
Chapter 3: Permutation Groups

Permutation of a set A
Definition: A permutation of a set A is a function from A to A that is both one-one and onto.

Permutation group of a set A
Definition: A permutation group of a set A is a set of permutations of A that forms a group under function
composition.

Examples:
1. If we define a permutaion α of the set {1, 2, 3, 4} by α(1) = 2, α(2) = 3, α(3) = 1, α(4) = 4

we can write this as α =

[
1 2 3 4
2 3 1 4

]
2. Similarly a permuation β on set {1, 2, 3, 4, 5} can be defined as β =

[
1 2 3 4 5
2 3 1 4 5

]

Note: Since composition of permutation expressed in array notation is carried out from right to left by
going from top to bottom.
for example:

3. α =

[
1 2 3 4 5
2 3 1 4 5

]
and β =

[
1 2 3 4 5
3 4 2 1 5

]
αβ =

[
1 2 3 4 5
2 3 1 4 5

] [
1 2 3 4 5
3 4 2 1 5

]
=

[
1 2 3 4 5
1 4 3 2 5

]
4.Let S3 denote the set of all one to one functions from {1, 2, 3} to itself. Then the of elements S3 are

e =

[
1 2 3
1 2 3

]
α =

[
1 2 3
2 3 1

]
α2 =

[
1 2 3
3 1 2

]
β =

[
1 2 3
1 3 2

]
αβ =

[
1 2 3
2 1 3

]
α2β =

[
1 2 3
3 2 1

]
Since βα =

[
1 2 3
3 2 1

]
= α2β 6= αβ

So S3 is Non-abelian.

5. Let A = {1, 2, ..., n} be the set. The set of all permutation of A is called symmetric group of degree
n and it is denoted by Sn.

Since the elements of Sn are of the form α =

[
1 2 . . . n

α(1) α(2) . . . α(n)

]
Note: Order of Sn is n!

Since the elements of Sn are of the form α =

[
1 2 . . . n

α(1) α(2) . . . α(n)

]
So for α(1) we have n choices, once α(1) has been determined, there are n− 1 possibilities for α(2), since α
is one one so α(1) 6= α(2)
After choosing α(n), there are exactly n− 2 possibilities for α(3).
Continuing in this way total elements in Sn is n.(n− 1).(n− 2)...3.2.1 = n!

Cycle Notation: An expression of the form (a1, a2, ...am) is called a cycle of lenght m or m−cycle.

Foe example: Suppose α =

[
1 2 3 4 5 6
2 3 4 6 5 1

]
In cycle notation α = (12346)(5) = (12346)

Note: 1.Do not write the cycles which have one entry.
2.We can multiply elements of Sn in cycle forms as
α = (12)(34)(56) and β = (1345)(26) then αβ = (146)(25)



Properties of Permutations

Theorem: Every permutation of a finite set can be written as cycle or as a product of disjoint cycles.
Proof: Let α be a permutation on A = {1, 2, ..., n}
To write α in disjoint cycle form
let a1 be any member of A , a2 = α(a1), a3 = α(α(a1)) = α2(a1) and so on,
continue in this way until a1 = αm(a1) for some m.
Since such an m exists because the sequence a1, α(a1), α2(a1)... must be finite
so we can write α = (a1, a2, ..., am)...
Let b1 ∈ A not an element of the first cycle, and b2 = α(b1), b3 = α(b2) and so on until we get b1 = αk(b1)
This new cycle will have no elements in common with previously constructed cycle.
If so αi(a1) = αj(b1) for some i and j so that αi−j(a1) = b1
therefore b1 = at for some t which is contradiction to the choice of b1
Continueing in this way until we complete all the elements of A so we get
α = (a1, a2, ..., am)(b1, b2, ...bk)...(c1, c2, ...cs)
So every permutation can be written as product of disjoint cycles.

Theorem: If the pair of cycles α = (a1, a2, ...am) and β = (b1, b2, ..., bn) have no entries in common,
then αβ = βα
Proof: Let α and β are permutaions of the set S = {a1, a2, ..., am, b1, b2, ..., bn, c1, c2, ..., ck}
To prove αβ = βα
that is to prove (αβ)(x) = (βα)(x) for all x ∈ S
If x is one of the element of α say ai then
(αβ)(ai) = α(β(ai)) = α(ai) = ai+1 since β fixes all the elements of α
Similarly (βα)(ai) = β(α(ai)) = β(ai+1) = ai+1

Here αβ = βα for all elements of α
Similarly we can prove for all elements of β
Suppose x = ci then we have (αβ)(ci) = α(β(ci)) = α(ci) = ci
(βα)(ci) = β(α(ci)) = β(ci) = ci
So αβ = βα

Theorem: The order of a permutation of a finite set written in disjoint cycle form is the least common
multiple of the lenghts of the cycles.
Proof: Since a cycle of lenght n has order n.
Let α and β are disjoint cycles of lenght m and n and k be least common multiple of m and n.
So that k = mx and k = ny
(α)k = (α)mx = (αm)x = ex = e
Similarly βk = e since α and β are disjoint cycles so α and β commute,
therefore (αβ)k = αkβk = e.e = e
Suppose |αβ| = t so t divides k since if ak = e then |a| divides k.
As |αβ| = t⇒ (αβ)t = αtβt = e⇒ αt = β−t

Since α and β are disjoint so αt and β−t are also disjoint but αt = β−t so they must both be identity
So m and n divides t and k ls least common multiple of m and n so k divides t
so k = t therefore order of a permutation of a finite set written in disjoint cycle form is the least common
multiple of the lenghts of the cycles.

Theorem: Every permutaion in Sn, n > 1 , is a product of 2-cycles.
Proof: Since identity permutation can be written as (12)(21) product of 2-cycles.
Since every permutation can be wriiten in the form (a1a2...ak)(b1b2...bt)(c1c2...cs)
we can write this as (a1ak)(a1ak−1)...(a1a2)(b1bt)(b1bt−1)...(b1b2)...(c1cs)...(c1c2)

Note: Identity permutation contains even number of 2-cycles.
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Theorem: If a permutation α can be expressed as a product of an even (Odd) number of 2-cycles, then
every decomposition of α into a product of 2-cycles must have an even (odd) number of 2-cycles.
that is if α = β1β2...βr and α = γ1γ2...γs , where β′s and γ′s are -cycles,
then r and s both even or both odd.
Proof: Let α = β1β2...βr and α = γ1γ2...γs
so β1β2...βr = γ1γ2...γs
⇒ e = β1β2...βrγ

−1
1 γ−12 ...γ−1s

⇒ e = β1β2...βrγ1γ2...γs Since identity permutation contains even number of 2-cycles
so r + s is even this is true when both r and s are even or both r and s are odd.

Even Permutation:
Definition: A permutation that can be expressed as a product of an even number of 2-cycles is called an
even permutation.
Odd Permutation:
Definition: A permutation that can be expressed as a product of an odd number of 2-cycles is called an
odd permutation.

Theorem: The set of even permutations in Sn forms a subgroup of Sn.
Proof: Let α and β be two even permutations so number of 2-cycles in α and β are even say r and s.
So that αβ contains r+s number of 2-cycles. As r and s are even so r+s is even. So αβ is even permutation.
Set of even permutation is closed.
Since set of even permutations is subset of Sn so associativity holds.
Since identity permutation is even permutation so identity exists.
And inverse of even permutation is even.
Therefore set of even permutations forms a group and it is a subset of Sn so it is a subgroup of Sn.

Alternating group of degree n
Definition: The group of even permutations of n symbols is denoted by An and is called alternating group
of degree n.

Theorem: For n > 1, An has order n!/2
Proof: Let α be an odd permutation. So (12)α is an even permutation and (12)α 6= (12)β when α 6= β.
Thus there are atleast as many even permutation as odd ones. On the other hand for each even permutation
α the permutation (12)α is odd and (12)α 6= (12)β when α 6= β. Thus there are atleast as many odd per-
mutation as even ones. So there are equal number of even and odd permutation. Since |Sn| = n! so An = n!/2.
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