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Intrduction Symmetries of a square
Consider a square PWGB.
Consider all possible rotations of a square say
R0 - Rotation of a square by zero degree
R90 - Rotation of a square by 90 degree
R180 - Rotation of a square by 180 degree
R270 - Rotation of a square by 270 degree
H- Rotation of 180 degree about horizontal axis
V - Rotation of 180 degree about vertical axis
D - Rotation of 180 degree about main diagonal
D′-Rotation of 180 degree about the other diagonal
Consider a set contains all this elements say S = {R0, R90, R180, R270, H, V,D,D′}
If we apply an operation that is composition so we can see that
composition of two elements in the set S is again in S.
If we take composition of any element with R0 we get same element.
Also R0 exist in each of the row
and associativity of elements with respect to composition holds for every element in the set.
So we can see that S forms a group with respect to composition. This set is called dihedral group of order
8. and it is denoted by D4.

Definition and examples

Definition: Binary operation:
Let G be a set. A binary opration on G is a function that assigns each ordered pair of elements of G an
element of G.
For example: 1. Addition on set of Integers
2.Multiplication on set of real numbers.

Definition: Group Let G be a nonempty set together with a binary operation (Say multiplication) is
called a group if it satisfies following properties:
1. Closure: For a, b ∈ G⇒ ab ∈ G
2. Associativity: (ab)c = a(bc) for all a, b, c ∈ G
3. Identity: There is an element e in G such that ae = ea = a.
4. Inverses: For each element a in G, there is an element b ∈ G such that ab = ba = e

Examples:
1. Z- Set of integers with respect to addition
For Closure: let a, b ∈ Z then a + b ∈ Z as addition of two integers is again an integer. So Z is closed with
respect to addition.
For Associative: Since (ab)c = a(bc) for all a, b, c ∈ Z. So associativity exists
For Identity: Since a + 0 = a for all a ∈ G so 0 is the identity element of Z.
For Inverse: For a ∈ Z there exists −a ∈ Z such that a + (−a) = 0.
All the properties of group satisfied by Z so Z is a group with respect to addition.



2.Set of integers with respect to multiplication?
3.Set of real numbers with respect to addition?
4.Set of positive real numbers with respect to multiplication?
5.Set of postive rationals with resect to multiplication?
6.Set of positive irrationals with resect to multiplication?
7.Set of n× n Matrices with real entries with respect to addition.

Elementary properties of Groups

Uniqueness of the identity:
In the group G there is only one identity element.
Proof: Let G be a group. By contrary suppose there exists two identities e and e′ in G.
Then ae = ea = a for all a ∈ G ...1
and ae′ = e′a = a for all a ∈ G ...2
Put a = e′ in 1 and a = e in 2
we get e′e = e′ and e′e = e so e′ = e
Therefore there exists unique identity element.

Cancellation law:
In a group G, the right and left cancellation laws hold;
That is ba = ca implies b = c and ab = ac implies b = c.
Proof: Suppose ba = ca. Let a′ be an inverse of a then multiplying by a′ on both side
we get (ba)a′ = (ca)a′ by associativity b(aa′) = c(aa′)
so we have be = ce therefore b = c.
Similarly we can prove ab = ac⇒ b = c

Uniqueness of Inverses
For each element a in a group G, there is a unique element b in G such that ab = ba = e.
Proof: Suppose b and c are both inverses of a.
Then ab = e and ac = e so we have ab = ac
by cancellation law we can cancel a so we get b = c
There exists an unique inverse for every element in a group G.

Socks- Shoes Property:
For a, b in a group G, (ab)−1 = b−1a−1

Proof: Since (ab)(ab)−1 = e and
(ab)(b−1a−1) = a(bb−1)a = aea−1 = aa−1 = e
we have (ab)(ab)−1 = (ab)(b−1a−1)⇒ (ab)−1 = b−1a−1

Definition: Order of a group
The number of elements of a group (finite or infinite) is called its order. Notation: |G|

For example
1. Order of the group of real numbers is infinite.
2. Order of the group {1,−1, i,−i} is of order 4.

Definition: Order of an element:
The order of an element g in a group G is the smallest positive integer n such that gn = e. (In additive
group we have ng = 0) . If no such integer exists, we say that g has infinite order
Notetion: |g|
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For example:
1. Consider the group U(10) = {1, 3, 7, 9}
Here |1| = 1, |3| = 4, |7| = 4, |9| = 2

2. Z9 = {0, 1, 2, 3, 4, 5, 6, 7, 8}
Here |0| = 1, |1| = 9, |2| = 9, |3| = 3, |4| = 9, |5| = 9, |6| = 3, |7| = 9, |8| = 9

Definition: Subgroup
A subset H of a group G is itself a group under the operation of G is called subgroup of G.
Notation: H ≤ G
For example 1. {e} and G are the trivial subgroups of the group G. 2. Z,Q is a subgroup of R with respect
to addition.

One step subgroup test:
Let G be a group and H be a nonempty subset of G. If ab−1 is in H whenever a and b are in H,
then H is a subgroup of G.
Proof: Let G be a group and H be a nonempty subset of G
To prove: H is a subgroup of G that is to prove H is itself a group.
Since opertaion of H is same as G so associativity holds.
Now as H is nonempty take any element say x in H
as ab−1 is in H take a = x and b = x so we have xx−1 ∈ H
But xx−1 = e so e ∈ H.
Therefore H contains an identity element.
Now to check whether x−1 ∈ H for x ∈ H
Choose a = e and b = x then we have ab−1 ∈ H so ex−1 ∈ H
x−1 ∈ H. Inverse exists for every element in H.
Now to H is closed
Let x, y ∈ H we need to show that xy ∈ H
Since y−1 ∈ H so take a = x and b = y−1 so we have ab−1 = x(y−1)−1 = xy ∈ H
Therefore H is a group itself and hence it is a subgroup of G.

Two step subgroup test:
Let G be a group and let H be any nonempty subset of G. If ab ∈ H whenever a, b ∈ H and
a−1 ∈ H whenever a ∈ H, then H is a subgroup of G.
Proof:Let G be a group and H be a nonempty subset of G
To show that H is subgroup of G.
By one step subgroup test it is sufficient to prove that a, b ∈ H ⇒ ab−1 ∈ H.
Let a, b ∈ H by assumtion a−1, b−1 ∈ H also H is closed so ab−1 ∈ H
Hnece H is a subgroup of G.

Finite subgroup test:
Let H be a nonempty finite subset of a group G. If H is closed under the operation of G,
then H is a subgroup of G.
Proof:Let G be a group and H be a nonempty subset of G
To show that H is subgroup of G.
By two step subgroup test it is sufficient to prove that a−1 ∈ H whenever a ∈ H
If a = e then a−1 = e−1 = e = a then we are done.
If a 6= e, cosider the sequence a, a2, ...
By closureness all these elements are in H.
As H is finite so all of these elements are not distinct say ai = aj and i > j
then ai(aj)−1 = aj(aj)−1 ⇒ aia−j = e⇒ ai−j = e
Since a 6= e so i− j > 1 so aai−j−1 = ai−j = e
therefore a−1 = ai−j−1 and j − j − 1 ≥ 1 so ai−j−1 ∈ H
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So a−1 ∈ H for all a ∈ H
By two step subgroup test H is a subgroup of G.

Examples
1. Let G be an abelian group with identity e.
Consider H = {x ∈ G|x2 = e}
Since e2 = e so e ∈ H, H is non-empty. Let a, b ∈ H, then a2 = e, b2 = e
Consider (ab−1)2 = ab−1ab−1 = aab−1b−1 = a2(b2)−1 = ee−1 = e
Therefore by one step subgroup test ab−1 ∈ H

2. Let G be an abelian group and consider H = {x2|x ∈ G}
for e ∈ G, e2 = e ∈ H so H is non-empty
let a2, b2 ∈ H so a, b ∈ G since G is a group so ab ∈ G and (ab)2 = a2b2

as ab ∈ G so (ab)2 ∈ H then a2b2 ∈ H
Now let a2 ∈ H so a ∈ G and a−1 ∈ G so (a2)−1 = (a−1)2

So (a2)−1 ∈ H
By two step subgroup test H is a subgroup of G

3. Let Z6 = {0, 1, 2, 3, 4, 5} and H = {0, 1, 5}
Since H is non empty and 0 + 1, 1 + 5, 0 + 5 ∈ H
so H is closed with respect to same operation of Z6

so by finite subgroup test H is a subgroup of G.

Generator of an element in a group G:
Let G be a group and a ∈ G then generator of a is denoted by < a > and is defined as
< a >= {an|n ∈ Z}

For example:
1. Z8 = {0, 1, 2, 3, 4, 5, 6, 7}
and < 2 >= {2, 4, 6, 0}, < 3 >= {3, 6, 1, 4, 7, 2, 5, 0}
2. U(12) = {1, 5, 7, 11}
< 5 >= {5, 1} , < 7 >= {7, 1}

Theorem: Let G be a group and let a be any element of G. Then < a > is a subgroup of G.
Proof: Let G be a group and < a >= {an|n ∈ Z}
Since a ∈< a > so < a > is nonempty
Let ak, am ∈< a >, Consider ak(am)−1 = ak−m ∈< a >
As k,m ∈ Z ⇒ k −m ∈ Z
So by one step suubgroup test < a > is a subgroup of G.

Center of a group
The center of a group G is the subset of elements of G that commute with every element of G.
It is denoted by Z(G).
That is Z(G) = {a ∈ G|ax = xa ∀x ∈ G}

for example
1.Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
then Z(Z10) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} = Z10

2.K4 = {e, a, b, c}
then Z(K4) = {e, a, b, c} = K4
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Theorem: The center of a group G is a subgroup of G.
Proof:Let G be a group and Z(G) = {a ∈ G|ax = xa ∀x ∈ G}
To prove: Z(G) is a subgroup of G
Since ex = xe for all x ∈ G therefore e ∈ Z(G) so Z(G) is non-empty
Now let a, b ∈ Z(G) so ax = xa and bx = xb for all x ∈ G
Consider (ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab) for all x ∈ G
so ab ∈ Z(G)
Let a ∈ Z(G) so ax = xa for all x ∈ G
we need to show that a−1 ∈ Z(G)
Consider ax = xa, multiply a−1 from left and right we get
a−1(ax)a−1 = a−1(xa)a−1

a−1a(xa−1) = a−1x(aa−1)
exa−1 = a−1xe
xa−1 = a−1x , for all x ∈ G
So a−1 ∈ Z(G)
Hence by two step subgroup test center of G is a subgroup of G.

Centralizer of a in G
Let a be an element of a group G.
The centralizer of a in G is the set of all elements in G that commute with a.
It is denoted by C(a) and C(a) = {g ∈ G|ga = ag}
For example:
Let U(5) = {1, 2, 3, 4}
C(2) = {1, 2, 3, 4}

Theorem: For each a in a group G, the centralizer of a is a subgroup of G.
Proof: Let G be a group and C(a) and C(a) = {g ∈ G|ga = ag} be the centralizer of a in G
Let g, h ∈ C(a) then ga = ag and ha = ah
Consider (gh)a = g(ha) = g(ah) = (ga)h = (ag)h = a(gh) so gh ∈ C(a)
Let g ∈ C(a) so ga = ag
we neeed to show that g−1 ∈ C(a)
As ga = ag multiply by g−1 from left and right
So g−1(ga)g−1 = g−1(ag)g−1

(g−1g)ag−1 = g−1a(gg−1)
eag−1 = g−1ae
ag−1 = g−1a
So g−1 ∈ C(a)
Therefore by two step subgroup test C(a) is a subgroup of G
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