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CHAPTER 1

Rings and Ideals
RINGS AND RING HOMOMORPHISMS:
DEFINITION. A ring A is a set with two binary operations (addition and multiplication)
such that
(1) A is an abelian group with respect to addition(That is, A has zero element denoted
by 0, and for every element x ∈ A has an additive inverse −x).
(2) Multiplication is associative((xy) z = x (yz)) and distributive over addition (x (y + z) =
xy + xz = (y + z)x) for all x, y, z ∈ A.
(3) xy = yx for all x, y ∈ A.
(4) ∃1 ∈ A such that 1x = 1 for all x ∈ A.
Note: Through out the course the word ”ring” shall mean a commutative ring with an
identity element.
Example:
(1) Z,R,C and Q are examples of rings. (2) A = {0} is a ring with 1A = 0 called as
zero-ring.
(3) If A is a ring, then A [x] = {a0 + a1x+ ...+ anx

n/n ∈ N, ai ∈ A}.
(4) Let S be any set, then F (S) = {f : S → R} is ring with respect to addition and
multiplication defined below,
(f + g) (s) = f (s) + g (s)
(f · g) (s) = f (s) · g (s).
DEFINITION. Let A be a ring, a subset B of ring A is subring if B itself ring under
same operations on A.
Examples:
(1) Z ⊂ Q ⊂ R ⊂ C.
(2) Every ring A is subring of A [x].
(3) A1 [x] = Set of all polynomials p (x) ∈ A [x] such that constant term of p (x) is 0.
(4) A2 [x] = {a0 + a1x

2 + ...+ anx
2n/a0, a1, ..., an ∈ A} = A [x2].

DEFINITION. A mapping f : A → B, from ring A to ring B is said to be ring homo-
morphism if
(1) f (x+ y) = f (x) + f (y) for all x, y ∈ A.
(2) f (x · y) = f (x) · f (y), for all x, y ∈ A.
(3) f (1A) = 1B.
Examples: (1) If f : A→ B and g : B → C are ring homomorphisms then f ◦g : A→ C
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is ring homomorphism.
(2) If S is subring of a ring A which contains identity of A, then identity mapping from
S to A is ring homomorphism.
IDEALS. QUOTIENT RINGS :
A subset I of a ring A is an ideal of A, if (I,+) is additive subgroup of A and for every
a ∈ A and x ∈ I the product ax ∈ I.
Example.
(1) {0} ⊆ A and A ⊆ A.
(2) nZ ⊆ Z.
(3) Collection of polynomials with constant term 0 is ideal of ring A[x].
(4) I = {f ∈ F (S)/f(x) = 0,∀x ∈ S} is ideal of F (S).
(5) If f : A→ B is ring homomorphism then ker f is ideal of A.
Define a relation on ring A by a ∼ b iff a− b ∈ I where I is ideal of ring A.
Then clearly ∼ is equivalence relation on A and the collection of equivalence classes are
denoted by A/I called quotient of A by I.
Define addition and multiplication on A/I as follows:
Addition: (a+ I) + (b+ I) = (a+ b) + I
Multiplication: (a+ I)(b+ I) = (ab) + I
Then A/I is commutative ring with identity.
Proposition 1.1. There is one-to-one order-preserving correspondence between the set
of ideals of A containing I and the set of ideals of A/I.
PROOF. There is natural mapping φ : A → A/I defined by φ(a) = a + I, which is
surjective ring homomorphism(Check).
If f : A→ B is ring homomorphism, then ker f is an ideal of A, and =f is subring of B,
then A/ ker f ≡ =f .
Question. If f : A→ B is ring homomorphism and I is an ideal of A, then f(I) is ideal
of A ?
Answer. No.
Counter example. The identity mapping f : Z→ Q is ring homomorphism and nZ is an
ideal in Z but f(nZ) = nZ is not ideal in Q.
Example. If f : A → B is ring homomorphism and J is an ideal of B, then show that
f−1(J) is an ideal in A.
Proof. Since J is an ideal in B ⇒ 0 ∈ J .
⇒ 0 ∈ f−1(J) ∵ f is homomorphism ⇒ f(0) = 0⇒ 0 = f−1(0)
⇒ f−1(J) 6= φ.
Let x, y ∈ f−1(J)⇒ a = f(x), b = f(y) ∈ J .
⇒ a− b = f(x)− f(y) ∈ J ∵ J is an ideal in B, a, b ∈ J ⇒ a− b ∈ J
⇒ f(x− y) ∈ J ∵ f is homomorphism
⇒ x− y ∈ f−1(J)
⇒ f−1(J) is additive abelian subgroup of A.
Let x ∈ f−1(J)⇒ a = f(x) ∈ J and b ∈ A⇒ f(b) = r ∈ B.
⇒ ra ∈ J
⇒ f(b)f(x) ∈ J
⇒ f(bx) ∈ J
⇒ bx ∈ f−1(J). ∴, f−1(J) is an ideal in A.
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ZERO-DIVISOR. NILPOTENT ELEMENT. UNITS
DEFINITION.
(1) A zero-divisor in a ring A is an element x which divides ”0” i.e., for which there exists
y 6= 0 in A such that xy = 0.
(2) A ring with no zero-divisor 6= 0 is called integral domain.
(3) An element x ∈ A is nilpotent if xn = 0 for some integer n > 0.
- A nilpotent element is a zero-divisor but not conversely.
Counter example. 2 ∈ Z6 is zero-divisor but not nilpotent.
(4) A unit in A is an element x which divides 1, that is, an element x such that xy = 1
for some y ∈ A.
- The element y is uniquely determined by x, and written as x−1.
The multiples ax of an element x ∈ A forms a principal ideal, denoted by (x) or Ax.
x is unit iff (x) = A = (1).
(5) A field is a ring A in which 1 6= 0 and every non-zero element is unit.
- Every field is integral domain but not conversely.
Examples.
(1) F (S) is not integral domain.
Solution: Let S = {a, b} define f(a) = 1, f(b) = 0 and g(a) = 0, g(b) = 1.
⇒ (f · g)(a) = f(a)g(a) = 0 also (f · g)(b) = f(b)g(b) = 0.
⇒ f · g ≡ 0.
(2) If A is integral domain then A[x] is integral domain.
Solution: On contrary assume that A[x] is not integral domain.
∃f(x), g(x) ∈ A[x] such that f(x) · g(x) = 0 for some non-zero f(x) = a0 + a1x+ a2x

2 +
...+ anx

n and g(x) = b0 + b1x+ b2x
2 + ...+ bmx

m.
f(x) · g(x) = 0⇒ (a0 + a1x+ a2x

2 + ...+ anx
n)(b0 + b1x+ b2x

2 + ...+ bmx
m) = 0

⇒ anbm = 0
an = 0 or am = 0 (Which is contradiction).
Therefore, A[x] must be integral domain.
Proposition 1.2. Let A be a ring 6= 0. Then following are equivalent:
(i) A is a field;
(ii) The only ideals in A are 0 and (1);
(iii) Every homomorphism of A into a non-zero ring B is injective.
PROOF. (i) ⇒ (ii)
Suppose A is a field.
Let I be an non-zero ideal in A.
⇒ ∃0 6= x ∈ I such that (x) ⊆ I but every non-zero element of A is unit.
⇒ (x) = A = (1)
⇒ I = (1)
(ii) ⇒(iii)
Suppose, the only ideals in A are 0 and (1).
Let φ : A→ B be a ring homomorphism.
Then kernel of φ is an proper ideal of A ∵ If kerφ = (1) then φ(1) = 0 which is not true.
⇒ kerφ = 0
⇒ φ is injective.
(iii) ⇒ (i)
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Let x be an element of A which is not a unit.
Then (x) 6= (1) hence, B = A/(x) is non-zero ring.
Let φ : A→ B be the natural homomorphism of A onto B with kerφ = (x).
but by our assumption kerφ = 0⇒ (x) = 0⇒ x = 0.
⇒ Non-unit in A is 0.
⇒ Every non-zero element in A is unit.
⇒ A is field.
PRIME IDEAL AND MAXIMAL IDEAL
An ideal P in A is prime if P 6= (1) and if ab ∈ P ⇒ a ∈ P or b ∈ P .
Example.
(1) 0 is prime ideal ⇔ A is integral domain.
(2) P is prime ideal in A iff A/P is an integral domain.
PROOF. Suppose P is prime ideal in A.
Clearly A/P is commutative ring with identity.
Assume that (a+ P )(b+ P ) = 0 + P for some a+ P, b+ P ∈ A/P .
⇒ (ab) + P = 0 + P
⇒ (ab− 0) ∈ P
⇒ ab ∈ P
⇒ a ∈ P or b ∈ P ∵ P is prime ideal
⇒ a+ P = 0 + P or b+ P = 0 + P .
⇒ A/P is an integral domain.
Conversely, Suppose A/P is integral domain.
⇒ 1 + P 6= 0 + P and A/P is commutative ring which has no zero-divisor.
⇒ P 6= A
Assume that ab ∈ P then ab+ P = 0 + P
⇒ (a+ P )(b+ P ) = 0 + P
⇒ a+ P = 0 + P or b+ P = 0 + P
⇒ a ∈ P or b ∈ P
⇒ P is prime ideal.
An ideal M in A is maximal if M 6= (1) and if there is no ideal I such that M ⊂ I ⊂ (1).
Exercise
1. M is maximal ideal if and only if A/M is a field.
2. Show that every maximal ideal is prime ideal.
3. If f : A→ B is a ring homomorphism and P is prime ideal in B, then f−1(P ) is prime
ideal in A.
4. Find an example of homomorphism in which inverse image of maximal ideal need not
be a maximal ideal.
Question. Whether every ring A 6= 0 has maximal ideal ?
Theorem 1.3. Every ring A 6= 0 has at least one maximal ideal.
PROOF. Let A 6= 0 be a ring and

∑
be collection of all proper ideals in A.

That is,
∑

= {I/I is proper ideal of A}
Then

∑
6= φ. ∵ (0) ∈

∑
Let I1 ⊂ I2 ⊂ ... be chain in

∑
.

∪∞n=1In is an ideal in A ∵ I1 ⊂ I2 ⊂ ... is an increasing chain.
If ∪∞n=1In = A then 1A ∈ ∪∞n=1In
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⇒ 1A ∈ In for some in →←. ∵ In ( A
⇒ ∪∞n=1In ∈

∑
and it is upper bound of chain I1 ⊂ I2 ⊂ ...

⇒ Any increasing chain in
∑

has maximal element.
∴ by Zorn’s lemma

∑
has maximal element say M .

Now ifM is not maximal ideal in A then there exists an ideal J in A such thatM ( J ( A.
⇒ J ∈

∑
which contradiction to maximality of

∑
. ∵M is maximal element in

∑
.

∴M is maximal ideal in A. �
Corollary 1.4. If I 6= (1) is an ideal of A, then there exists a maximal ideal of A con-
taining I.
PROOF. Let

∑
be collection of all ideals of A which contains I.

That is,∑
= {J/J is an proper ideal of A and I ⊂ J}.

Then by previous theorem there exists maximal ideal M which contains I. �
Corollary 1.5 Every non-unit of A is contained in a maximal ideal.
PROOF. Suppose x be a non-unit element in A then x ∈ (x) ( A.
Also by proposition 1.4. every proper ideal is contained in a maximal ideal.
⇒ (x) ⊂M , where M is a maximal ideal in A. ⇒ x ∈M. �
DEFINITION.
1. A ring A with exactly one maximal ideal M is called as local ring.
- Example. Zp ' Z/pZ.
2. The field A/M is called as residue field.
- Example. Zp ' Z/pZ.
3. A ring with finitely many maximal ideals are called as semi-local rings.
- Example. Zn ' Z/nZ.
Corollary 1.6. i) Let A be a ring and M 6= (1) an ideal of A such that every x ∈ A−M
is a unit in A. Then A is local ring and M is maximal ideal.
ii) Let A be a ring and M is a maximal ideal of A, such that every element of 1 + M is
a unit in A. Then A is a local ring.
PROOF. i) Since every ideal 6= (1) consist of non-units and also we know that every ideal
in contained in some maximal ideal.
Here every x ∈ A −M is unit hence M contains all non-units hence it is only maximal
ideal in A.
⇒ A is a local ring.
ii) Suppose A is a ring and M is maximal ideal in A such that 1 +M is unit in A.
Let x be a non-unit in a ring A.
If x /∈M then (x) +M = (1).
⇒ ∃u ∈M and r ∈ (x) such that u+ rx = 1.
⇒ 1− u = rx.
⇒ 1− u is unit in A. ∵ by hypothesis 1 + x is unit for every x ∈M
⇒ rx is unit.
⇒ x is unit →← to assumption that M is maximal ideal.
∴ x ∈M .
Every non-unit are contained in M .
⇒M is the unique maximal ideal in A. �
DEFINITION. A principal ideal domain is an integral domain in which every ideal is
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principal.
Result. In principal ideal domain every non-zero prime ideal is maximal.
PROOF. Suppose (x) 6= (0) is prime ideal in PID A and suppose (x) ⊂ (y).
=⇒ x ∈ (y).
=⇒ x = yz for some z ∈ A.
=⇒ yz = x ∈ (x) =⇒ yz ∈ (x).
But y /∈ (x) =⇒ z ∈ (x).
=⇒ z = tx for some t ∈ A.
Then x = yz = ytx =⇒ x = ytx.
=⇒ yt = 1.
=⇒ 1 ∈ (y).
=⇒ (y) = (1).
=⇒ (x) is maximal ideal in A.
=⇒ Every non-zero prime ideal in PID is a maximal ideal. �
NILRADICAL AND JACOBSON RADICAL
Proposition 1.7. The set < of all nilpotent elements in a ring A is an ideal, and A/<
has no nilpotent element 6= 0.
PROOF. If x ∈ < =⇒ xn = 0 for some n > 0.
=⇒ (ax)n = anxn = an(0) = 0.
=⇒ ax ∈ <.
Now let x, y ∈ < then xn = 0 and ym = 0 for some m,n > 0.
Consider, (x+ y)n+m−1 = xn+m−1 +n+n−1 C1x

n+m−2y + ...+ yn+m−1.
It is sum of integer multiple of products xrys, where r + s = m+ n− 1. We cannot have
both r < m and s < n hence each of these product vanishes.
=⇒ (x+ y)n+m−1 = 0 =⇒ x+ y ∈ <.
=⇒ < is ideal of ring A.
Also all nilpotent elements are in < hence A/< has no non-zero nilpotent element. �
DEFINITION. The ideal < is called nilradical of A.
Proposition 1.8. The nilradical of A is intersection of all prime ideals of A.
PROOF. Let <′ denote the intersection of all prime ideals of A.
If f ∈ A is nilpotent element and P is prime ideal, then fn = 0 ∈ P , for some n > 0.
=⇒ fn ∈ P and P is prime ideal =⇒ f ∈ P .
=⇒ < ⊆ <′. (1)
Suppose f is not nilpotent element.
Let

∑
be the set of ideals I such that fn /∈ I for any n > 0.

Since (0) ∈
∑

=⇒
∑
6= φ.

Then by Zorn’s lemma lemma
∑

has maximal element.
Let P be maximal element of

∑
.

Now we shall show P is prime ideal.
Let x, y /∈ P . =⇒ P + (x), P + (y) contains P .
=⇒ P + (x), P + (y) /∈

∑
. ∵ P is maximal element in

∑
.

=⇒ fm ∈ P + (x) and fn ∈ P + (y) for some m,n > 0.
=⇒ fm+n ∈ P + (xy) and hence P + (xy) /∈

∑
.

=⇒ xy /∈ P .
Hence P is prime ideal such that f /∈ P .
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Thus, If f is not nilpotent, then f /∈ P for some prime ideal of ring A =⇒ f /∈ ∩P⊂AP =
<′.
=⇒ f /∈ <′.
=⇒ <′ ⊆ <. (2)
From (1) and (2) we get <′ = <.
Therefore, the nilradical of A is intersection of all prime ideals of A. �
DEFINITION. The Jacobson radical of ring A is defined to be the intersection of all
maximal ideals of A.
Proposition 1.9. If J is Jacobson radical of A, then x ∈ J ⇐⇒ 1 − xy is unit for all
y ∈ A.
PROOF. Suppose J is Jacobson radical of ring A.
Let x ∈ J . On contrary assume that 1− xy is non-unit then, there exists maximal ideal
M such that 1− xy ∈M for some maximal ideal M of ring A.
Since, x ∈ J =⇒ x ∈M .
=⇒ xy ∈M, ∀y ∈ A.
=⇒ 1 = xy + (1− xy) ∈M →←. ∵M is proper ideal of ring A.
∴ 1− xy must be unit.
Conversely, Suppose 1− xy is unit for all y ∈ A.
If x /∈ J , then there exists maximal ideal M such that x /∈M .
=⇒M + (x) = A.
=⇒ m+ xy = 1 for some m ∈M and y ∈ A.
=⇒ m = 1− xy.
=⇒ m is unit →←.
∴ x ∈ J . �
Example 1. Let A be a ring and let A[x] be the ring of polynomials in an indeterminate
x, with coefficients in A. Let f = a0 + a1x+ ...+ anx

n ∈ A[x]. Prove that
(i) f is unit in A[x] if and only if a0 is unit in A and a,a2, ..., an, are nilpotent.
(ii) f is nilpotent if and only if a0, a1, ..., an are nilpotent.
(iii) f is zero-divisor if and only if there exists a 6= 0 in A such that af = 0.
Solution. (i) Suppose f is unit in A[x].
=⇒ ∃g = b0 + b1x+ ...+ bmx

m ∈ A[x] such that f · g = 1.
=⇒ (a0 + a1x+ ...+ anx

n)(b0 + b1x+ ...+ bmx
m) = 1.

=⇒ a0b0 = 1 =⇒ a0 is unit in A.
Also, anbm = 0 and an−1bm + anbm−1 = 0. Multiplying both side by an we get.
anan−1bm + a2

nbm−1 = 0 =⇒ a2
nbm−1 = 0.

Similarly multiplying both side of an−2bm + an−1bm−1 + anbm−2 = 0 by a2
n.

=⇒ a2
nan−2bm + a2

nan−1bm−1 + a3
nbm−2 = 0 =⇒ a3

nbm−2 = 0
If the sum of powers of an and subscripts of b is m + 1, then the corresponding product
is 0.
=⇒ am+1

n b0 = 0.
Multiplying this it by a0 we get.
am+1
n b0a0 = 0 =⇒ am+1

n = 0. ∵ a0b0 = 1
∴ an is nilpotent.
Inductively, ai = 0 for all 1 ≤ i ≤ n.
Conversely, Suppose a0 is unit and a1, a2, ..., an are nilpotent in A[x].
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Then f = a0 + a1x+ ...+ anx
n is sum of nilpotent element and unit and hence it is unit.

(ii) Suppose f = a0 + a1x+ ...+ anx
n is nilpotent in A[x].

=⇒ 1− f is unit in A[x].
=⇒ 1− a0 is unit in A[x] and a′is, 1 ≤ i ≤ n are nilpotent in A.
Also, fm = 0 =⇒ am0 = 0 =⇒ a0 is nilpotent.
Conversely, Suppose a0, a1, ..., an are nilpotent.
If d ∈ N such that adi = 0, 0 ≤ i ≤ n, then fd = 0.
=⇒ f is nilpotent.
(iii) Suppose f is zero-divisor.
=⇒ ∃0 6= g ∈ A[x] such that fg = 0 then g must be of degree 0.
Because if g = b0 + b1x+ ...+ bmx

m where bm 6= 0 then anbm = 0 =⇒ an = 0→←. ∵
degree of f is n.
Therefore, g must of degree 0 =⇒ ∃0 6= a ∈ A such that =⇒ af = 0.
Conversely, Suppose ∃0 6= a ∈ A such that af = 0.
=⇒ f is zero-divisor.
Example 2. In a ring A[x], the Jaconson radical is equal to nilradical.
Solution. Suppose <, J are nilradical and Jaconson radical of A[x] respectively.
f(x) ∈ <
=⇒ (f(x))n = 0 ∈ J for some n > 0.
=⇒ f(x) ∈ J.
< ⊆ J.
f(x) ∈ J.
1− f(x)g(x) is unit for all g(x) ∈ A[x].
Let g(x) = x and f(x) = a0 + a1x+ ...+ anx

n.
=⇒ 1− f(x)g(x) = 1− a0x+ a1x

2 + ...+ anx
n+1 is unit.

=⇒ a0, a1, ..., an are nilpotent.
=⇒ f(x) is nilpotent.
f(x) ∈ <
=⇒ J ⊆ <. =⇒ < = J.
∴ A[x] is Hilbert ring.
Example 3. A ring A is such that every ideal not contained in the nilradical contains a
non-zero idempotent. Prove that A is Hilbert ring.
Proof. It is sufficient to show that every prime ideal in A is maximal ideal.
Let P be a prime ideal in A and let x be a non-zero element in A− P .
=⇒ (x) contains non-zero idempotent, say a0x.
=⇒ a0x(a0x− 1) = 0 ∈ P .
=⇒ a0x(a0x− 1) is zero-element in A/P .
But A/P is an integral domain and a0x 6= 0.
=⇒ a0x− 1 = 0.
=⇒ a0x = 1 or x is unit.
=⇒ A/P is field.
=⇒ P is maximal ideal.
∴ A is Hilbert ring.
Example 4. If A is ring in which every element x satisfies xn = x, for some n > 1. Show
that every prime ideal in A is maximal.
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Solution. Let P be prime ideal in ring A.
∴ A/P is integral domain.
Let x̄ such that x̄ 6= 0̄.
But xn = x =⇒ x̄n = x̄.
=⇒ x̄(1− x̄n−1) = 0 ∈ P .
=⇒ 1− x̄n−1 ∈ P . ∵ P is prime ideal and x̄ /∈ P
=⇒ (1− x̄) + P = 0 + P .
=⇒ 1 + P = xn−1 + P .
=⇒ 1̄ = x̄n−1.
=⇒ x̄ · x̄n−2 = 1.
=⇒ x̄ is unit in A/P .
=⇒ Every non-zero element is A/P is unit.
∴ A/P is field.
=⇒ P is maximal ideal.
Example 5. Let A 6= 0 be a ring. Show that set of prime ideals in A has minimal
element with respect to inclusion.
Proof. Let

∑
= {P/P is prime ideal in A}.

Since every non-zero ring has at least one maximal ideal hence
∑
6= 0.

Define relation on
∑

as P1 ≤ P2 if and only if P2 ⊆ P1.
Then (

∑
,≤) is poset.

Let C : P1 ≤ P2 ≤ ... be any chain in P .
=⇒ C : P1 ⊇ P2 ⊇ ....
Let P = ∩Pi∈CPi.
=⇒ P is ideal of A.
Now we shall show P is prime ideal of A.
Suppose xy ∈ P and x /∈ P .
=⇒ xy ∈ P .
=⇒ xy ∈ Pi for all i.
Also, x /∈ P =⇒ x /∈ Pi, ∀i.
=⇒ y ∈ Pi, ∀i.
∴ y ∈ P .
=⇒ P is prime ideal.
=⇒ P ∈

∑
and P ⊆ Pi, ∀i.

∴ P is upper bound of chain C in
∑

.
∴ By Zorn’s lemma

∑
has maximal element, which is required minimal prime ideal.

Example 6. If x /∈M for any maximal ideal of ring A, then M + (x) = A.
Solution. If M + (x) ⊂ A.
=⇒M ⊂M + (x) ⊂ A→←. ∵M is maximal ideal of A.
Example 7. Let A be ring and < is it’s nilradical. Show that following are equivalent.
(i) A has exactly one prime ideal;
(ii) Every element of A is either a unit or nilpotent;
(iii) A/< is field.
Proof. (i) =⇒ (ii)
Suppose A has exactly one prime ideal.
=⇒ A has exactly one maximal ideal.
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=⇒ A is local ring.
∴ Nil(A) = P .
Also, x /∈ P =⇒ x is unit in A. ∵ if x is not unit then (x) ⊆M for some maximal ideal
M in A. But M = P ⇒ x ∈ P →←
∴ Every element of A is either unit or nilpotent.
(ii) =⇒ (iii)
Let < is nilradical in A and every element of A outside of < is unit.
=⇒ Every non-zero element of A/< is unit.
=⇒ A/< is field.
(iii) =⇒ (i)
Suppose A/< is field.
=⇒ < is maximal ideal in A.
But < = ∩P−primeP .
=⇒ < ⊆ P, ∀P .
But < is maximal and hence < = P .
∴ A has exactly one prime ideal.
Example 8. A ring A is Boolean if x2 = x for all x ∈ A. In a Boolean ring A, show that
(i) 2x = 0 for all x ∈ A;
(ii) Every prime ideal P is maximal, and A/P is a field with two elements;
(iii) Every finitely generated ideal in A is principal.
Proof. (i) Let x ∈ A.
∴ (1 + x)2 = 1 + x
=⇒ (1 + x)(1 + x) = (1 + x)
=⇒ 1 + x+ x+ x2 = 1 + x
=⇒ 1 + x+ 2x = 1 + x
=⇒ 2x = 0, ∀x ∈ A.
(ii) Let P be a prime ideal in A.
∴ A/P is integral domain.
Also, x2 = x, ∀x ∈ A that is,
x2 + P = x+ P in A/P .
Every element in A/P is idempotent.
But 0 and 1 are the only idempotents in integral domain.
Hence A/P ∼= Z2, but Z2 is field.
=⇒ A/P is field.
∴ P is maximal ideal.
(iii) It is sufficient to show ideal generated by two elements is principal.
Let I = (x, y) and z = x+ y + xy.
Now consider,

zx = (x+ y + xy)x
= x2 + xy + x2y
= x+ xy + xy
= x+ 2xy
= x

=⇒ zx = x.
Similarly,
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zy = (x+ y + xy)y
= xy + y2 + xy2

= xy + y + xy
= y + 2xy
= y

=⇒ z is multiplication identity in I.
=⇒ I = (z).
Therefore, every ideal in A is principal.
Example 8. A local ring contains no idempotent 6= 0, 1.
Proof. Let A be a local ring.
=⇒ A has unique maximal ideal, say M .
Suppose x be an idempotent in a ring A.
=⇒ x2 = x.
=⇒ x(1− x) = 0 ∈M .
=⇒ x = 0, 1
Because if x /∈ {0, 1} then x, 1− x ∈M .
=⇒ 1 = x+ (1− x) ∈M →←.
∴ x ∈ {0, 1}.
OPERATIONS ON IDEAL
If I and J are ideals in a ring A, then the sum I + J = {x+ y/x ∈ I, y ∈ J} is

smallest ideal containing I and J . More generally we may define the sum
∑
i∈∆

Ii ={∑
finite

xi/xi ∈ Ii

}
is smallest ideal containing all ideals Ii.

The ideal I and J are said to be co-prime ideals of A if I + J = A.
Result. If I and J are co-prime ideals, then I ∩ J = IJ .
Proof. Since IJ ⊆ I and IJ ⊆ J =⇒ IJ ⊆ I ∩ J .
Also, I and J are co-prime =⇒ I + J = A.
=⇒ x+ y = 1 for some x ∈ I and y ∈ J .
=⇒ IJ = I ∩ J .
The intersection of any family (Ii)i∈∆ of ideals is an ideal. Thus the ideals of A forms a
complete lattice with respect to inclusion.

The product of two ideals I and J in A is the ideal IJ =

{∑
finite

xiyi/xi ∈ I, yi ∈ J

}
.

Similarly we define the product of any finite family of ideals.
Example.
(1) If A = Z, I = (m), J = (n) then I + J is the ideal generated by g.c.d. of m and n.
I ∩ J is ideal generated by l.c.m. of m and n.
IJ = I ∩ J iff m,n are co-prime.

Let A1, A2, ..., An be rings then the direct product A =
n∏
i=1

Ai is set of all sequences

(x1, x2, ..., xn) with xi ∈ Ai(1 ≤ i ≤ n) is commutative ring with identity with respect to
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component wise addition and multiplication.
The projections pi : A→ Ai by pi(x) = xi are homomorphisms.

Let A be a ring and I1, I2, ..., In ideals of A. Define a homomorphism φ : A→
n∏
i=1

(A/Ii).

by φ(x) = (x+ I1, x+ I2, ..., x+ In).

Proposition 1.10. (i) If Ii and Ij are co-prime whenever i 6= j, then
n∏
i=1

Ii = ∩ni=1Ii.

(ii) φ is surjective ⇐⇒ Ii, Ij are co-prime i 6= j.
(iii) φ is injective ⇐⇒ ∩ni=1Ii = (0).
Proof. (i) We will use mathematical induction to prove this part.
If I1 and I2 are two ideals then I1 ∩ I2 = I1I2 holds.
Therefore the result is true for n = 2.
Assume that the result is true for n− 1 ideals.

That is,
n−1∏
i=1

Ii = ∩n−1
i=1 Ii.

Now we shall prove the result is true for n ideals.
Suppose B = ∩n−1

i=1 Ii.
Now Ii and In are co-prime for all i = 1, 2, ....n− 1.
∴ Ii + In = (1).
∴ xi + yi = 1, for some xi ∈ Ii and yi ∈ In.
∴ xi = 1− yi ∈ Ii.

Let x = x1x2...xn ∈
n−1∏
i=1

Ii = B.

∴ x = (1− y1)(1− y2)...(1− yn−1).
∴ x = 1− y, for some y ∈ In.
∴ x+ y = 1 for some x ∈ B and y ∈ In.
Therefore, B and In are co-prime ideals.
∴ B · In = B ∩ In.

=⇒
n∏
i=1

Ii = ∩ni=1Ii.

(ii) Suppose φ is surjective.
First we will prove that I1 and Ii are co-prime ideals.
Since φ is surjective ∃x ∈ A such that φ(x) = (1 + I1, 0 + I2, ..., 0 + In).
=⇒ (x+ I1, x+ I2, ..., x+ In) = (1 + I1, 0 + I2, ..., 0 + In).
=⇒ x+ I1 = 1 + I1 and x+ Ii = 0 + Ii, ∀i = 2, 3, ..., n.
=⇒ 1− x ∈ I1 and x ∈ Ii, ∀i = 2, 3, ..., n.
∴ x+ (1− x) ∈ I1 + Ii.
∴ 1 ∈ I1 + Ii.
=⇒ I1 and Ii are co-prime.
Similarly, Ii and Ij are co-prime for i 6= j.
Conversely, suppose Ii and Ij are co-prime for i 6= j.
It is sufficient to show that there exist v ∈ A such that φ(v) = (1 + I1, 0 + I2, ..., 0 + In).
Since, I1 and Ij are co-prime for j = 2, 3, ..., n.
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=⇒ ∃ui ∈ I1 and vj ∈ Ij such that ui + vj = 1.
Take, v = v2 · v3 · ... · vn.
=⇒ v = (1− u2)(1− u3)...(1− un).
=⇒ v = 1− u, for some u ∈ I1.

∴ φ(v) = (v + I1, v + I2, ..., v + In)
= ((1− u) + I1, 0 + I2, ..., 0 + In)
= (1 + I1, 0 + I2, ..., 0 + In)

=⇒ φ(v) = (1 + I1, 0 + I2, ..., 0 + In).

Similarly, For each ej ∈
n∏
i=1

(A/Ii),∃ some vj in A such that φ(vj) = ej for j = 2, 3, ..., n.

Where ej = (0 + I1, 0 + I2, ..., 1 + Ii, ..., 0 + In).
∴ φ is surjective.
(iii) Let x ∈ kerφ.
⇐⇒ φ(x) = 0.
⇐⇒ (x+ I1, x+ I2, ..., x+ In) = (I1, I2, ..., In).
⇐⇒ x+ I1 = 0 + I1, x+ I2 = 0 + I2, ..., x+ In = 0 + In.
⇐⇒ x+ I1 = I1, x+ I2 = I2, ..., x+ In = In.
⇐⇒ x ∈ I1, x ∈ I2, ..., x ∈ In.
⇐⇒ x ∈ ∩ni=1Ii.
=⇒ kerφ = ∩ni=1Ii.
We know that kerφ = (0)⇐⇒ φ is injective.
∴ kerφ = ∩ni=1Ii = (0). �
Proposition 1. 11. (i) Let P1, P2, ..., Pn be prime ideals and let I be an ideal contained
in ∪ni=1Pi. Then I ⊆ Pi for some i.
(ii) Let I1, I2, ..., In be ideals and let P be prime ideal containing ∩ni=1Ii. Then P ⊇ Ii for
some i. If P = ∩ni=1Ii, the P = Ii for some i.
PROOF. (i) We will prove this by induction.
Let P1, P2 are two prime ideals and I be an ideal such that I ⊆ P1 ∪ P2.
Let x ∈ I and suppose I * P1.
∃y ∈ I such that y /∈ P1.
=⇒ y ∈ P2.
=⇒ x+ y ∈ I ⊆ P1 ∪ P2.
Suppose x+ y ∈ P1.
If x ∈ P1 =⇒ y = (x+ y)− x ∈ P1 →←.
∴ x /∈ P1 =⇒ x+ y /∈ P1.
=⇒ x+ y ∈ P2.
=⇒ x = (x+ y)− y ∈ P2 =⇒ I ⊆ P2.
∴ The result is true for n = 2.
Now assume that the result is true for n− 1 ideals.
That is, if P1, P2, ..., Pn−1 are prime ideals and I ⊆ ∪n−1

i=1 Pi, then I ⊆ Pi for some
i = 1, 2, ..., n− 1.
Now suppose P1, P2, ..., Pn are prime ideals and I ⊆ ∪ni=1Pi.
To show: I ⊆ Pi for some i = 1, 2, ..., n.
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We will prove the contrapositive statement.
That is, if I * Pi 1 ≤ i ≤ n =⇒ I * ∪ni=1Pi.
=⇒ For each i there exists xi ∈ I such that xi /∈ Pj whenever i 6= j.
If for some i we have xi /∈ Pi then we are through.
Suppose xi ∈ Pi for all 1 ≤ i ≤ n.

Now consider the element, y =
n∑
i=1

x1x2...xi−1xi+1...xn

Then we have y ∈ I and y /∈ Pi for all 1 ≤ i ≤ n.
=⇒ I * ∪ni=1Pi.
(ii) Suppose I1, I2, ..., In be ideals and P be prime ideal containing ∩ni=1Ii.
To show: P ⊇ Ii for some i.
That is, to show : If Ii * P for all i, then ∩Ii * P .
Suppose Ii * Ii for all i.
=⇒ ∃xi ∈ Ii, xi /∈ P (1 ≤ i ≤ n), and therefore

∏
xi ∈

∏
Ii ⊆ ∩Ii.

But P is prime ideal =⇒
∏
xi /∈ P .

=⇒ ∩Ii * P .
If P = ∩Ii, then P = Ii for some i. �
Definition. If I and J are ideals in a ring A then their ideal quotient is denoted by
(I : J) and defined as, (I : J) = {x ∈ A/xJ ⊆ I}.
Result 1. Show that (I : J) is ideal in A.
PROOF. Let x, y ∈ (I : J) =⇒ xJ ⊆ I, yJ ⊆ I.
Consider, (x− y)J = xJ − yJ ⊆ I.
=⇒ x− y ∈ (I : J).
Also, for x ∈ (I : J) and a ∈ A.
(ax)J = a(xJ) ⊆ I.
=⇒ ax ∈ (I : J).
∴ (I : J) is an ideal in A. �
Definition. If I = (0) then (0 : J) = {x ∈ A/xJ = 0}.
=⇒ (0 : J) = {x ∈ A/xy = 0, ∀y ∈ J}.
The ideal (0 : J) is called annihilator of J and is also denoted by Ann(J).
Result 2. If D denote set of all zero-divisors in a ring A then D = ∪x 6=0Ann(x).
PROOF. Let x ∈ D, then there exists 0 6= y ∈ A such that xy = 0.
=⇒ x ∈ Ann(y).
=⇒ x ∈ ∪x 6=0Ann(x).
∴ D ⊆ ∪x 6=0Ann(x). (1)
Suppose, y ∈ ∪x 6=0Ann(x).
=⇒ y ∈ Ann(x) for some 0 6= x ∈ A.
=⇒ yx = 0.
=⇒ y ∈ D.
∴ ∪x 6=0Ann(x) ⊆ D. (2)
From (1) and (2) we get, D = ∪x 6=0Ann(x). �
Definition. If I is any ideal ofA, then radical of I is r(I) = {x ∈ A/xn ∈ I for some n > 0}.
Result 3. r(I) is an ideal of a ring A.
PROOF. If φ : A→ A/I is standard homomorphism,
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Consider,

<(A/I) = {x̄ ∈ A/I : x̄n = 0̄, for some n > 0}
= {x̄ ∈ A/I : xn + I = I, for some n > 0}
= {x̄ ∈ A/I : xn ∈ I, for some n > 0}

φ−1(<(A/I)) = {x ∈ A : φ(x) ∈ <(A/I)}
= {x ∈ A : x+ I ∈ <(A/I)}
= {x ∈ A : (x+ I)n = I, for some n > 0}
= {x ∈ A : xn + I = I, for some n > 0}
= {x ∈ A : xn ∈ I, for some n > 0}
= r(I)

∴ r(I) is subspace of A.
Exercise 1.13 (i) r(I) ⊇ I
(ii) r(r(I)) = r(I)
(iii) r(IJ) = r(I ∩ J) = r(I) ∩ r(J)
(iv) If P is prime ideal, then r(P ) = P (Exercise)
(v) r(I + J) = r(r(I) + r(J))(Exercise)
(vi) r(I) = (1)⇔ I = (1)(Exercise)
Solution. (i) Let x ∈ I
=⇒ xn ∈ I
=⇒ x ∈ r(I)
I ⊆ r(I).
(ii) By part (i) r(I) ⊆ r(r(I))
Let x ∈ r(r(I))
=⇒ xn ∈ r(I) for some n > 0
=⇒ (xn)m ∈ I for some m > 0
=⇒ xnm ∈ I
=⇒ x ∈ r(I)
=⇒ r(r(I)) ⊆ r(I)
∴ r(r(I)) = r(I).
(iii) Since IJ ⊆ I ∩ J =⇒ r(IJ) ⊆ r(I ∩ J).
Let x ∈ r(I ∩ J)
=⇒ xn ∈ I ∩ J
=⇒ xn ∈ I and xn ∈ J for some n > 0.
=⇒ xn · xn ∈ IJ
=⇒ x2n ∈ IJ
=⇒ x ∈ r(IJ)
∴ r(IJ) = r(I ∩ J).
Also, I ∩ J ⊆ I and I ∩ J ⊆ J
=⇒ r(I ∩ J) ⊆ r(I) and r(I ∩ J) ⊆ r(J)
=⇒ r(I ∩ J) ⊆ r(I) ∩ r(J)
Let x ∈ r(I) ∩ r(J)
=⇒ x ∈ r(I) and x ∈ r(J)
=⇒ xn ∈ I and xm ∈ J for some n,m > 0.
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=⇒ xnm ∈ I and xmn ∈ J .
=⇒ xmn ∈ I ∩ J
=⇒ x ∈ r(I ∩ J)
∴ r(I ∩ J) = r(I) ∩ r(J).
∴ r(IJ) = r(I ∩ J) = r(I) ∩ r(J). �
Proposition 1.14. The radical of an ideal I is the intersection of the prime ideals which
contains I.
PROOF. Exercise.
Note. We may define the radical r(E) for any subset E of ring A. It is not ideal in
general.
Example. If A = Z, I = (m), let pi(1 ≤ i ≤ r) be the distinct prime divisors of m, then
find r(I).
Solution. We know that r(I) = r((m)).
=⇒ r(I) = (p1 · p2 · · · pr)
=⇒ r(I) = ∩ri=1pr.
Proposition. Let I, J be ideals in a ring A such that r(I), r(J) are coprime. Then I, J
are coprime.
PROOF. Let I and J are ideals of ring A and r(I), r(J) are coprime ideals.
=⇒ r(I) + r(J) = (1).
Consider, r(I + J) = r(r(I) + r(J))
=⇒ r(I + J) = r(1) = (1)
=⇒ I + J = 1. �
EXTENSION and CONTRACTION
Let f : A → B be a ring homomorphism. If I is an ideal in A, then the set f(I) is not
necessarily an ideal in B. We define the Extension Ie of I to be the ideal B(f(I)) that
is ideal generated by f(I) in B. Then Ie = {

∑
yif(xi)/yi ∈ B and xi ∈ I}.

If J is ideal in B, then f−1(J) is always an ideal in A, called the contraction J c.
If I is prime ideal in A, then Ie need not be prime in B.
Counter Examples: 1. f : Z → Q, I 6= 0, then Ie = Q, which is not prime ideal.
2. Consider the identity mapping f : Z → Z[i], then (2) is prime ideal in Z but (2)e is
not prime ideal.
Because (1 + i)(1− i) = 2 ∈ (2)e but none of 1 + i or 1− i lies in (2)e.
Therefore, Ie is not prime ideal.
Result 1. If I1 ⊆ I2 are ideals of ring A, then show that Ie1 ⊆ Ie2 .
PROOF. Let y ∈ Ie1 .
=⇒ y =

∑
bif(ai) for some ai ∈ I1 and bi ∈ B.

=⇒ y =
∑
bif(ai) for some ai ∈ I2 and bi ∈ B. ∵ ai ∈ I1 ⊆ I2

=⇒ y ∈ Ie2 .
∴ Ie1 ⊆ Ie2 . �
Result 2. If J1 ⊆ J2 are ideals of ring B then show that J c2 ⊆ J c1 .
PROOF. Exercise.
Proposition. Let f : A → B be ring homomorphism and let I, J are ideals of A,B
respectively then,
(i) I ⊆ Iec, J ce ⊆ J .
(ii) J c = J cec, Ie = Iece.
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(iii) If C is set of contraction ideals in A and if E is the set of extended ideals in B, then
C = {I/Iec = I} , E = {J/J ce = J}, and I 7→ Ie is bijective map of C onto E, whose
inverse is J 7→ J c.
PROOF. (i) Let x ∈ I
=⇒ f(x) ∈ Ie
=⇒ x = f−1(f(x)) ∈ Iec
∴ I ⊆ Iec.
Suppose y ∈ J ce
=⇒ f−1(y) ∈ J c
=⇒ y = f(f−1(y)) ∈ J
∴ J ce ⊆ J .
(ii) By part (i) we have I ⊆ Iec.
=⇒ Ie ⊆ (Iec)e. ∵ I1 ⊆ I2 ⇒ Ie1 ⊆ Ie2
=⇒ Ie ⊆ Iece.
Consider, Iece = (Ie)ce ⊆ Ie. ∵ J ce ⊆ J
=⇒ Iece ⊆ Ie.
∴ Iece = Ie.
Similarly we can show J c = J cec(Exercise).
(iii) We have C = {I/Iec = I} and E = {J/J ce = J}.
Now define, φ : C → E by φ(I) = Ie.
Let I1, I2 be ideals in ring A.
Consider,

φ(I1) = φ(I2)
=⇒ Ie1 = Ie2
=⇒ Iec1 = Iec2

=⇒ I1 = I2. ∵ Iec = I, ∀I ∈ C.

=⇒ φ is one-one mapping.
Also we have for each J ∈ E,

J = J ce

= (J c)e

= φ(J c)

=⇒ φ is onto.
Let ψ : E → C be mapping defined by ψ(J) = J c.
Consider,

(ψ ◦ φ)(I) = ψ(φ(I))
= ψ(Ie)
= (Ie)c

= I. ∵ I ∈ C =⇒ Iec = I.

=⇒ (ψ ◦ φ)(I) = I, ∀I ∈ E.
=⇒ φ = ψ−1. �
Result. Let A be a ring and X be the set of all prime ideals of A. For each subset E of
A, let V (E) denote the set of all prime ideals in A containing E. Prove that
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(i) If I is ideal generated by E then V (E) = V (I) = V (r(I)).
(ii) V (0) = X, V (1) = φ.
(iii) If (Ei)i∈∆ is any family of subsets of A, then V (∪i∈∆Ei) = ∩i∈∆V (Ei).
(iv) V (I ∩ J) = V (IJ) = V (I) ∪ V (J) for any ideals I, J of A.
PROOF. We have given X = {P/P is prime ideal of ring A} and
V (E) = {P/E ⊆ P − is prime ideal of ring A}.
(i) Let I = (E) =⇒ E ⊆ I.
=⇒ V (I) ⊆ V (E).
Because, if P ∈ V (I) =⇒ I ⊆ P .
=⇒ E ⊆ I ⊆ P =⇒ E ⊆ P .
=⇒ P ∈ V (E).
Now consider, P ∈ V (E).
=⇒ E ⊆ P .
=⇒ (E) ⊆ P . ∵ (E) is smallest ideal which contains E.
=⇒ (E) = I ⊆ P .
=⇒ P ∈ V (I).
∴ V (E) = V (I).
(ii) We know that every prime ideal P in ring A contains 0.
=⇒ V (0) = X.
Also, none of prime ideal contains 1 =⇒ V (1) = φ.
(iii) To show: V (∪i∈∆Ei) = ∩i∈∆V (Ei).
If (Ei)i∈∆ be any family of subsets of A.
We know that each i ∈ ∆, Ei ⊆ ∪i∈∆Ei.
=⇒ V (∪i∈∆Ei) ⊆ V (Ei), ∀i ∈ ∆.
=⇒ V (∪i∈∆Ei) ⊆ ∩i∈∆V (Ei).
Let P ∈ ∩i∈∆V (Ei).
=⇒ P ∈ V (Ei) ∀i ∈ ∆.
=⇒ Ei ⊆ P, ∀i ∈ ∆.
=⇒ ∪Ei ⊆ P, ∀i ∈ ∆.
=⇒ P ∈ V (∪i∈∆Ei).
=⇒ ∩i∈∆V (Ei) ⊆ V (∪i∈∆Ei)
∴ V (∪i∈∆Ei) = ∩i∈∆V (Ei).
(iv) To show: V (I ∩ J) = V (IJ) = V (I) ∪ V (J) for any ideals I, J of A.
Let I and J be ideals of ring A.
Since IJ ⊂ I ∩ I =⇒ V (I ∩ J) ⊆ V (IJ).
Let P ∈ V (IJ).
=⇒ IJ ⊆ P .
=⇒ I ⊆ P or J ⊆ P . ∵ P is prime ideal.
But I ∩ J ⊆ I and J .
=⇒ I ∩ J ⊆ P .
=⇒ P ∈ V (I ∩ J).
∴ V (I ∩ J) = V (IJ).
We know that I ∩ J ⊆ I =⇒ V (I) ⊆ V (I ∩ J).
Similarly, I ∩ J ⊆ J =⇒ V (J) ⊆ V (I ∩ J).
=⇒ V (I) ∪ V (J) ⊆ V (I ∩ J).
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Let P ∈ V (I ∩ J) =⇒ I ∩ J ⊆ P .
Claim: I ⊆ P or J ⊆ P .
On contrary assume that I * P and J * P .
Let x ∈ I and y ∈ J such that xy /∈ P .
But xy ∈ IJ ⊆ I ∩ J ⊆ P .
→←.
∴ Either I ⊆ P or J ⊆ P.
=⇒ P ∈ V (I) or P ∈ V (J).
=⇒ P ∈ V (I) ∪ V (J).
=⇒ V (I ∩ J) ⊆ V (I) ∪ V (J).
∴ V (I ∩ J) = V (I) ∪ V (J). �
∴ V (E) satisfies axioms for the closed sets in topological space. The resulting topology
is called as Zariski topology. The topological space X is called the prime spectrum of A.

Result. Let Ji be family of subsets of ring A, then ∩i∈∆V (Ji) = V (
∑
i∈∆

Ji).

PROOF. We know that, Ji ⊆
∑
i∈∆

Ji, ∀i.

=⇒ V (
∑
i∈∆

Ji) ⊆ V (Ji) ∀i.

=⇒ V (
∑
i∈∆

Ji) ⊆ ∩i∈∆V (Ji). (1)

Let P ∈ ∩i∈∆V (Ji).

=⇒ P ∈ V (Ji), ∀i ∈ ∆.

=⇒ Ji ⊆ P ∀i ∈ ∆.

=⇒
∑
i∈∆

Ji ⊆ P .

=⇒ P ∈ V (
∑
i∈∆

Ji).

=⇒ ∩i∈∆V (Ji) ⊆ V (
∑
i∈∆

Ji). (2)

From (1) and (2) ∩i∈∆V (Ji) = V (
∑
i∈∆

Ji). �

Result. For each f ∈ A, V (f) = {P ∈ Spec(A)/f ∈ P}.
Let Xf = Spec(A)− V (f).
That is, Xf = {P ∈ Spec(A)/f /∈ P} is open set.
For each f ∈ A,Xf denote the complement of V (f) in X = Spec(A). The set Xf are
open. Show that they form a basis of open set for the Zariski topology and that
(i) Xf ∩Xg = Xfg;
(ii) Xf = φ if and only if f is nilpotent;
(iii) Xf = X if and only if f is unit;
(iv) Xf = Xg if and only if r((f)) = r((g));
(v) X is quasi-compact;
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PROOF. (i) Let P ∈ Xf ∩Xg.
⇐⇒ P ∈ Xf and P ∈ Xg.
⇐⇒ f /∈ P and g /∈ P .
⇐⇒ fg /∈ P. ∵ P is prime ideal.
⇐⇒ P ∈ Xfg.
∴ Xf ∩Xg = Xfg.
(ii) Suppose Xf = φ.
⇐⇒ Every prime ideal contains f .
⇐⇒ f ∈ ∩P−PrimeP = <(A).
⇐⇒ f is nilpotent.
∴ Xf = φ⇐⇒ f is nilpotent.
(iii) Xf = X.
⇐⇒ None of prime ideal contains f .
⇐⇒ (f) = A.
⇐⇒ f is unit in A.
(iv) Suppose Xf = Xg.
To show: r((f)) = r((g)).
Xf = Xg.
⇐⇒ X −Xf = X −Xg.
⇐⇒ V (f) = V (g).
⇐⇒ Every prime ideal P which contains f that also contains g.
Consider,

r((f)) = ∩P−Prime ideal and f∈PP
= ∩P∈V (f)P
= ∩P∈V (g)P
= ∩P−Prime ideal and g∈PP
= r((g))

⇐⇒ r((f)) = r((g)).
(v) To show: X is quasi-compact.
Let X = ∪α∈∆Xfα .
For any P ∈ X =⇒ P ∈ Xfα for some α ∈ ∆.
=⇒ fα /∈ P for some α ∈ ∆.
Let I = (fα1 , fα2 , ...), then I is a non-zero ideal of A.
If I 6= A then there exists a prime ideal P such that I ⊆ P .
∴ fα ∈ P, ∀α ∈ ∆.
=⇒ P /∈ Xfα , ∀α ∈ ∆.
→←.
∴ I = A.
=⇒ 1 ∈ I = (fα1 , fα2 , ...).
=⇒ 1 = a1fα1 + a2fα2 + ...+ anfαn for some ai ∈ A.

=⇒ 1 =
n∑
i=1

aifi ∈
n∑
i=1

(fαi).
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=⇒ V (1) = V (
n∑
i=1

(fαi)).

=⇒ φ = ∩ni=1V (fαi).
=⇒ X − φ = X − ∩ni=1V (fαi).
=⇒ X = ∪ni=1(X − V (fαi)).
=⇒ X = ∪ni=1Xfαi

.
∴ X is compact. �
Example 1. A topological space X is said to irreducible if X 6= φ and if every pair of
non-empty open sets in X intersects, or equivalently if every non-empty open set is dense
in X(X is irreducible iff X cannot be union of two closed sets). Show that Spec(A) is
irreducible if and only if the nilradical of A is prime a prime ideal.
PROOF. Suppose X is irreducible.
On contrary assume that <(A) is not prime ideal.
∴ ∃x, y /∈ <(A) but xy ∈ <(A).
Let Kx = V ((x)) and Ky = V ((y)).
Then Kx and Ky are closed sets in X.
Let P ∈ X = Spec(A).
We know that <(A) ⊆ P and xy ∈ <(A).
=⇒ xy ∈ P .
=⇒ x ∈ P or y ∈ P .
=⇒ (x) ⊆ P or (y) ⊆ P .
=⇒ P ∈ Kx or P ∈ Ky. =⇒ P ∈ Kx ∪Ky.
∴ X = Kx ∪Ky.
Now it is remains to prove Kx and Ky are proper subsets of A.
Since x /∈ <(A) = ∩P .
∴ ∃ prime ideal P such that x /∈ P .
=⇒ P /∈ Kx.
∴ Kx 6= X.
Similarly, Ky 6= X.
=⇒ Kx and Ky are proper closed sets of X whose union is X.
→←. ∵ X is irreducible.
∴ <(A) is prime ideal.
Conversely, suppose <(A) is prime ideal.
To show: X is irreducible.
We shall prove the contrapositive statement.
That is, if X is reducible, then <(A) is not prime ideal.
Suppose X is reducible.
To show: <(A) is not prime ideal.
Since X is reducible =⇒ X = V (I) ∪ V (J), where V (I), V (J) 6= X.
=⇒ X = V (I ∩ J).
Let P ∈ X.
=⇒ P ∈ V (I ∩ J).
=⇒ I ∩ J ⊆ P, ∀P ∈ X.
=⇒ I ∩ J ⊆ ∩P = <(A).
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Since, V (I), V (J) 6= X.
=⇒ I ∩ J ⊂ <(A).
But IJ ⊆ I ∩ J ⊂ <(A).
That is, ∃x ∈ I −<(A) and y ∈ J −<(A) such that xy ∈ IJ ⊂ <(A).
∴ <(A) is not prime ideal. �
Example 2. Let X be topological space.
(i) If Y is irreducible subspace of X, then the closure Ȳ of Y in X is irreducible.
(ii) Every irreducible subspace of X is contained in a maximal irreducible subspace.
PROOF. (i) Let Y is irreducible subspace of X.
On the contrary assume that Ȳ is not irreducible.
=⇒ Ȳ = S ∪ T for some proper closed sets T and S of Ȳ .
But we know that, Y = Y ∩ Ȳ .
=⇒ Y = (Y ∩ S) ∪ (Y ∩ T ).
Since S and T are closed subsets of Ȳ and Ȳ ⊆ X.
=⇒ Y ∩ S and Y ∩ T are closed in Y .
It is remains to show Y ∩ S and Y ∩ T are proper subsets of Y .
If Y ∩ S = Y =⇒ Y ⊆ S.
=⇒ Ȳ = S →← . ∵ S is proper subset of Ȳ .
∴ Y ∩ S and Y ∩ T are proper closed subsets of Y such that Y = (Y ∩ S) ∪ (Y ∩ T ).
=⇒ Y is reducible →←.
∴ Ȳ must be irreducible in X.
(ii) Let Y be a irreducible subspace of X.∑

= {Z/Z is irreducble and contains Y }.
Then

∑
6= φ. ∵ Y ∈

∑
.

Then
∑

is poset under set inclusion.
Let C : Z1 ⊆ Z2 ⊆ ... be any chain in

∑
.

Take, Z = ∪Zi, where each Zi ∈
∑

.
Claim: Z is irreducible.
On contrary assume that Z is not irreducible.
=⇒ Z = S ∪ T for some proper closed subsets S and T of Z.
Then,

Z1 = Z1 ∩ Z
= Z1 ∩ (S ∪ T )
= (Z1 ∩ S) ∪ (Z1 ∩ T )

=⇒ Z1 is union of two proper closed subsets of Z1.
=⇒ Z1 is not irreducible →←.
∴ Z must be irreducible.
Hence every chain in

∑
has upper bound in

∑
.

Therefore, by Zorn’s lemma
∑

has maximal element.
Such maximal irreducible subspace is called as irreducible component. �

♣♣♣

Prof. K. R. Shinde 22 Department of Mathematics



Commutative Algebra Modern College of ASC(Autonomous), Pune

CHAPTER 2

Modules

MODULES AND MODULE HOMOMORPHISMS
Definition. Let A be a ring. An A-module is an abelian group M on which A acts
linearly; more precisely, it is pair (M,µ), where M is abelian group and µ : A×M →M
is mapping defined by µ(a, x) = ax and satisfies following axioms:
(i) µ((a, x+ y)) = a(x+ y) = ax+ ay.
(ii) µ((a+ b), x) = (a+ b)x = ax+ bx.
(iii) µ(ab, x) = (ab)x = a(bx).
(iv) 1x = x, for all x, y ∈M and a, b ∈ A.
Examples. (1) An ideal I of ring A is an A-module. In particular A itself is an
A−module.
(2) If A is field F , then A-module = F -vector space.
(3) A = Z, then Z−module = abelian group.
(4) A = F [x], where F is field; an A-module is a K-vector space with linear transforma-
tion.
Definition. Let M,N be A-modules. A mapping f : M → N is an A-module homo-
morphism (or A-linear) if
(i) f(x+ y) = f(x) + f(y).
(ii)f(ax) = af(x). for all x, y ∈M and a ∈ A.
If A is field, an A-module homomorphism is the same thing as a linear transformation of
vector spaces.
The composition of A-modules homomorphisms is again an A-module homomorphism.
The set of all A-module homomorphism from M to N can be turned into and A−module
as follows: we define addition and multiplication by the rules
(f + g)(x) = f(x) + g(x),
(af)(x) = af(x), for all a ∈ A and x ∈M.
which is denoted by HomA(A,M) or just by Hom(A,M).
SUBMODULES AND QUOTIENT MODULES
A submodule M ′ of M is subgroup of M which is closed under multiplication by elements
of A.
That is, M ′ is submodule of M is it satisfies following properties:
(1) For x, y ∈M ′ =⇒ x− y ∈M ′.
(2) ax ∈M ′ for all a ∈ A and x ∈M ′.
Note. The submodule of A over an A-module are the ideals of A.
Let M ′ be a submodule of A-module M , then
M/M ′ = {m+M ′/m ∈M} is module over A called as quotient module.
PROOF. Clearly M/M ′ is additive abelian group of A.
Let a, b ∈ A and x̄, ȳ ∈M/M ′.
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a(x̄+ ȳ) = a(x+M ′ + y +M ′)
= a((x+ y) +M ′)
= a(x+ y) +M ′

= (ax+ ay) +M ′

= ax+M ′ + ay +M ′

= a(x+M ′) + a(y +M ′)
= ax̄+ aȳ

(a+ b)x̄ = (a+ b)(x+M ′)
= (a+ b)x+M ′

= (ax+ bx) +M ′

= ax+M ′ + bx+M ′

= a(x+M ′) + b(x+M ′)
= ax̄+ bȳ

a(bx̄) = a(b(x+M ′))
= a(bx+M ′)
= (ab)x+M ′

= (ab)x̄

and 1 · x̄ = x̄
∴M/M ′ is module over A called quotient module. �
Note. (1) There is a one-to-one order-preserving correspondence between submodules of
M containing M ′ and submodules of M/M ′.
(2) Submodule of M/M ′ is of the form M1/M

′, where M1 is submodule of M containing
M ′.
Let f : M → N be an module homomorphism then

ker f = {x ∈M/f(x) = 0}

and is a submoule of M .
The image set of f is the set

Im(f) = f(M) = {y ∈ N/f(x) = y, x ∈M}

is an submodule of N .
The cokernel of f is

Coker(f) = N/Im(f)

which is quotient module of N .
Result. Let f : M → N be a ring homomorphism and M ′ be submodule of A-module
M such that M ′ ⊆ ker f , then the mapping f̄ : M/M ′ → N, defined by f̄(x̄) = f(x) is
homomorphism induced by f with ker f̄ = ker f/M ′.
PROOF. To show: f̄ is homomorphism.
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Let x̄ = x+M ′, ȳ = y +M ′ ∈M/M ′ and a ∈ A.
Consider,

f̄(x̄+ aȳ) = f̄((x+M ′) + a(y +M ′))
= f̄((x+ ay) +M ′)
= f̄(x+ ay)
= f(x+ ay)
= f(x) + af(y) ∵ f is module homomorphism.
= f̄(x̄) + af̄(ȳ)

∴ f̄(x̄+ aȳ) = f̄(x̄) + af̄(ȳ).
=⇒ f̄ is module homomorphism.
Now consider,

ker f̄ =
{
x̄ ∈M/M ′ : f̄(x̄) = 0

}
= {x+M ′ ∈M/M ′ : f(x) = 0}
= {x+M ′ ∈M/M ′ : x ∈ ker f}
= ker f/M ′

∴ ker f̄ = ker f/M ′. �
OPERATIONS ON SUBMODULES
Let M be an A-module and let (Mi)i∈∆ be a family of submodules of M . Their sum∑
Mi is the set of all finite sums

∑
xi where xi ∈Mi for all i ∈ ∆ and almost all the xi

are zero.∑
Mi is smallest submodule of M which contains all the Mi.

The intersection ∩Mi is again submodule of M . Thus the submodule of M form a
complete lattice with respect to inclusion.
Proposition. (i) If L ⊇M ⊇ N are A-modules, then
(L/N)/(M/N) ∼= L/M .
(ii) If M1,M2 are submodules of M , then
(M1 +M2)/M1

∼= M2/(M1 ∩M2).
PROOF. (i) Define the mapping θ : L/N → L/M by θ(x+N) = x+M .
Let x̄ = x+N, ȳ = y +N ∈ L/N and a ∈ A.
Consider,

θ(x̄+ aȳ) = θ((x+N) + a(y +N))
= θ((x+ ay) +N)
= (x+ ay) +M
= (x+M) + (ay +M)
= (x+M) + a(y +M)
= θ(x+N) + aθ(y +N)
= θ(x̄) + aθ(ȳ)

Therefore, θ is module homomorphism.
Also, for each x+N ∈ L/N there exists x+M ∈ L/M such that θ(x+N) = x+M .
=⇒ θ is onto.
Consider,
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ker θ = {x̄ ∈ L/N : θ(x̄) = 0̄}
= {x+N ∈ L/N : θ(x+N) = M}
= {x+N ∈ L/N : x+M = M}
= {x+N ∈ L/N : x ∈M}
= M/N

∴ θ is module homomorphism L/N onto L/M with kernel M/N .
=⇒ (L/N)/(M/N) ∼= (L/M).
(ii) Define g : M2 → (M1 +M2)/M1 by g(x) = x+M1.
Let x, y ∈M2 and a ∈ A.
Consider,

g(x+ ay) = (x+ ay) +M1

= x+M1 + ay +M1

= (x+M1) + a(y +M1)
= g(x) + ag(y)

∴ g is module homomorphism.
Also, for each x+M1 ∈ (M1 +M2)/M1, there exists x ∈M2 such that g(x) = x+M1.
∴ g is onto.
Now consider,

ker g = {x ∈M2 : g(x) = 0̄}
= {x ∈M2 : x+M1 = M1}
= {x ∈M2 : x ∈M1}
= M1 ∩M2

∴ g is module homomorphism from M2 onto (M1 +M2)/M1 with kernel M1 ∩M2.
∴M2/(M1 ∩M2) ∼= (M1 +M2)/M1. �
We cannot in general define product of two submodules, but we can define product IM ,
where I is an ideal and M an A-module.

IM =

{∑
finite

aixi : ai ∈ I, xi ∈M

}
.

Let x, y ∈ IM =⇒ x =
∑
finite

aixi, y =
∑
finite

biyi for some ai, bi ∈ I and xi, yi ∈M .

Then, x− y =
n∑
i=1

aixi −
m∑
i=1

biyi ∈ IM .

Also, for a ∈ A and x ∈ IM .

ax = a(
n∑
i=1

aixi)

=
n∑
i=1

(aai)xi ∈ IM
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∴ IM is submodule of M .
If N,P are submodules of M , then (N : P ) = {x ∈ A : xP ⊆ N} is ideal of A.
In particular (0 : M) = {x ∈ A : xM = 0} = Ann(M) is ideal of A called as annihilator
of M .
Any A−module M is said to be faithful if Ann(M) = 0.
Result. Suppose M be an A−module with Ann(M) 6= 0 and I be an ideal A such that
I ⊆ Ann(M) then M is faithful module over A/I.
Exercise. Prove that
(i) Ann(M +N) = Ann(M) ∩ Ann(N).
(ii) (N : P ) = Ann(N+P

N
).

PROOF. (i) We know that M +N = {x+ y/x ∈M, y ∈ N}.
∴M ⊆M +N and N ⊆M +N .
=⇒ Ann(M +N) ⊆ Ann(M) and Ann(M +N) ⊆ Ann(N).
=⇒ Ann(M +N) ⊆ Ann(M) ∩ Ann(N).
Let a ∈ Ann(M) ∩ Ann(N).
=⇒ a ∈ Ann(M) and a ∈ Ann(N).
=⇒ ax = 0, ∀x ∈M and ay = 0, ∀y ∈ N .
Now consider, a(x+ y) = ax+ ay = 0, ∀x+ y ∈M +N .
=⇒ a ∈ Ann(M +N).
=⇒ Ann(M) ∩ Ann(N) ⊆ Ann(M +N).
∴ Ann(M +N) = Ann(M) ∩ Ann(N).
(ii) Let a ∈ (N : P ) =⇒ aP ⊆ N .
=⇒ ax ∈ N, ∀x ∈ P and let y +N ∈ N+P

N
for some y ∈ P .

Consider, a(y +N) = ay +N = 0̄, ∀y +N ∈ N+P
N

. ∵ ay ∈ N .
=⇒ a ∈ Ann(N+P

N
).

=⇒ (N : P ) ⊆ Ann(N+P
N

).
Let b ∈ Ann(N+P

N
).

=⇒ b(y +N) = 0̄ = N .
=⇒ by +N = N .
=⇒ by ∈ N, ∀y ∈ P .
=⇒ bP ⊆ N .
=⇒ b ∈ (N : P ).
=⇒ Ann(N+P

N
) ⊆ (N : P ).

∴ (N : P ) = Ann(N+P
N

). �
DIRECT SUM AND PRODUCTS
If M and N are A−modules, their direct sum M ⊕N = {(x, y)/x ∈M, y ∈ N}. This is
an A−module with respect to addition and multiplication:
(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)
a(x, y) = (ax, ay).
More generally {Mi}i∈∆ is collection of A−modules then the direct sum of M ′

is is given
by ⊕i∈∆Mi = (x1, x2, ...) such that xi ∈Mi and xi 6= 0 for all but finitely many i.

If we drop the condition on number of x′is are non-zero we have direct product
n∏
i=1

Mi.

Therefore, direct sum and direct product are same if the index set ∆ is finite, but not
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otherwise, in general.

Suppose that the ring A is a direct product
n∏
i=1

Ai. Then the set Ii of all elements of A

of the form (0, 0, ..., 0, ai, 0, ..., 0) with ai ∈ Ai is an ideal of A but not subring.
A ring A considered as an A−module then it’s ideal are submodules of A. Hence A is
direct sum of A modules Ii.
FINITELY GENERATED MODULES
A free A−module is one which is isomorphic to an A−module of the form ⊕i∈∆Mi, where
Mi
∼= A (as an A−module).

A finitely generated free A−module is isomorphic to A ⊕ A ⊕ ... ⊕ A(n-times) which is
denoted by An.
Proposition. M is a finitely generated A−module if and only if M is isomorphic to a
quotient of An for some integer n > 0.
PROOF. Suppose M is finitely generated A−module.
∴M =< x1, x2, ..., xn >.
Define, φ : An →M by φ((a1, a2, ..., an)) = a1x1 + a2x2 + ...+ anxn.
Now for any a, b ∈ An =⇒ a = (a1, a2, ..., an), b = (b1, b2, ..., bn) and r ∈ A.
Consider,

φ(a+ rb) = φ((a1, a2, ..., an) + r(b1, b2, ..., bn))
= φ((a1 + rb1, a2 + rb2, ..., an + rbn)
= (a1 + rb1)x1 + (a2 + rb2)x2 + ...+ (an + rbn)xn
= a1x1 + rb1x1 + a2x2 + rb2x2 + ...+ anxn + rbnxn
= (a1x1 + a2x2 + ...+ anxn) + r(b1x1 + b2x2 + ...+ bnxn)
= φ((a1, a2, ..., an)) + rφ((b1, b2, ..., bn))
= φ(a) + rφ(b)

=⇒ φ is module homomorphism.
For each x ∈ M =⇒ x = a1x1 + a2x2 + ... + anxn then (a1, a2, ..., an) ∈ An such that
φ((a1, a2, ..., an)) = a1x1 + a2x2 + ...+ anxn = x.
=⇒ φ is onto.
=⇒ φ is onto module homomorphism.
∴ An/ kerφ ∼= M .
Conversely, suppose M ∼= An/I for some ideal I of A.
If x̄ ∈ An/I then,

x̄ = (x1, x2, ...xn) + I
= (x1(1, 0, ..., 0) + x2(0, 1, 0, ..., 0) + ...+ xn(0, 0, ..., 1)) + I
= (x1e1 + x2e2 + ...+ xnen) + I
= x1(e1 + I) + x2(e2 + I) + ...+ xn(en + I)
= x1ē1 + x2ē2 + ...+ xnēn

=⇒ {ē1, ē2, ..., ēn} generates An/I.
Let φ : An/I →M be isomorphism and φ(ē1) = x1, φ(ē2) = x2, ..., φ(ēn) = xn.
∴ {φ(ē1), φ(ē2), ..., φ(ēn)} = {x1, x2, ..., xn} is generating set of M .
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Because for each x ∈M .

x = φ(ȳ) for some ȳ ∈ An/I =⇒ ȳ = a1ē1 + a2ē2 + ...+ anēn for some a1, a2, ...an ∈ A.
= φ(a1ē1 + a2ē2 + ...+ anēn)
= a1φ(ē1) + a2φ(ē2) + ...+ anφ(ēn)
= a1x1 + a2x2 + ...+ anxn

∴M =< x1, x2, ..., xn >. �
Proposition. Let M be finitely generated A−module, let I be an ideal of A, and let φ be
an A−module endomorphism of M such that φ(M) ⊆ IM . Then φ satisfies an equation
of the form
φn + a1φ

n−1 + ...+ an = 0 where ai ∈ A.
PROOF. Let M is finitely generated A−module.
Let M =< x1, x2, ..., xn >.
Since φ(M) ⊆ IM .

=⇒ φ(xi) =
n∑
j=1

aijxj, ∀1 ≤ i ≤ n, aij ∈ I for all i, j.

This is system of n equations in n unknowns can be written as:
n∑
j=1

(δijφ− aij)xj = 0.

Multiplying both side by adjoint of δijφ− aij we get.
adj(δijφ− aij)(δijφ− aij)xj = 0.
=⇒ det(δijφ− aij) = 0. ∵ {x1, x2, ..., xn} generates M .
Expanding this determinant we get:
φn + a1φ

n−1 + ...+ an = 0. �
Proposition. (Nakayama’s Lemma). Let M be a finitely generated A−module and I be
an ideal of A contained in Joconson radical J of A. Then IM = M =⇒M = 0.
PROOF. On contrary assume that M 6= 0.
Let {x1, x2, ..., xn} be minimal generating set of M .
We have given IM = M .
For x1 ∈M and aij ∈ A, 1 ≤ i, j ≤ n.

x1 = a11x1 + a12x2 + ...+ a1nxn
.
.
.

xn = an1x1 + an2x2 + ...+ annxn

Since, x1 = a11x1 + a12x2 + ...+ a1nxn.
=⇒ (1− a11)x1 − a12x2 − ...− a1nxn = 0.
Also, a1i ∈ I ⊆ J .
=⇒ 1− a11 is unit in A.
=⇒ x1 = (1− a11)−1a12x2 + (1− a11)−1a13x3 + ...+ (1− a11)−1a1nxn.
=⇒ {x2, x3, ..., xn} generates M .
−→←− to minimality of generating set M .
∴M = 0. �
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Corollary. Let M be a finitely generated A−module, N a submodule of M, I ⊆ J an
ideal. Then M = IM +N =⇒M = N .
PROOF. Since N ⊆M +N , hence it is submodule of M +N .
=⇒ M + N is an A−module also M is finitely generated hence M/N is also finitely
generated.
Now consider,

I(M/N) = IM/N
= (IM +N)/N
= M/N

=⇒ I(M/N) = M/N , where I ⊆ J .
Therefore by previous proposition(applying previous proposition on M/N).
M/N ≡ 0.
=⇒M = N . �
Result. Let A be a local ring with maximal ideal I and M be a finitely generated
A−module. Then show that M/IM is annihilated by I.
PROOF. Since I is maximal ideal and M is A−module.
=⇒ IM is submodule of M .
Also, M/IM is A−module.
If x+ IM ∈M/IM and a ∈ I
Then, a(x+ IM) = ax+ IM = IM .
=⇒ a ∈ Ann(M/IM).
=⇒ I ⊆ Ann(M/IM).
∴M = Ann(M/IM). ∵ I is maximal ideal in A.
=⇒M/IM annihilates by I. �
Note. Let A be local ring with maximal ideal I, then F = A/I its residue field. Then
M/IM forms vector space over field F .
Proposition. Let A be local ring with maximal ideal I. If {x1, x2, ..., xn} be elements
of M whose images in M/IM form a basis of vector space M/IM , then show that xi
generates M .
PROOF. Let N be submodule of M generated by {x1, x2, ..., xn}.
Suppose f : N → M defined by f(x) = x, ∀x ∈ N and g : M → M/IM defined by
g(y) = y + IM, ∀y ∈M .
Then g ◦ f : N →M/IM is onto mapping.
Because for any ȳ = y + IM ∈M/IM .
=⇒ ȳ = (a1 + I)x1 + (a2 + I)x2 + ...+ (an + I)xn, for some a1 + I, a2 + I, ..., an + I ∈ A/I.
Take z = a1x1 + a2x2 + ...+ anxn ∈ N .
Then,

(g ◦ f)(z) = g(f(z))
= g(z)
= z + IM
= (a1x1 + a2x2 + ...+ anxn) + IM
= a1x1 + IM + a2x2 + IM + ...+ anxn + IM
= a1(x1 + IM) + a2(x2 + IM) + ...+ an(xn + IM)
= (a1 + I)x1 + (a2 + I)x2 + ...+ (an + I)xn
= ȳ
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Now let φ : M →M/IM be natural mapping defined by φ(m) = m+ IM ,
then φ(N) = N/IM = (N + IM)/IM . ∵ IM/N = (N + IM)/N for any ideal I.
=⇒M/IM = (N + IM)/IM .

=⇒ M/IM
(N+IM)/IM

= 0.

=⇒M(N + IM) = 0.
=⇒M = N + IM .
∴ N + IM = M .
∴ By previous corollary of Nakayama’s lemma.
∴ N = M . �
EXACT SEQUENCES
Definition. A sequence of A−modules and A−homomorphisms

· · · →Mi−1
fi−→Mi

fi+1−−→Mi+1 → · · ·

is said to be exact at Mi if Im(fi) = ker(fi+1).
A sequence is exact if it is exact at each Mi.

Example 1. 0→M ′ f−→M is exact ⇐⇒ f is injective.
Example 2. M

g−→M ′′ → 0 is exact ⇐⇒ g is surjective.

Example 3. 0→M ′ f−→M
g−→M ′′ → 0 is exact ⇐⇒ f is injective, g is surjective and g

induces an isomorphism of Coker(f) = M/f(M ′) onto M ′′.

♣♣♣
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CHAPTER 3

Integral Dependence and Valuations
Integral Dependence
Definition. Let B be a ring and A be a subring of B. An element x of B is said to be
integral over A if x if x is a root of monic polynomial with coefficients in A, that is x
satisfies an equation of the form.

xn + a1x
n−1 + ...+ an = 0

where, ai are elements of A.
Example 1. Every element of ring A is integral over A.
Example 2. A = Z, B = Q. If a rational number x = r/s is integral over Z, where r, s
have no common factor.
=⇒ x satisfies equation of the form xn + a1x

n−1 + ...+ an−1x+ an = 0.
=⇒ (r/s)n + a1(r/s)n−1 + ...+ an−1(r/s) + an = 0.
Multiplying both side by sn we get,
rn + a1r

n−1s+ ...+ ans
n = 0.

=⇒ rn = −a1r
n−1s− ...− ansn.

=⇒ rn = (−a1r
n−1 − ...− ansn−1)s.

=⇒ s divides rn.
=⇒ s = ±1.
=⇒ x ∈ Z.
=⇒ Element in Q is integral over Z, if it is integer.
Example 3. A = k[x2], B = k[x] then x ∈ B in integral over A.
Because it satisfies equation of the form y2 − x2.
Example 4. Let R be a ring and G be a finite subgroups of Automorphisms(Isomorphism
from R to R) of R.
Let A = RG = {a ∈ R : g(a) = a, ∀g ∈ G} and a ∈ R.

Let P (y) =
∏
g∈G

(y − g(a)).

Every element of R is integral over RG.
Proposition. Let A ⊆ B be rings, then the followings are equivalent:
(i) x ∈ B is integral over A;
(ii) A[x] is a finitely generated A−module;
(iii) A[x] is contained in a subring C of B such that C is finitely generated A−module;
(iv) There exists a faithful A[x]−module M which is finitely generated as an A−module.
PROOF. (i) =⇒ (ii).
Let x ∈ B is integral over A.
=⇒ x satisfies equation of the form xn + a1x

n−1 + ...+ an = 0 for some ai ∈ A.
=⇒ xn = −a1x

n−1 − ...− an.
=⇒ A[x] is generated by {1, x, ..., xn−1}.
=⇒ A[x] is finitely generated.
(ii) =⇒ (iii)
Suppose A[x] is finitely generated.
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Take C = A[x].
(iii) =⇒ (iv)
Suppose, A[x] is contained in a subring C ofB such that C is finitely generatedA−module.
Take C = M , then it is faithful A[x]−module.
Because for any y ∈ A[x], yC = 0 =⇒ y · 1 = 0 =⇒ y = 0.
(iv) =⇒ (i)
Suppose, there exists a faithfulA[x]−moduleM which is finitely generated as anA−module.
Consider the map φ : M →M defined by φ(m) = xm.
=⇒ φ(M) ⊆M =⇒ xM ⊆M .
Suppose M is generated by {m1,m2, ...,mn} over A.
Then φ(m1) = xm1.

=⇒ φ(m1) =
n∑
j=1

a1jmj.

=⇒ φ(m1)−
n∑
j=1

a1jmj = 0.

=⇒ [φδ1j − a1j][m1,m2, ...,mn]⊥ = 0.
∴ [φδij − aij][m1,m2, ...,mn]⊥ = 0.
Multiplying both side by adjoint of matrix of [φδij − aij] we get,
det[φδij − aij](mi) = 0, ∀1 ≤ i ≤ n.
=⇒ (φn + a1φ

n−1 + ...+ an)(mi) = 0, ∀1 ≤ i ≤ n.
=⇒ (xn + a1x

n−1 + ...+ an)mi = 0, ∀1 ≤ i ≤ n.
=⇒ xn + a1x

n−1 + ...+ an ∈ Ann(M) = (0). ∵M is faithful A−module.
=⇒ xn + a1x

n−1 + ...+ an = 0.
=⇒ x ∈ B is integral over A. �
Note. If N is finitely generated B−module and B is finitely generated A−module, then
N is finitely generated A−module.
Corollary. Let xi(1 ≤ i ≤ n) be elements of B, each integral over A. Then the ring
A[x1, x2, ..., xn] is a finitely-generated A−module.
PROOF. We will prove this corollary by induction on n.
For n = 1, that is if x1 ∈ B is integral over A then A[x1] is finitely generated. ∵ By
previous preposition.
Assume that the result is true for n− 1 elements.
That is, If x1, x2, ..., xn−1 ∈ B are integral over B, then An−1 = A[x1, x2, ..., xn−1] is
finitely generated A−module.
To prove: The result is true for n elements.
That is to prove, If x1, x2, ..., xn ∈ B are integral over B, then An = A[x1, x2, ..., xn] is
finitely generated A−module.
Suppose, x1, x2, ..., xn ∈ B are integral over B.
Then An = An−1[xn] is finitely generated An−1−module.
∴ An is finitely generated A−module.
Because, If N is finitely generated B−module and B is finitely generated A−module,
then N is finitely generated A−module. �
Corollary. The set C of elements of B which are integral over A is subring of B con-
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taining A.
PROOF. Exercise.
Definition. The ring C of elements of B which are integral over A is called the integral
closure of A in B. If C = A then A is said to be integrally closed in B.
Definition. Let f : A → B be a ring homomorphism. If a ∈ A and b ∈ B, define a
product ab = f(a)b such that, with respect to this multiplication B forms A−module
structure. The ring B which has both ring and A−module structure is called as an
A−algebra.
Remark. Let f : A→ B be a ring homomorphism, so that B is an A−algebra. Then f
is said to be integral, and B is said to be an integral A−algebra, if B is integral over its
subring f(A).
Corollary. If A ⊆ B ⊆ C are rings and if B is integral over A, and C is integral over
B, then C is integral over A(transitivity of integral dependence).
PROOF. Let x ∈ C in integral over B.
=⇒ xn + b1x

n−1 + ...+ bn = 0 (bi ∈ B).
=⇒ B′ = [b1, b2, ..., bn] is a finitely generated A−module, and B′[x] is a finitely generated
B′−module(since x is integral over B′).
Hence B′[x] is a finitely generated A−module and hence x is integral over A. �
Corollary. Let A ⊆ B be rings and let C be the integral closure of A in B. Then C is
integrally closed in B.
PROOF. Let x ∈ B be integral over C.
=⇒ x is integral over A, hence x ∈ C. �

♣♣♣
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