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Chapter 1: Divisibility

Divisibility

Definition: An integer b is divisible by an integer a, not zero, if there is an integer x such that b = ax.
Notation: a|b

Theorem:

1. If a|b then a|bc for any integer c.
Proof: Suppose a|b so by definition there exists x such that b = ax
multiply by c on both side we get bc = axc say xc = y ⇒ bc = ay ⇒ a|bc.

2. If a|b and b|c then a|c.
Proof: Suppose a|b⇒ b = ax and b|c⇒ c = by
Consider c = by ⇒ c = axy = az, where z = xy so a|c.

3. If a|b and a|c then a|bx + cy for any integers x and y.
Proof: Suppose a|b⇒ b = am and a|c⇒ c = an
Multiply first equation by x and second by y we have
bx = amx and cy = any after adding we get
bx + cy = amx + any ⇒ bx + cy = a(mx + ny).
say mx + ny = z ⇒ bx + cy = az ⇒ a|bx + cy.

4. If a|b and b|a then a = ±b.
Proof: Suppose a|b⇒ b = ax and b|a⇒ a = by
Consider b = ax⇒ b = byx⇒ 1 = yx⇒ y = x = 1 or y = x = −1
Therefore a = ±b

5. If a|b, a > 0, b > 0 , then a ≤ b.
Proof: Suppose a|b⇒ b = ax for x ∈ Z
since a > 0, b > 0 so x > 0, As b = ax so b ≤ a.

6. If m 6= 0, a|b then ma|mb.
Proof: Suppose a|b⇒ b = ax now multiply by m on both side
we get mb = max⇒ ma|mb.

Division algorithm: Given any integers a and b, with a > 0, there exist unique integers
q and r such that b = aq + r where 0 ≤ r < a.
If a is not divisible by b, then r satisfies a stronger inequalities 0 < r < a.



Common divisor: The integer a is called a common divisor of b and c if a|b and a|c.

Note: Since there is only finite number of divisors of any nonzero integers, so there is only finite
number of common divisors of b and c, except in the case b = c = 0.

Greatest Common divisor: the greatest among all common divisors of b and c is called
greatest common divisor of b and c.
Notation: (b, c).
Note: The greatest common divisor (b, c) is defined for every pair of integers b, c
excpet b = c = 0 so (b, c) ≥ 1.

Theorem: If g is greatest common divisor of b and c, then there exist integers
x0 and y0 such that g = (b, c) = bx0 + cy0.

Proof: Consider the linear combinations bx + cy, where x, y ∈ Z
That is A = {bx + cy|x, y ∈ Z} so this set contains positive, negative values and also 0.
Choose x0, y0 so that bx0 + cy0 is the least positive integer say l = bx0 + cy0
To prove l = g
Suppose l does not divides b so there exist integers q and r such that b = lq + r
with 0 < r < l so we have r = b− lq = b− q(bx0 + cy0) = b(1− qx0) + c(−qy0) so r ∈ A
but r < l which is contradiction to the choice of l so l divides b.
Similarly we can prove that l divides c so l is common multiple of b and c.
Since g is greatest common divisor of b and c so b = gx and c = gy
As l = bx0 + cy0 = gxx0 + cyy0 = g(xx0 + yy0) = gz, where z = xx0+yy0 .
So g|l⇒ g ≤ l but since g is greatest common divisor and l is common divisor
so g < l is not posiible therefore g = l = bx0 + cy0.

Note:

I. We can generlize the theorem as for given integers b1, b2, ...bn not all zero, with greatest
common divisor g , there exist x1, x2, ...xn such that

g = (b1, b2, ...bn) =

n∑
j=1

bjxj

II. The greatest common divisor g of b and c can be characterized in the following two ways:
1. It is the least positive value of bx + cy, where x, y ∈ Z.
2. It is the positive common divisor of b and c that is divisible by every common divisor.

Theorem: For any positive integer m, (ma,mb) = m(a, b).
Proof: Since (ma,mb) = least positive value of max + mby
= m. least positive value of ax + by =m(a, b)

Theorem: If d|a and d|band d > 0, then (ad ,
b
d ) = 1

d (a, b)

If (a, b) = g, then (
a

g
,
b

g
) = 1

Proof: Since (ma,mb) = m(a, b) so here m = d, a = a/d, b = b/d

So we have (a, b) = (d
a

d
, d

b

d
) = d(

a

d
,
b

d
)⇒ (

a

d
,
b

d
) =

1

d
(a, b)

Since (
a

g
,
b

g
) =

1

g
(a, b)⇒ (

a

g
,
b

g
) =

1

g
.g = 1
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Theorem: If (a,m) = (b,m) = 1, then (ab,m) = 1.
Proof: Suppose (a,m) = (b,m) = 1 so there exists x0, y0, x1, y1 such that
ax0 + my0 = 1 and bx1 + my1 = 1
So we have ax0 + by0 = bx1 + my1 and ax0 = 1−my0 and bx1 = 1−my1
So that ax0bx1 = (1−my0)(1−my1) = 1−my1 −my0 + m2y0y1 = 1−my2,
where y2 = y0 + y1 −my0y1
abx0x1 + my2 = 1
If g|ab and g|m so g|abx0x1 + my2 ⇒ g|1
so any common divisor of ab and m divides 1 and 1|g
therefore g = 1 that is (ab,m) = 1.

Relatively Prime:
Definition: An integers a and b are said to be relatively prime if (a, b) = 1.
An integers a1, a2, ..., an are said to be relatively prime if (a1, a2, ..., an) = 1.
An integers a1, a2, ..., an are said to be relatively prime in pairs if (ai, aj) = 1
for all i = 1, 2, ..., n and j = 1, 2, ..., n with i 6= j.

Theorem: For any integer x, (a, b) = (b, a) = (a,−b) = (a, b + ax).
Proof: Let (a, b) = g so g|a and g|b such that g is greatest common divisor of
a and b So we can say that (b, a) = g
And as g|b so g| − b so g is common divisor of a and −b.
If suppose h is another common divisor of a and −b so h|b
that is h is common divisor of a and b also.
but (a, b) = g so that h|g so any common divisor of a and −b divides g
so g is greatest common divisor of a and −b therefore (a,−b) = g = (a, b).
Now suppose (a, b) = g and (a, b + ax) = d
So there exists x0 and y0 such that
g = ax0 + by0 ⇒ g = ax0 − axy0 + by0 + axy0 ⇒ g = a(x0 − xy0) + (b + ax)y0.
Since (a, b + ax) = d so d is the least positive value of linear combination of
a and b + ax so d|g
Since (a, b) = g ⇒ g|a and g|b so g|b + ax
so g is a common divisor of a and b + ax therefore g|d
hence g = d.

Theorem: If c|ab and (b, c) = 1, then c|a.
Proof: Since (ab, ac) = a(b, c) = a as (b, c) = 1
Since c|ab and c|ac so c is common divisor of ab and ac so c|(ab, ac)⇒ c|a.

The Euclidean algorithm:
For integers b and c if we apply division algorithm repetedly
we get series of equations

b = cq1 + r1, 0 < r1 < c,
c = cq2 + r2, 0 < r2 < r1,
r1 = r2q3 + r3, 0 < r3 < r2,

...
rj−2 = rj−1qj + rj , 0 < rj < rj−1,

rj−1 = rjqj+1

The greatest common divisor (b, c) of b and c is rj , the last nonzero remainder
in the division process. Values of x0 and y0 in (b, c) = bx0 + cy0

can be obtained by writing each ri as a linear combination of b and c.
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Proof: We can obtained the chain of equations by dividing c into b, r1 into c,
r2 into r1,...,rj into rj−1. This process stops when the remainder is zero.
To prove rj is the greatest common divisor g of b and c.
Since (b, c) = (b− cq1, c) = (r1, c) = (r1, c− r1q2) = (r1, r2) = (r1 − r2q3, r2) = (r3, r2).
Continuing in this way (b, c) = (rj−1, rj) = (rj , 0) = rj
If we continue by substiting value rj then rj−1 and so on
we get rj as a linear combination of b and c.

Least Common Multiple:
The nonzero integers a1, a2, ..., an have a common multiple b if ai|b for i = 1, 2, ..., n.
The least among all positive common multiples is called least common multiple.
Notation: [a1, a2, ..., an].

Theorem: If m is any common multiple of a1, a2, ..., an, then [a1, a2, ..., an]|m
Proof: Let a1, a2, ..., an be integers and h = [a1, a2, ..., an].
Suppose m is common multiple of a1, a2, ..., an.
Apply division algorithm to m and h, there exists q and r such that m = qh + r , 0 ≤ r < h.
To prove: r = 0
Suppose r 6= 0 , Since ai|h and ai|m for all i = 1, 2, ..., n
so ai|qh⇒ ai|m− qh⇒ ai|r.
So r is positive common multiple of ai and r < h,
which is contradiction to the fact that h is least common multiple of ai
so r = 0, therefore [a1, a2, ..., an]|m.

Theorem: If m > 0, [ma,mb] = m[a, b]. Also [a, b](a, b) = |ab|.
Proof: Let H = [ma,mb] and h = [a, b]. So a|h and b|h⇒ ma|mh and mb|mh
so mh is a common multiple of ma and mb but H is least common multiple of ma and mb
so H|mh. Now as ma|H and mb|H So a|H/m and b|H/m
So H/m is common multiple of a and b but h is least common multiple of a and b
so h|H/m⇒ mh|H. Therefore H = mh.
Now to prove: [a, b](a, b) = |ab|. It is sufficient to prove that [a, b] = [a,−b] and (a, b) = (a,−b).
Case-I: (a, b) = 1, Since [a, b] is a multiple of a say ma. Then b|ma and (a, b) = 1
so b|m⇒ ba|ma. Since a|ba and b|ba So ba is common multiple of a and b
but ma is least common muliple of a and b so ma|ba⇒ ba = ma = [a, b].
Case-II: (a, b) = g > 1 so we have (ag ,

b
g ) = 1

If we apply the above result we have [
a

g
,
b

g
](
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b
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.

Multiply by g2 on both side we get [a, b](a, b) = ab.
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Primes:
Definition: An integer p > 1 is called a prime number, if there is no divisor d of p satisfying 1 < d < p.
If an integer a > 1 is not a prime, it is called composite number.

Theorem: Every integer n > 1 can be expressed as a product of primes.
Proof: Let n be an integer.
If n is prime then n itself a product of prime.
If not, then n = n1n2, where 1 < n1, n2 < n
If n1 and n2 both are primes then done.
If n1 is not a prime then n1 = n3n4, where 1 < n3, n4 < n2

If n3, n4 both are primes then n = n3n4n2 which is product of primes.
Continuing in this way we have n = p1p2...pk and

since primes are not necessarily distinct so we have n = pα1
1 pα

2

2 ...pα
k

k

This representation of n as a product of primes is called
the canonical factoring of n into prime powers.

Theorem: If p|ab then p|a or p|b.
Generally, if p|a1a2...an, then p divides at least one factor ai of the product.
Proof: Let p|ab and p does not divides a then (p, a) = 1
since we have a|bc and (a, b) = 1 then a|c so here p|b.
In general if p|a1a2...an that is p|a1c where c = a2...an
then p|a1 or p|c. If p|c then continue the same procedure so we have p|ai for some i.

Fundamental Theorem of Arithmetic / Uniqe Factorization Theorem:
The factoring of any integer n > 1 into primes is unique apart from the order of primes.
Proof: Since every integer can be written as product of primes.
To show: This factorization is unique.
Suppose we have two factorization of n say
n = p1p2...pr and n = q1q2...qs
So we have p1p2...pr = q1q2...qs Since p1|p1p2...pr ⇒ p1|q1q2...qs
and p1 is prime,so p1|qj for some j = 1, 2, ...s say p1|q1 as both are primes p1 = q1
Similarly p2|q2 ⇒ p2 = q2 continuing in this way we have
pi = qj for all i = 1, 2, ...r and j = 1, 2, ..., s

Theorem: The number of primes are infinite.
Proof: Suppose number of primes are finite say p1, p2, ..., pr
Consider n = 1 + p1p2....pr, since n is not divisible by any of above primes.
Hence any prime divisor p of n is a rime distinct from p1, p2, ..., pr.
Since n is either a prime or has a prime factor p
so there is a prime distinct from p1, p2, ..., pr
Therefore number of primes is not exactly r that is primes are infinite.
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