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Group Homomorphism:
Definition: A group homomorphism is a function φ from group G to Ḡ that preserves the group operation.
that is φ(ab) = φ(a)φ(b) for all a, b ∈ G

Group Isomorphism:
Definition: A group isomorphism is a function φ from group G to Ḡ that is one- one, onto and that
preserves the group operation. that is φ(ab) = φ(a)φ(b) for all a, b ∈ G
If there is an isomorhism from G and Ḡ, we say that G and Ḡ are isomorphic. and we denote it by G ≈ Ḡ.

Example:
1. Let φ : R→ R+ defined by φ(x) = 2x

One-one: φ(x) = φ(y)⇒ 2x = 2y ⇒ log 2x = log 2y ⇒ x = y. So φ is one-one.
Onto: For y ∈ R+ we need to find x ∈ R such that
φ(x) = y ⇒ 2x = y ⇒ log 2x = log y ⇒ x = log2 y
So φ is onto.
Operation Preserving: φ(x+ y) = 2x+y = 2x2y = φ(x)φ(y)
So φ preserves operation.
Therefore φ is an isomorphism.

2. Let φ : R→ R defined by φ(x) = x3

One-one: φ(x) = φ(y)⇒ x3 = y3 ⇒ x = y.
So φ is one-one.
Onto: For y ∈ R we need to find x ∈ R such that φ(x) = y
x3 = y ⇒ x = y1/3.So φ is onto.
Operation Preserving: φ(x+ y) = (x+ y)3 6= x3 + y3 ⇒ φ(x+ y) 6= φ(x) + φ(y)
Therefore φ is not an isomorphism.

Calyley’s Theorem:
Statement: Every group is isomorphic to a group of permutation.
Proof: Let G be a group. we need to construct a permutation group from G.
For any g ∈ G define a function Tg : G→ G by Tg(x) = gx for all x ∈ G
To prove: Tg is a permutation on the set of elements of G
One-one: Suppose that Tg(x) = Tg(y)⇒ gx = gy ⇒ x = y
Tg is one-one.
Onto: For y ∈ G we need to find out x ∈ G such that Tg(x) = y
Consider Tg(x) = y ⇒ gx = y, multiply by g−1 on both side we get
g−1gx = g−1y ⇒ x = g−1y so there exists x = g−1y ∈ G such that Tg(x) = y.
Tg is a bijective function and so Tg is a permutation on the set of elements of G.



Let Ḡ = {Tg|g ∈ G}
Since Ḡ is non-empty set as e ∈ G so Te ∈ Ḡ.
Let Tg, Th ∈ Ḡ so g, h ∈ G
Consider TgTh(x) = Tg(Th(x)) = Tg(hx) = g(hx) = (gh)(x) = Tgh(x) for all x ∈ G
TgTh = Tgh
Since set of bijective functions from G to G is associcative w.r.t. Composition.
As e ∈ G so Te ∈ Ḡ such that TgTe(x) = Tg(Te(x)) = Tg(ex) = g(ex) = (ge)(x) = gx = Tg(x)
so TgTe = Tg.
Let Tg ∈ Ḡ consider TgTg−1(x) = Tg(g−1x) = g(g−1(x)) = (gg−1)x = ex = Tex
So TgTg−1 = Te
Therefore Ḡ is a group w.r.t. composition.
Now to prove G ≈ Ḡ
Define a function φ : G→ Ḡ such φ(g) = Tg
Supoose φ(g) = φ(h)⇒ Tg = Th ⇒ Tg(e) = Th(e)⇒ ge = he⇒ g = h
φ is one-one.
Since for every Tg ∈ Ḡ we defined this for every g ∈ G so φ is onto.
Now consider φ(ab) = Tab
φ(a)φ(b) = TaTb
Tab(x) = ab(x) and TaTb(x) = Ta(bx) = a(bx) = ab(x)
Therefore Tab = TaTb ⇒ φ(ab) = φ(a)φ(b).
Therefore φ is isomorphism.
Hence G is isomorphic to Ḡ.
So every group is isomorphic to its group of permutation.

Example:
Let U(10) = {1, 3, 7, 9} and define the elements

T1 =

[
1 3 7 9
1 3 7 9

]
T3 =

[
1 3 7 9
3 9 1 7

]
T7 =

[
1 3 7 9
7 1 9 3

]
T9 =

[
1 3 7 9
9 7 3 1

]
There is one to one correspondence between U(10) and {T1, T3, T7, T9}

Properties of Isomorphisms:
Suppose φ is an isomorphism from a group G to Ḡ.Then

1. φ carries the identity of G to the identity of Ḡ.
Proof: Let φ : G→ Ḡ be an isomorphism.
Let e be an identity of G and ē be an identity of Ḡ.
As e = ee apply φ on both side we get
φ(e) = φ(ee)⇒ φ(e) = φ(e)φ(e)⇒ φ(e) = ē

2. For every integer n and for any element a in G, φ(an) = [φ(a)]n.
Proof: Consider φ(an) = φ(a.a...a) , n− times
φ(an) = φ(a)φ(a)...φ(a)⇒ φ(an) = [φ(a)]n

3. For any element a and b in G, a and b commute if and only if φ(a) and φ(b) commute.
Proof: Let a, b ∈ G such that ab = ba apply φ on both side we get
φ(ab) = φ(ba)⇒ φ(a)φ(b) = φ(b)φ(a).
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4. G =< a > if and only if Ḡ =< φ(a) >.
Proof: Suppose G =< a > so ak ∈ G⇒ φ(ak) ∈ Ḡ⇒ [φ(a)]k ∈ Ḡ
but [φ(a)]k ∈< φ(a) > so < φ(a) >⊂ Ḡ
Now let b ∈ Ḡ since φ is onto so there exists an element say am in G
such that φ(am) = b⇒ [φ(a)]m = b so b ∈< φ(a) > therefore Ḡ ⊂< φ(a) >.
Hence Ḡ =< φ(a) >.
Conversely, suppose Ḡ =< φ(a) > as φ(a) ∈ Ḡ so a ∈ G because φ is onto.
But a ∈< a > so < a >⊂ G
Now let b ∈ G so we have φ(b) ∈ Ḡ =< φ(a) >
so for some integer k we have φ(b) = [φ(a)]k ⇒ φ(b) = φ(ak)
As φ is one-one so b = ak so b ∈< a > therefore G ⊂< a >
Hence G =< a >.

5. |a| = |φ(a)| for all a ∈ G
Proof: Let |a| = n so an = e apply φ on both side we get
φ(an) = φ(e)⇒ [φ(a)]n = ē So n divides the |φ(a)|
Let |φ(a)| = k ⇒ [φ(a)]k = ē⇒ φ(ak) = φ(e) as φ is one-one ak = e
⇒ k divides n that is |φ(a)| divides n.
Therefore n = k that is |φ(a)| = |a|.

6. For a fixed integer k and a fixed group element b ∈ G, the equation xk = b
has the same number of solutions in G as does the equation yk = φ(b) in Ḡ.
Proof: Consider the equation xk = b,
suppose this equation have n solutions say a1, a2, ...an
so we have (ai)

k = b for all ai, i = 1, 2, ...n
so φ(aki ) = φ(b)⇒ [φ(ai)]

k = φ(b) for all ai, i = 1, 2, ...n
so we have n number of solutions for yk = φ(b)
If suppose c is another solution of yk = φ(b) that is ck = φ(b)
since c = φ(a) so [φ(a)]k = φ(b)⇒ φ(ak) = φ(b)⇒ ak = b
so a is also solution of xk = b but this equation have n solutions only
so the equation xk = b has the same number of solutions in G as does
the equation yk = φ(b) in Ḡ.

7. If G is finite, then G and Ḡ have exactly same number of elements of every order.
Proof: Since |a| = |φ(a)| for all a ∈ G so
G and Ḡ have exactly same number of elements of every order.

Properties of Isomorphism acting on subgroups:
Suppose that φ is an isomorphism from a group G onto a group Ḡ. Then
1. φ−1 is an isomorphism from Ḡ onto G.
Proof: Let φ : G→ Ḡ be an isomorphism.
Consider φ−1 : Ḡ→ G
Since φ is one-one so φ(a) = φ(b)⇒ a = b
So consider φ−1(a) = φ−1(b)⇒ φ(φ−1(a)) = φ(φ−1(b))
⇒ (φ ◦ φ−1)(a) = (φ ◦ φ−1)(b)⇒ a = b.
φ−1 is one-one.
Since φ is onto so for every element y ∈ Ḡ there exists and element x ∈ G
such that φ(x) = y ⇒ x = φ−1(y) so for every x ∈ G
there exist y ∈ G such that x = φ−1(y)
Since φ(ab) = φ(a)φ(b),
Consider φ−1(φ(a)φ(b)) = φ−1(φ(ab)) = ab = φ−1(φ(a))φ−1(φ(b)).
φ−1 preserves operation.
Therefore φ−1 is an isomorphism.
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2. G is abelian if and only if Ḡ is abelian.
Proof: Suppose G is abelian so ab = ba for all a, b ∈ G
then φ(ab) = φ(ba)⇒ φ(a)φ(b) = φ(b)φ(a)⇒ Ḡ is abelian.
Similarly Suppose Ḡ is abelian so φ(a)φ(b) = φ(b)φ(a), for all φ(a), φ(b) ∈ Ḡ.
So φ(ab) = φ(ba)⇒ ab = ba⇒ Ḡ is abelian.

3. G is cyclic if and only if Ḡ is cyclic.
Since G =< a > if and only if Ḡ =< φ(a) > so G is cyclic if and only if Ḡ is cyclic.

4. If K is a subgroup of G, then φ(K) = {φ(k)|k ∈ K} is a subgroup of Ḡ.
Proof: Let K be a subgroup of G and consider φ(K) = {φ(k)|k ∈ K}.
Let φ(k) and φ(h) ∈ φ(K), φ(k)φ(h) = φ(kh) ∈ φ(K) as k.h ∈ K
and (φk)−1 = φ(k−1) ∈ φ(K) as k−1 ∈ K.
Therefore φ(K) is a subgroup of Ḡ.

Automorphism: An isomorphism from a group G to itself is called an automorphism of G.

Example: Let φ : C→ C defined by φ(a+ bi) = a− bi
One-one: Suppose φ(a+ bi) = φ(c+ di)⇒ a− bi = c− di⇒ a = c, b = d
So a+ bi = c+ di⇒ φ is one-one.
Onto: For a+ bi ∈ C there exists a− bi ∈ C such that φ(a− bi) = a+ bi
Operation Preserving:
Suppose φ[(a+bi)+(c+di)] = φ[(a+c)+(b+d)i] = (a+c)−(b+d)i = (a−bi)+(c+di) = φ(a+bi)+φ(c+di)
Similarly φ[(a+ bi)(c+ di)] = φ(a+ bi)φ(c+ di).
Therefore φ is an isomorphism from C to C so φ is an automorphism.

Inner Automorphism induced by a
Let G be a group, and let a ∈ G. The function φa defined by φa(x) = axa−1 for all x ∈ G is called the inner
automorphism of G induced by a.

Theorem: The set of automorphisms of a group and the set of inner automorphisms of a group
are both groups under the operation.
Proof: Let G be a group and A = {φ | φ : G→ G} where φ is an isomorphism.
So A is set of automorphisms of group G.
Let φ, ψ ∈ A So φ ◦ ψ : G→ G and composition of two isomorphism is an isomorphism so φ ◦ ψ ∈ A
Associativity holds in A.
Since I : G→ G be an identity map which is isomorphism and φ ◦ I = φ = I ◦ φ.
So identity element exist in A.
For φ ∈ A, φ−1 ∈ A such that φ ◦ φ−1 = I so inverse exists for all elements in A.
Therefore A is a group with respect to composition.
Similarly Set of inner automorphisms are group with respect to composition.
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Theorem: For every positive integer n, Aut(Zn) is isomorphic to U(n).
Proof: Define a map T : Aut(Zn)→ U(n) by T (α) = α(1)
To show that: Aut(Zn) ≈ U(n).
One-one: Suppose T (α) = T (β)⇒ α(1) = β(1)
multiply by k on both side we get kα(1) = kβ(1)⇒ α(k) = β(k) ∀ k ∈ Zn ⇒ α = β.
Therefore T is one-one.
Onto: Let r ∈ U(n) and consider the mapping α : Zn → Zn

defined by α(s) = rs(modn) for all s ∈ Zn.
To prove α is automorphism.
Suppose α(s) = α(t)⇒ sr(modn) = tr(modn)⇒ s ≡ t(modn)⇒ s = t in Zn,
therefore α is one-one.
Let y ∈ Zn we need to find x ∈ Zn such that α(x) = y ⇒ rx(modn) = y ⇒ x = r−1y(modn),
therefore α is onto.
Operation Preserving: Now consider α(s+ t) = (s+ t)r(modn)⇒
α(s+ t) = sr(modn) + tr(modn)⇒ α(s+ t) = α(s) + α(t).
Therefore α is an isomorphism from Zn to Zn so α is an automorphism.
Since T (α) = α(1) = r, So T is onto.
Let α, β ∈ Aut(Zn) , consider T (αβ) = (αβ)(1) = α(β(1)) = α(1 + 1 + ...+ 1), β(1) times
T (αβ) = α(1) + α(1) + ...+ α(1) = α(1)β(1) = T (α)T (β).

Coset of H in G:
Let G be a group and H be a subset of G, for any a ∈ G the set
aH = {ah|h ∈ H} is called the left coset of H in G containing a
and Ha = {ha|h ∈ H} is called right coset of H in G containing a.
The element a is called coset representative of aH or Ha
|aH| denote the number of elements in the set aH.
|Ha| denote the number of elements in the set Ha.

Example:

1. Let H = {0, 1, 2} in Z6

Cosets of H in Z6 are
0 +H = {0, 1, 2}, 1 +H = {1, 2, 3} , 2 +H = {2, 3, 4} ,
3 +H = {3, 4, 0}, 4 +H = {4, 5, 0}, 5 +H = {5, 0, 1}

2. Let U(12) = {1, 5, 7, 11} and H = {1, 11}
Cosets of H in U(10) are
1H = {1, 11}, 5H = {5, 7} , 7H = {7, 5}, 11H = {11, 1}.

Properties of Cosets:

Let H be a subgroup of G and let a, b ∈ G. Then
1. a ∈ aH
Proof: Let H be a subgroup of G, and a ∈ H
So aH = {ah|h ∈ H}
Since e ∈ H so a = ae ∈ aH.
2. aH = H if and only if a ∈ H.
Proof: Suppose aH = H, Since a ∈ aH ⇒ a ∈ H
Conversely, suppose a ∈ H
To prove: aH = H that is aH ⊂ H and H ⊂ aH
Since a ∈ aH ⇒ aH ⊂ H.
Let h ∈ H and since a ∈ H ⇒ a−1 ∈ H as H is a subgroup so a−1h ∈ H,
so h = eh = (aa−1)h = a(a−1h) ∈ H.
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3. aH = bH if and only if a ∈ bH.
Proof: Suppose aH = bH, To show: a ∈ bH
Since a = ae ∈ aH and aH = bH so a ∈ bH.
Conversely suppose a ∈ bH, To prove aH = bH,
As a ∈ bH ⇒ a = bh for h ∈ H but a ∈ aH so aH ⊂ bH
Now a = bh⇒ b = ah−1 ∈ aH but b ∈ bH so bH ⊂ aH.
Therefore aH = bH.

4. aH = bH or aH ∩ bH = φ.
Proof: If aH ∩ bH 6= φ⇒ c ∈ aH ∩ bH for some c ∈ G ,
then c ∈ aH ⇒ cH = aH and c ∈ bH ⇒ cH = bH
so we have aH = bH.

5. aH = bH if and only if a−1b ∈ H.
Proof: Suppose aH = bH, To prove a−1b ∈ H
Since b ∈ bH ⇒ b ∈ aH ⇒ b = ah for some h ∈ H,
so h = a−1b as h ∈ H so a−1b ∈ H.
Suppose a−1b ∈ H ⇒ a−1b = h⇒ b = ah⇒ b ∈ aH So bH = aH.

6. |aH| = |bH|
Proof: To prove: |aH| = |bH|,
It is sufficient to prove that there is one to one correspondence between aH and bH.
Let φ : aH → bH by φ(ah) = bh
Suppose φ(ah) = φ(ah′)⇒ bh = bh′ ⇒ h = h′ ⇒ ah = ah′

So φ is one-one. Therefore |aH| = |bH|.

7. aH = Ha if and only if H = aHa−1

Proof: Suppose aH = Ha, to prove: H = aHa−1

Suppose aH = Ha⇒ aH ⊂ Ha and Ha ⊂ aH
we have ah = h′a⇒ h′ = aha−1 but h′ ∈ H so H ⊂ aHa−1.
Also aha−1 ∈ aHa−1 so aHa−1 ⊂ H.
Conversely suppose H = aHa−1 so H ⊂ aHa−1 and aHa−1 ⊂ H
we have h = ah′a−1 ⇒ ha = ah′ ⇒ Ha = aH.

8. aH is a subgroup of G if and only if a ∈ H.
Proof: Suppose aH is a subgroup of G, so e ∈ aH
therefore aH ∩ eH 6= φ⇒ aH = eH = H as a ∈ aH ⇒ a ∈ H.
Conversely suppose a ∈ H ⇒ aH = H
therefore aH is a subgroup as H is a subgroup of G.
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Lagranges Theorem: If G is a finite group and H is a subgroup of G, then |H| divides |G|.
Moreover the number of left cosets of H in G is |G|/|H|.
Proof: Let G be a finite group and H be a subgroup of G
Suppose a1H, a2H, ..., arH be distinct cosets of H in G.
Then for each a ∈ G, aH = aiH for some i.
Since a ∈ aH so every element of G is an elements of one of the cosets aiH,
then we can write
G = a1H ∪ a2H ∪ ...arH
Since all are distinct cosets so aiH ∩ ajH = φ for all i, j
Then |G| = |a1H|+ |a2H|+ ...+ |arH| , Since |aiH| = |H| for all i
so |G| = |H|+ |H|+ ...+ |H|, r times
|G| = r|H| ⇒ |H| divides |G| .
And r = |G|/|H| and there are r number of left cosets
Therefore the number of left cosets of H in G is |G|/|H|.

Index of a subgroup: The index of a subgroup H in G is the number of left cosets of H in G.
Notation: |G : H|

Corollary: If G is a finite group and H is a subgroup of G, then |G : H| = |G|/|H|.
Proof: Let G be a group and H be a subgroup. As |G : H| is number of left cosets of H in G and
by Lagranges theorem number of left cosets is equal to |G|/|H|.
Therefore |G : H| = |G|/|H|.

Corollary: In a finite group, the order of each element of the group divides the order of group.
Proof: Since order of an element is the order of subgroup generated by that element and by Lagranges
theorem order of subgroup divides order of group, therefore order of element divides order of group.

Corollary: A group of prime order is cyclic.
Proof: Let G be a group such that |G| = p, where p is prime
Let a ∈ G and a 6= e then | < a > | divides |G| here | < a > | 6= 1 ,
so | < a > | = p that is | < a > | = |G| so G is generated by an element of G.
Therefore G is cyclic.

Corollary: Let G be a finite group, and let a ∈ G. Then a|G| = e.
Proof: Let G be a finite group and a ∈ G. Since |a| divides |G|,
so we have |G| = |a|k , therefore a|G| = a|a|k = a|a|k = ek = e.

Fermat’s Theorem: For every integer a and every prime p, ap(mod)p = a(mod)p.
Proof: Let a be an integer and p be a prime, by division algorithm there exists q, r
such that a = pq + r, where 0 ≤ r < p.
Here if we take modulo p, we have a(mod)p = r
so it is sufficient to prove that rp(mod)p = r.
If r = 0 then result is trivial, as rp = 0p = 0.
Suppose r 6= 0, so r ∈ U(p) since |U(p)| = p− 1
so we have r|U(p)| = e⇒ rp−1 = 1⇒ rp = r
we can write this as rp(mod)p = r.
Therefore ap(mod)p = a(mod)p.
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An application of cosets to permutation groups

Stabilizer of a Point: Let G be a group of permuations of a set S. For each i in S,
the stabilizer of i in G is the set stabG(i) = {φ ∈ G|φ(i) = i}

Note: Stabilizer of i in G is a subgroup of G.
Proof: Consider stabG(i) = {φ ∈ G|φ(i) = i}
Let φ, ψ ∈ stabG(i) so that φ(i) = i and ψ(i) = i, now φ(ψ(i)) = φ(i) = i therefore φψ ∈ stabG(i)
so stabG(i) is closed w.r.t. composition. Associativity holds. Since identity function is in stabG(i)
as I(i) = i so identity element exists. Also for φ ∈ stabG(i) there exists φ−1 ∈ stabG(i)
such that φ(i) = i⇒ φ−1(i) = i.

Orbit of a Point: Let G be a group of permutation of a set S. For each s ∈ S ,
the orbit of s in G is orbG(s) = {φ(s)|φ ∈ G}.

For example: Let G = {(1), (132)(465)(78), (132)(465), (123)(456), (123)(456)(78), (78)}
orbG(1) = {1, 3, 2}, orbG(2) = {2, 1, 3},
orbG(4) = {4, 6, 5}, orbG(7) = {7, 8}},

stabG(1) = {(1), (78)} , stabG(2) = {(1), (78)},
stabG(4) = {(1), (78)}, stabG(7) = {(1), (132)(465), (123)(456)}

Orbit-Stabilizer Theorem:
Let G be a finite group of permutation of a set. Then for any i from S,
|G| = |orbG(i)||stabG(i)|.
Proof: Let G be a group and stabG(i) is a subgroup of G
so by Lagrange’s theorem |G|/|stabG(i)| is the number of left cosets of stabG(i) in G.
To prove |G| = |orbG(i)||stabG(i)| that is |G|/|stabG(i)| = |orbG(i)|
so it is sufficient to prove that there is one to one correspondence between
left cosets of stabG(i) and orbG(i).
Let A =Left cosets of stabG(i) = {φstabG(i)|φ ∈ G}
Define a map T : A→ orbG(i) by T (φstabG(i)) = φ(i)
To show T is one-one: Suppose T (φstabG(i)) = T (ψstabG(i))
⇒ φ(i) = ψ(i)⇒ ψ−1φ(i) = i⇒ ψ−1φ ∈ stabG(i)⇒ ψstabG(i) = φstabG(i).
Therefore T is one-one.
To show T is onto: Let j ∈ orbG(i)⇒ φ(i) = j for some φ ∈ G
Then T (φstabG(i)) = φ(i) = j. Therefore T is onto.
Hence there is one-to-one correspondence between left cosets of stabG(i) and orbG(i)
so |G|/|stabG(i)| = |orbG(i)| that is |G| = |orbG(i)||stabG(i)|.
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