) ⊂ (F (α))(β).
We can generalize this theorem as
F (α1, α2, ..., αk) = (F (α1, α2, ..., αk−1)(αk)

Theorem: The extension K/F is finite if and only if K is generated by finite number of algebraic ele-
ments over F .
Proof:Suppose K/F is finite that is say [K : F ] = n so there are n elements in the basis
Suppose α1, α2, ..., αn be a basis for K as a vector space over F .
Since F (αi) is a subfield of K for i = 1, 2, ...n
[F (αi) : F ] divides [K : F ] for i = 1, 2, ..., n
so each αi is algebraic over F
Since α1, α2, ..., αn be a basis for K so K is generated by αi

That is K is generated by finite number of algebraic elements over F .
Conversely suppose K is generated by finite number of algebraic elements over F .
To show K/F is finite.
Let α1 ∈ K be an algebraic element over F then the simple extension F (α1)/F is finite
now as α2 ∈ K is also algebraic so (F (α1))(α2)/F is finite
since (F (α1))(α2) = F (α1, α2) so F (α1, α2)/F is finite.
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since K is generated by finite number of algebraic elements so Hence K = F (α1, α2, ..., αn)/F is finite.

Corollary: Suppose α and β are algebraic over F . Then α± β, αβ, α/β for β 6= 0 are all algebraic.
Proof: Since F (α, β) contain this all elements as it is field
and since this field is generated by finite number of algebraic elements so is algebraic. hence α± β, αβ, α/β.

Corollary: Let L/F be an arbitrary extension. Then the collection of elements of L that are algebraic
over F form a subfield K of L.
Proof: Let K be collection of all algebraic elements of L over F
Let α, β ∈ K that is α, β are algebraic hence α±β, αβ, α/β for β 6= 0 are all algebraic. So α±β, αβ, α/β ∈ K.
hence K is a subfield of L.

Theorem: If K is algebraic over F and L is algebraic over K, then L is algebraic over F .
Proof: Let α be any element of L. Then α is algebraic over K so α satisfies some polynomial equation say
a0 + a1α+ a2α

2 + ...+ anα
n = 0. Where ai ∈ K

Now consider the field F (α, a0, a1, ..., an) generated over F by α and the coefficient of this polynomial.
SinceK/F is algebraic so the elements a0, a1, ..., an are all algebraic over hence the extension F (a0, a1, ..., an)/F
is finite.
and since α generates an extesnion of degree atmost n
since F (α, a0, a1, ..., an) = [F (α, a0, a1, ..., an) : F (a0, a1, ..., an)][F (a0, a1, ..., an) : F ]
So F (α, a0, a1, ..., an) is finite hence it is algebraic.
so α is algebraic over F .
Hence L is algebraic over F .

Composite field: Let K1 and K2 be two subfields of K then the composite field of K1 and K2 is the
smallest subfield of K conatining both K1 and K2 .
In general composite of any collection of subfield of K is the smallest subfield containing both K1 and K2.
Proposition: Let K1 and K2 be two finite extension of a field F contained in K. Then [K1K2 : F ] ≤
[K1 : F ][K2 : F ] with equality if and only if an F basis for one of the fields remains linearly independent
over the other fields. If α1, α2, ..., αn and β1, β2, ..., βm are bases for K1 and K2 over F respectively, then
the elements αiβj for i = 1, 2, ..., n and j = 1, 2, ...,m span K1K2 over F .
Proof: Since α1, α2, ..., αn and β1, β2, ..., βm are bases for K1 and K2 over F
so we can write K1K2 = F (α1, α2, ..., αn, β1, β2, ..., βm) = K1(β1, β2, ..., βm)
so β1, β2, ..., βm span K1K2 over K1

therefore [K1K2 : K1] ≤ m as m = [K2 : F ]
so [K1K2 : K1] ≤ [K2 : F ] here equality holds if and only if β1, β2, ..., βm are linearly independent over K1.
Since [K1K2 : F ] = [K1K2 : K1][K1 : F ]
Hence [K1K2 : F ] ≤ [K2 : F ][K1 : F ].

Corollary: Suppose that [K1 : F ] = n and [K2 : F ] = m where n and m are relatively prime. Then
[K1K2 : F ] = [K2 : F ][K1 : F ].
Proof: Since [K1K2 : F ] ≤ [K2 : F ][K1 : F ] so [K1K2 : F ] ≤ nm now since [K1K2 : F ] divisible by n and
m as K1 and K2 are subfield of K1K2 so it is divisible their least common multiple also. here (n,m) = 1 so
lcm of n and m is nm
so [K1K2 : F ] is divisible by nm that is nm ≤ [K1K2 : F ]
Hence [K1K2 : F ] = [K2 : F ][K1 : F ]

Splitting field and algebraic closures:
Splitting field:The extension field K of F is called a splitting field for the polynomial f(x) ∈ F [x] if f(x)
factors completely into linear factors in K[x] and f(x) does not factor completely into linear factors over
any proper subfield of K containing F .
Theorem: For any field F , if f(x) ∈ F [x] then there exist an extension K of F which is a splitting field for
f(x).
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Proof: Let f(x) be a polynomial in F [x] of degree n
First we will show that there exist an extension E of F for which f(x) splits completely into linear factors
by induction on n
For n = 1 that polynomial of degree one, so it has root in F only.
So here extension E = F . Therefore statement is true for n = 1
Now suppose n > 1 .
Assume that statement is true for all polynomials of degree less than n.
we have a polynomial which is either reducible or irreducible. If it is reducible and every factor is linear then
again E = F
Otherwise there exist atleast one irreducible factor which is of degree atleast two say p(x)
Since if polynomial is irreducible then we can find an extension in which this polynomial is reducible say
extension is E1.say α is root of this polynomial which is in E1.
Over E1 the polynomial f(x) has linear factor x− α.
then degree of remaining factor say f1(x) is n−1. by induction there exist and extension E of E1 containing
all the roots of f1(x). Since α ∈ E, E is an extension of F containing all the roots of f(x). Now let K be the
intersection of all the subfields of E containing F which also contain all roots of f(x). Then K is a splitting
field for f(x).
Normal extension : If K is an algebraic extension of F which is splitting field over F for a collection of
polynomials f(x) ∈ F [x] then K is called normal extension of F .

Proposition: A splitting field of a polynomial of degree n over F is of degree atmost n! over F .
Proof: Let f(x) ∈ F [x] be any polynomial of degree n
now attach one root of f(x) to the base field say the extension is F1.
So the degree of extension of F1 over F is atmost n. since degree is equal to n if f(x) is irreducible over F .
Over F1 the polynomial f(x) has atleast one linear factor so that any other root of f(x) satisfies an equation
of degree atmost n− 1 over F1.
If we adjoin again one of root to F1 so the degree of extension is atmost n− 1 .
In this way degree of extension of a splitting field is atmost n!.
Primitive nth root of unity: The generator of the cyclic group of all nth roots of unity is called primitive
nth root of unity.

Theorem: Let φ : F → F ′ be an isomorphism of fields. Let f(x) ∈ F [x] be any polynomial and let
f ′(x) ∈ F ′[x] be the polynomial obtained by φ to the coefficient of f(x).Let E be the splitting field for f(x)
over F and E′ be the splitting field for f ′(x) over F ′. Then the isomorphism φ extends to an isomorphism
σ : E → E′.
Proof: We will prove it by mathematical induction.
Since if φ : F → F ′ be an isomorphism then there exist an isomorphism between two rings that is F [x] to
F ′[x] by f(x) to f ′(x). So irreducible factor of f(x) corresponds to the irreducible factor of f ′(x).
now for n = 1 that is f(x) is a linear polynomial in F [x] so f ′(x) is a linear polynomial in F ′[x]that is f(x)
splits completely into linear factors in F [x] and f ′(x) splits completely into linear factors in F ′[x] so splitting
field for f(x) over F is E = F and splitting field for f ′(x) over F ′ is E′ = F ′. So in this case σ = φ so result
is true for n = 1.
Now suppose result is true for all polynomial of degree < n.
To prove for n
If f(x) has n linear factors then take E = F and E′ = F ′ so again σ = φ hence result is true. Now suppose
p(x) is an irreducible factor of f(x) of degree atleast 2 and p′(x) ne an corresponding irreducible factor
of f ′(x). now let α be a root of p(x) and β be a root of p′(x) the we can extend φ to an isomorphism
σ′ : F (α)→ F (β).
Let F1 = F (α) and F ′1 = F (β) so we have an isomorphism φ : F1 → F ′1. and f(x) = (x − α)f1(x) over
F1 and f1(x) has degree n − 1 similarly f ′(x) = (x − β)f ′1(x) over F ′1. Let E be the splitting field for the
polynomial f1(x) over F1 and E′ be the splitting field for the polynomial f ′1(x) over F ′1. so by induction there
exist an isomorphism between E and E′ say σ : E → E′ extending σ′ : F1 → F ′1. hence extending φ : F → F ′.
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Corollary: Any two splitting field for a polynomial f(x) ∈ F [x] are isomorphic.
Proof: Consider φ : F → F then splitting field E and E′ are isomorphic. That is take identity map.

Algebraic Closure: The field F̄ is called algebraic closure of F is F̄ is algebraic over F and if every
polynomial f(x) ∈ F [x] splits completely over F̄

Algebraically closed: The field K is said to be algebraically closed if every polynomial with coefficient in
K has a root in K.

Proposition: K = K̄ if and only if K is algebraically closed.
Proof: Let K be algebraically closed field then by definition every polynomial f(x) ∈ K[x] has a root in K.
So if α is a root of f(x) then α ∈ K so x − α ∈ K[x].and remaining factor is in K[x] so again root of f(x)
is in K hence linear factor is in K[x] so continuing in this way we get the polynomial f(x) splits completely
in K[x]. and since every element in K has a polynomial in K[x] which is satisfied by that element hence K
itself is an algebraic closure of K. That is K = K̄.
Conversely if K = K̄ then K itself is an algebraic closure of K means every polynomial in K[x] splits
completely in K[x] that is Every polynomial has a root in K so K is algebraically closed.

Proposition: Let F̄ be an algebraic closure of F . then F̄ is algebraically closed.
Proof: Let F̄ be an algebraic closure of F . To show F̄ is an algebraically closed that is to show every
polynomial in F̄ [x] has root in F̄ .
Now let f(x) be a polynomial in F̄ [x] and α be a root of f(x) then α generates an algebraic extension F̄ (α)
of F̄ since simple extension is algebraic. and F̄ is algebraic over F so F̄ (α) is an algebraic over F hence α
is algebraic over F so α ∈ F̄ . It is true for every root hence F̄ is algebraically closed.

Proposition: Let K be an algebraically closed field and let F be a subfield of K. Then the collection
of elements F̄ of K that are algebraic over F is an algebraic closure of F . an algebraic closure of F is unique
up to isomorphism.
Proof: Let K be an algebraically closed field and F be a subfield of K and F̄ be a collection of algebraic
elements of K over F .
Since every element in F̄ is algebraic so F̄ is an algebraic extension. Let f(x) be any polynomial in F [x] as
K is an algebraically closed field so f(x) splits completely in K[x]. Let x−α a linear factor of f(x) which is
in K[x]. as α is a root of f(x) so α is algebraic over F so α ∈ F̄ so every linear factor of f(x) has coefficient
in F̄ [x]. that is f(x) splits completely in F̄ [x] so F̄ is algebraic closure of F .

Separable and inseparable extensions:
Separable Polynomial: A polynomial f(x) ∈ F [x] is called a separable polynomial if it has no multiple
root. A Polynomial which is not separable is called inseparable polynomial.

Example: The polynomial x2 − 2 has two distinct roots as ±
√

2 so this polynomial is separable.and the
polynomial (x2 − 2)n for ≥ is inseparable since it has multiple roots as ±

√
2

Derivative of polynomial: Let f(x) ∈ F [x] be a polynomial such that f(x) = a0 +a1x+a2x
2 + ...+anx

n

then derivative is defined as Dxf(x) = a1 + 2a2x+ ...+ nanx
n−1.

Proposition: A polynomial f(x) has multiple root α if and only of α is a root of Dxf(x). That is f(x) and
Dxf(x) are both divisible by the minimal polynomial for α. In particular f(x) is separable if and only if it
is relatively prime to its derivative: (f(x), Dxf(x)) = 1
Proof: Suppose α is a multiple root of f(x) then we have to show α is also root of Dxf(x). So we can write
f(x) as f(x) = (x− α)ng(x) so Dxf(x) = n(x− α)n−1g(x) + (x− α)nDxg(x)
so α is a root of f(x)
Conversely suppose that α is a root of both f(x) and Dxf(x) then we have to show that α is a multiple root
of f(x). Since f(x) can be written as f(x) = (x− α)h(x)
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So the derivative is Dxf(x) = h(x) + (x−α)Dxh(x) since α is a root of its derivative so Dxf(α) = 0 so from
the above equation we get 0 = h(α) so α is a root of h(x) so h(x) = (x − α)h1(x) so f(x) = (x − α)2h1(x)
hence α is a multiple root of f(x).

Corollary: Every irreducible polynomial over a field of characteristic 0 is separable. A polynomial over
such a field is separable if and only if it is product of distinct irreducible polynomials.
Proof: Suppose F is a field of characteristic 0. and p(x) ∈ F [x] an irreducible polynomial of degree n. Then
the derivative Dxp(x) is of degree n − 1. Since p(x) is irreducible so up to constant factors 1 and p(x) are
the only factors of p(x). So Dxp(x) must be relatively prime to p(x) so p(x) is irreducible over F . and since
distinct irreducible have no common zero so it is separable.

Proposition: Let F be a field of characteristic p. Then for any a, b ∈ F, (a+ b)p = ap + bp and (ab)p = apbp

Proof: Since (a+ b)p = ap + Cp
1a

p−1b+ Cp
2a

p−2b2 + ...+ Cp
i a

p−ibi + ...+ bn

Since Cp
i = p!

i!(p−i)! so every coefficient is divisible by p hence equal to 0.

so (a+ b)p = ap + bp and (ab)p = apbp.
Frobenius endomorphism of F: The map φ : F → F defined by φ(a) = ap which is injective homomor-
phism is called Frobenius endomorphism.
Corollary: Suppose that F is a finite field of characteristic p then every element of F is a pth power in F .
Proof: Since φ : F → F defined by φ(a) = ap

To show: φ is isomorphism. Since this map is homomorphism. and if we have a function from field to
field then function is either zero or injective that is if function is not injective then it should be zero
map. Now to show it is injective suppose φ(a) = φ(b) such that a 6= b let k = a − b as a 6= b so
k 6= 0 so φ(k) = φ(a − b) = φ(a) − φ(b) = 0 since we can write any element xıF as x = k.k−1.x so
φ(x) = φ(k.k−1.x) = φ(k)φ(k−1.x) = 0 so this map is zero map. hence it map is not injective then it is zero
map but here map is not a zero map so it is injective.
Since function is from finite field to itself so it is surjective.hence this map is an isomorphism so any element
a can be of the form ap.

Proposition Every irreducible polynomial over a finite field is separable. A polynomial over such a field is
separable if and only if it is product of distinct irreducible polynomials.
Proof: Let F be a finite field with characteristic p. Suppose p(x) is an irreducible polynomial in F [x] we
have to show that it is separable
suppose p(x) is inseparable polynomial then p(x) = q(xp) for some polynomial q(x) ∈ F [x]. Let q(x) =
amx

m + am−1x
m−1 + ...+ a1x+ a0 where ai ∈ F since every element in F is pth power of element in F so

let ai = bpi
So p(x) = q(xp) = am(xp)m + am−1(xp)m−1 + ...a1(xp) + a0
= bpm(xp)m + bpm−1(xp)m−1 + ...+ bp1(xp) + bp0
= (bmx

m)p + (bm−1x
m−1)p + ...+ (b1x)p + bp0

= (bmx
m + bm−1x

m−1 + ...+ b1x+ b0)p

so p(x) is the pth power of a polynomial in F [x] which is contradiction to the irreducibility of p(x). And
since distinct irreducible do not have common zero’s so polynomial is separable.

Perfect Field : A field K of characteristic p is said to be perfect field if every element of K is a pth
power in K that is K = Kp. Any field of characteristic 0 is also called perfect field.

Separable field: A field K is said to be separable over F if every element of K is the root of a sepa-
rable polynomial over F . A field which is not separable is inseparable.
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