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CHAPTER 1

Hilbert Spaces
ELEMENTARY PROPERTIES AND EXAMPLES.
Vector Space:
Let (V,+) is abelian group and let F be a field. Suppose there is mapping σ : F×V → V ,
with σ(α, x) written αx satisfying the following axioms. For all α, β ∈ F, x, y ∈ V
(a) α(x+ y) = αx+ αy
(b) (α + β)x = αx+ βx
(c) (αβ)x = α(βx)
(d) 1x = x
Then V is called vector space over the field F .
Inner Product Space:
If V is a vector space over F , a semi-inner product on V is a function u : V × V → F
such that for all α, β ∈ F and x, y, z ∈ V , the following are satisfied:
(a) u (αx+ βy, z) = αu(x, z) + βu(y, z)
(b) u (x, αy + βz) = ᾱu (x, y) + β̄u (x, z)
(c) u (x, x) ≥ 0
(d) u (x, y) = u (y, x).
Here, ᾱ is complex conjugate of α.
An inner product on V is a semi-inner product that also satisfied the following:
(e) if u(x, x) = 0, then x = 0.
Note: Inner product can be denoted by u (x, y) = 〈x, y〉.
A vector space V together with some inner product 〈·, ·〉 is called as inner product space.
Example 1:
Let X be collection of all sequences {αn|n ≥ 1} of scalars αn from F such that αn = 0 for
all but a finite number of values of n. Then X is vector space with respect to following
addition and scalar multiplication.

Addition :

{αn}+ {βn} = {αn + βn}

Scalar multiplication:

α {αn} = {ααn}.
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(i) Let u : X ×X → F be a mapping defined by u ({αn} , {βn}) =
∞∑
n=1

αnβ̄n on X.

For any sequences {αn} , {βn} , {γn} ∈ X and α, β, γ ∈ F .
(a) Consider,

u (α {αn}+ β {βn} , {γn}) = u ({ααn + ββn} , {γn})

=
∞∑
n=1

(ααn + ββn) γ̄n

=
∞∑
n=1

(ααnγ̄n + ββnγ̄n)

=
∞∑
n=1

ααnγ̄n +
∞∑
n=1

ββnγ̄n

= α
∞∑
n=1

αnγ̄n + β
∞∑
n=1

βnγ̄n

= αu ({αn} , {γn}) + βu ({βn} , {γn})

=⇒ u (α {αn}+ β {βn} , {γn}) = αu ({αn} , {γn}) + βu ({βn} , {γn})
(b) Consider,

u ({αn} , β {βn}+ γ {γn}) = u ({αn} , {ββn + γγn})

=
∞∑
n=1

αn(ββn + γγn)

=
∞∑
n=1

αn
(
β̄β̄n + γ̄γ̄n

)
=

∞∑
n=1

(
β̄αnβ̄n + γ̄αnγ̄n

)
= β̄

∞∑
n=1

αnβ̄n + γ̄

∞∑
n=1

αnγ̄n

= β̄u ({αn} , {βn}) + γ̄u ({αn} , {γn})

=⇒ u ({αn} , β {βn}+ γ {γn}) = β̄u ({αn} , {βn}) + γ̄u ({αn} , {γn})
(c) Consider,

u ({αn} , {αn}) =
∞∑
n=1

αnᾱn

=
∞∑
n=1

|αn|2 ≥ 0

=⇒ u ({αn} , {αn}) ≥ 0
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(d) Consider,

u ({αn} , {βn}) =
∞∑
n=1

αnβ̄n

=
∞∑
n=1

ᾱnβn

=
∞∑
n=1

βnᾱn

= u ({βn} , {αn})

=⇒ u ({αn} , {βn}) = u ({βn} , {αn})
(e) Consider,

u ({αn} , {αn}) = 0

⇐⇒
∞∑
n=1

αnᾱn = 0

⇐⇒
∞∑
n=1

|αn|2 = 0

⇐⇒ |α1|2 + |α2|2 + ... = 0
⇐⇒ α1 = 0 = α2 = ...
⇐⇒ {αn} = 0

u ({αn} , {αn}) = 0⇐⇒ {αn} = 0
Therefore, (X, u) is inner product space.

(ii) Suppose u is defined as u ({αn} , {βn}) =
∞∑
n=1

α2nβ̄2n

For any sequences {αn} , {βn} , {γn} ∈ X and α, β, γ ∈ F .
(a) Consider,

u (α {αn}+ β {βn} , {γn}) = u ({ααn + ββn} , {γn})

=
∞∑
n=1

(αα2n + ββ2n) γ̄2n

=
∞∑
n=1

(αα2nγ̄2n + ββ2nγ̄2n)

=
∞∑
n=1

αα2nγ̄2n +
∞∑
n=1

ββ2nγ̄2n

= α
∞∑
n=1

α2nγ̄2n + β
∞∑
n=1

β2nγ̄2n

= αu ({αn} , {γn}) + βu ({βn} , {γn})

=⇒ u (α {αn}+ β {βn} , {γn}) = αu ({αn} , {γn}) + βu ({βn} , {γn})
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(b) Consider,

u ({αn} , β {βn}+ γ {γn}) = u ({αn} , {ββn + γγn})

=
∞∑
n=1

α2n(ββ2n + γγ2n)

=
∞∑
n=1

α2n

(
β̄β̄2n + γ̄γ̄2n

)
=

∞∑
n=1

(
β̄α2nβ̄2n + γ̄α2nγ̄2n

)
= β̄

∞∑
n=1

α2nβ̄2n + γ̄
∞∑
n=1

α2nγ̄2n

= β̄u ({αn} , {βn}) + γ̄u ({αn} , {γn})

=⇒ u ({αn} , β {βn}+ γ {γn}) = β̄u ({αn} , {βn}) + γ̄u ({αn} , {γn})
(c) Consider,

u ({αn} , {αn}) =
∞∑
n=1

α2nᾱ2n

=
∞∑
n=1

|α2n|2 ≥ 0

=⇒ u ({αn} , {αn}) ≥ 0
(d) Consider,

u ({αn} , {βn}) =
∞∑
n=1

α2nβ̄2n

=
∞∑
n=1

ᾱ2nβ2n

=
∞∑
n=1

β2nᾱ2n

= u ({β2n} , {α2n})

=⇒ u ({αn} , {βn}) = u ({βn} , {αn})
=⇒ u is semi-inner product on X.
(e) Consider,

u ({αn} , {αn}) = 0

=⇒
∞∑
n=1

α2nᾱ2n = 0

=⇒
∞∑
n=1

|α2n|2 = 0

=⇒ |α2|2 + |α4|2 + ... = 0
=⇒ α2 = 0 = α4 = ...
; {αn} = 0
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Because, if we take {αn} = {1, 0, 1, 0, ...} 6= 0, then u ({αn} , {αn}) =
∞∑
n=1

α2nᾱ2n = 0

Therefore, u is not inner product on X.
Example 2:
Let (X,Ω, µ) be a measure space consisting of a set X a σ−algebra Ω of subsets of X,
and a countably additive measure µ defined on Ω as µ : Ω→ [0,∞).
σ−algebra
Ω is a collection of subsets of X then Ω is called σ−algebra on X if
(i) X ∈ Ω.
(ii) If A ∈ Ω then Ac ∈ Ω.
(iii) If A1, A2, ... ∈ Ω then ∪∞i=1Ai ∈ Ω.
Measure
A function µ : Ω→ [0,∞) is called a measure if µ (∪∞i=0Ai) =

∑∞
i=1 µ (Ai).

Measurable function
A function f : X → [0,∞) is measurable if f−1 ((α,∞)) is measurable.

L2 (µ) = L2 (X,Ω, µ) =
{
f/
(∫
|f (t) |2dµ

) 1
2 <∞

}
, where f is measurable function and∫

|f (t) |2dµ <∞ is square integrable function.

Define a mapping 〈·, ·〉 on L2 (µ) by 〈f, g〉 =
∫
f (t) g (t)dµ.

For f, g ∈ L2 (µ) =⇒
(∫
|f (t) |2dµ

) 1
2 <∞ and

(∫
|g (t) |2dµ

) 1
2 <∞.

∴
∫
|f (t) g (t)|dµ ≤

(∫
|f (t) |2dµ

) 1
2
(∫
|g (t) |2dµ

) 1
2 <∞.

Therefore, our definition of function is well defined.
Now for any f, g, h ∈ L2 (µ) and α, β ∈ F ,
(a) Consider,

〈αf + βg, h〉 =
∫

(αf (t) + βg (t))h (t)dµ

=
∫ (

αf (t)h (t) + βg (t)h (t)
)
dµ

=
∫
αf (t)h (t)dµ+

∫
βg (t)h (t)dµ

= α
∫
f (t)h (t)dµ+ β

∫
g (t)h (t)dµ

= α〈f, h〉+ β〈g, h〉

=⇒ 〈αf + βg, h〉 = α〈f, h〉+ β〈g, h〉.
(b) Consider,

〈f, αg + βh〉 =
∫
f (t) (αg (t) + βh (t))dµ

=
∫
f (t)

(
ᾱg (t) + β̄h (t)

)
dµ

=
∫
f (t) ᾱg (t)dµ+

∫
f (t) β̄h (t)dµ

= ᾱ
∫
f (t) g (t)dµ+ β̄

∫
f (t)h (t)dµ

= ᾱ〈f, g〉+ β̄〈f, h〉

=⇒ 〈f, αg + βh〉 = ᾱ〈f, g〉+ β̄〈f, h〉.
(c) Consider,
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〈f, f〉 =
∫
f (t) f (t)dµ

=
∫
|f (t) |2dµ

≥ 0

〈f, f〉 ≥ 0. (d) Consider,

〈f, g〉 =
∫
f (t) g (t)dµ

=
∫
g (t) f (t)dµ

=
∫
g (t) f (t)dµ

= 〈g, f〉

〈f, g〉 = 〈g, f〉. (e) Consider,

〈f, f〉 = 0

=⇒
∫
f (t) f (t)dµ = 0

=⇒
∫
|f (t) |2dµ = 0

=⇒ |f (t) |2 = 0
=⇒ f = 0

〈f, f〉 = 0 =⇒ f = 0.
Therefore, 〈·, ·〉 is inner product on L2 (µ).
Therefore,(L2 (µ) , 〈·, ·〉) is inner product space.
The Cauchy-Bunyakowski-Schwarz Inequality: If 〈·, ·〉 is a semi-inner product on
X, then

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉

for all x, y ∈ X. Moreover, equality occurs if and only if there are scalars α and β, both
not 0, such that 〈αx+ βy, αx+ βy〉 = 0.
PROOF. For any x, y ∈ X and α ∈ F

0 ≤ 〈x− αy, x− αy〉
= 〈x, x− αy〉+ 〈−αy, x− αy〉
= 〈x, x〉+ 〈x,−αy〉 − [〈αy, x〉 − 〈αy, αy〉]
= 〈x, x〉 − ᾱ〈x, y〉 − α〈y, x〉+ αᾱ〈y, y〉
= 〈x, x〉 − ᾱ〈x, y〉 − α〈y, x〉+ |α|2〈y, y〉.

Suppose 〈y, x〉 = beiθ, b ≥ 0,=⇒ 〈x, y〉 = be−iθ, 〈x, x〉 = c, 〈y, y〉 = a, and let α =
te−iθ, t ∈ R.
Then above inequality become

0 ≤ c− e−iθtbeiθ − eiθtbe−iθ + at2

= c− 2bt+ at2

= at2 − 2bt+ c ≡ q (t) .

Thus q (t) is quadratic polynomial in real variable t and q (t) ≥ 0 for all t ∈ R.
=⇒ The equation q (t) = 0 has at most one real solution t. But quadratic equation must
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have two roots and complex roots appear in pair. Therefore, q (t) must has no real root.
=⇒ discriminant of q (t) is not positive.

=⇒ 4b2 − 4ac ≤ 0
=⇒ b2 − ac ≤ 0
=⇒ b2 ≤ ac
=⇒ |〈x, y〉|2 ≤ 〈x, x〉〈y, y〉.

Now we have to show equality holds if and only if there are scalars α, β ∈ F both not
zero, such that 〈αx+ βy, αx+ βy〉 = 0
Suppose there are scalars α, β ∈ F both not zero, such that 〈αx+ βy, αx+ βy〉 = 0.
Take β = 〈y, y〉, α = −〈x, y〉 then, z = 〈y, y〉x− 〈x, y〉y
Consider,

〈z, z〉 = 〈〈y, y〉x− 〈x, y〉y, 〈y, y〉x− 〈x, y〉y〉
= 〈〈y, y〉x, 〈y, y〉x− 〈x, y〉y〉 − 〈〈x, y〉y, 〈y, y〉x− 〈x, y〉y〉
= 〈〈y, y〉x, 〈y, y〉x〉 − 〈〈y, y〉x, 〈x, y〉y〉 − 〈〈x, y〉y, 〈y, y〉x〉+ 〈〈x, y〉y, 〈x, y〉y〉
= 〈y, y〉〈y, y〉〈x, x〉 − 〈y, y〉〈x, y〉〈x, y〉 − 〈x, y〉〈y, y〉〈y, x〉+ 〈x, y〉〈x, y〉〈y, y〉
= 〈y, y〉〈y, y〉〈x, x〉 − 〈x, y〉〈y, y〉〈y, x〉.
= 〈y, y〉

[
〈y, y〉〈x, x〉 − 〈x, y〉〈x, y〉

]
= 〈y, y〉 [〈y, y〉〈x, x〉 − |〈x, y〉|2] .

Now, if
〈βx+ αy, βx+ αy〉 = 0
⇒ 〈z, z〉 = 0

⇒ 〈y, y〉 [〈y, y〉〈x, x〉 − |〈x, y〉|2] = 0
⇒ 〈y, y〉〈x, x〉 − |〈x, y〉|2 = 0
⇒ |〈x, y〉|2 = 〈x, x〉〈y, y〉.

Conversely, Suppose |〈x, y〉|2 = 〈x, x〉〈y, y〉

⇒ 〈y, y〉〈x, x〉 − |〈x, y〉|2 = 0

⇒ 〈y, y〉 [〈y, y〉〈x, x〉 − |〈x, y〉|2] = 0
⇒ 〈z, z〉 = 0
⇒ 〈βx+ αy, βx+ αy〉 = 0

where β = 〈y, y〉 and α = −〈x, y〉. �
Corollary. If 〈·, ·〉 is a semi-inner product on X and ‖x‖ ≡ 〈x, x〉1/2 for all x ∈ X, then
(a) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.
(b) ‖αx‖ = |α|‖x‖ for all x ∈ X and α ∈ F .
If 〈·, ·〉 is inner product, then
(c) ‖x‖ = 0 implies x = 0.
PROOF.
(a) For x, y ∈ X

‖x+ y‖2 = 〈x+ y, x+ y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ‖x‖2 + 〈x, y〉+ 〈x, y〉+ ‖y‖2
= ‖x‖2 + 2Re〈x, y〉+ ‖y‖2.
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We know that Re〈x, y〉 ≤ |〈x, y〉| and by CBS inequality we have |〈x, y〉| ≤ ‖x‖‖y‖. Hence

‖x+ y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2
= (‖x‖+ ‖y‖)2 .

=⇒ ‖x+ y‖ ≤ ‖x‖+ ‖y‖

(b) For α ∈ F and x ∈ X
‖αx‖2 = 〈αx, αx〉

= αα〈x, x〉
= |α|2‖x‖2

=⇒ ‖αx‖ = |α|‖x‖

(c) Suppose 〈·, ·〉 is inner product on X.

‖x‖2 = 0
=⇒ 〈x, x〉 = 0
=⇒ x = 0

�
If 〈·, ·〉 is a semi-inner product on X and if x, y ∈ X, then ‖x + y‖2 = ‖x‖2 + 2 Re
〈x, y〉+ ‖y‖2 is called as polar identity.
Let X be a vector space over F . Then the function ‖ · ‖ : X → F from X to F is called
norm if it satisfies following conditions.
(i) For all x ∈ X, ‖x‖ ≥ 0 and ‖x‖ = 0⇔ x = 0.
(ii) For all x ∈ X and α ∈ F , ‖αx‖ = |α|‖x‖.
(iii) For any x, y ∈ X, ‖x + y‖ ≤ ‖x‖ + ‖y‖. The quantity ‖x‖2 = 〈x, x〉1/2 is called the
norm of x induced by inner product.
If X is vector space together with ‖ · ‖ is called normed linear space.
Note
(1) A sequence {xn} in X converges to x in normed linear space means
‖xn − x‖ → 0 as n→∞ or lim

n→∞
‖xn − x‖ = 0.

(2) A sequence {xn} is said to be a Cauchy sequence in X if for given ε > 0, ∃N ∈ N
such that
‖xn − xm‖ ≤ 0,∀m,n ≥ N .
Given a normed linear space X, define metric on X as d(x, y) = ‖x− y‖.
(i) d(x, y) = ‖x− y‖ ≥ 0
⇒ d(x, y) ≥ 0.
(ii) d(x, y) = ‖x− y‖ = ‖y − x‖ = d(y, x)
⇒ d(x, y) = d(y, x)
(iii) d(x, y) = 0
⇔ ‖x− y‖ = 0
⇔ x− y = 0
⇔ x = y
(iv) d(x, y) = ‖x− y‖ = ‖x− z − (y − z)‖ ≤ ‖x− z‖+ ‖z − y‖ = d(x, z) + d(z, y)
⇒ d(x, y) ≤ d(x, z) + d(z, y).
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Definition. A Hilbert space is a vector space H over F together with an inner product
〈·, ·〉 such that relative to the metric d(x, y) = ‖x−y‖ induced by the norm, H is complete
metric space.
Fatou’s Lemma: If fn : X → [0,∞) is measurable for each positive integer n. Then∫ (

lim
n→∞

inf fn

)
dµ ≤ lim

n→∞
inf

∫
fndµ

Example 1. The measure space H = L2 (µ) = L2 (X,Ω, µ) is Hilbert space.

PROOF. We have L2 (µ) =
{
f/
(∫
|f (t) |2dµ

)1/2
<∞

}
where f is measurable function.

Then for f, g ∈ L2 (µ) define a metric on L2 (µ) by d (f, g) = ‖f − g‖2.
Suppose {fn} be Cauchy sequence in L2 (µ).
It is sufficient to prove that one of the subsequence of {fn} is convergent.
Let {fni

} be a subsequence of given sequence such that

‖fni+1
− fni

‖2 < 1
2i
, i = 1, 2, 3, ...

Define gk =
k∑
i=1

|fni+1
− fni

| and g =
∞∑
i=1

|fni+1
− fni

|, then

‖gk‖2 =
(∫
|gk|2dµ

)1/2
=

(∫
|

k∑
i=1

|fni+1
− fni

|2|dµ

)1/2

≤

(∫ k∑
i=1

|fni+1
− fni

|2dµ

)1/2

≤
k∑
i=1

(∫
|fni+1

− fni
|2dµ

)1/2

=
k∑
i=1

‖fni+1
− fni

‖2

<
k∑
i=1

1

2i

= 1
2

+ 1
22

+ 1
23

+ ...+ 1
2k

= 1
2

(
1
2

+ 1
22

+ 1
23

+ ...+ 1
2k−1

)
< 1

2

(
1
2

+ 1
22

+ 1
23

+ ...+ 1
2k−1 + 1

2k
+ ...

)
= 1

2

(
1

1− 1
2

)
= 1

∴ ‖gk‖2 < 1

⇒
(∫
|gk|2

)1/2
< 1

⇒
∫
g2k ≤

∫
|gk|2 < 1

Now applying Fatou’s lemma to g2k we get:∫ (
lim
k→∞

inf g2k

)
dµ ≤ lim

k→∞
inf

∫
g2kdµ < 1

⇒
∫
g2dµ < 1
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⇒
(∫

g2dµ
)1/2

< 1
⇒ ‖g‖2 < 1 <∞
⇒ g must converges a. e.

⇒
∞∑
i=1

(
fni+1

− fni

)
converges absolutely a. e.

⇒ fn1 +
∞∑
i=1

(
fni+1

− fni

)
converges absolutely a. e.

Let f (x) = fn1 +
∞∑
i=1

(
fni+1

− fni

)
for those x ∈ X for which above series converges

absolutely and denote f (x) = 0 for those x ∈ X for which above series is not absolutely
converging.

Suppose fn1 +
k∑
i=1

(
fni+1

− fni

)
= fnk

∴ lim
i→∞

fni
(x) = f(x) a.e.

∴ {fni
} converges pointwise to f

Given a Cauchy sequence {fn} and ε > 0, there exist N ∈ N such that
‖fn − fm‖ < ε ∀n,m > N .
For m > N∫

lim
i→∞

inf |fni
− fm|dµ =

∫
|f − fm|2dµ ≤ lim

i→∞
inf

∫
|fni
− fm|2dµ < ε2

∴
(∫
|f − fm|2dµ

)1/2
< ε

⇒ ‖f − fm‖2 < ε <∞

∴ f − fm ∈ L2 (µ)
‖f‖2 = ‖f − fm + fm‖2 ≤ ‖f − fm‖2 + ‖fm‖2 <∞
⇒ f ∈ L2 (µ)
∴ ‖f − fm‖2 → 0 as m→∞
⇒ {fn} converges to f and f ∈ L2 (µ).
Therefore, L2 (µ) is complete with respect to metric induced by inner product.
Therefore, L2 (µ) is Hilbert space. �
Note
(1) Every Cauchy sequence is bounded.(Exercise)
(2) Minkowski Inequality: For 1 ≤ p <∞ and for any complex numbers xk, yk ∈ C,

(
n∑
k=1

|xk + yk|p)1/p ≤ (
n∑
k=1

|xk|p)1/p + (
n∑
k=1

|yk|p)1/p

Example 2. Let I be any set and let l2 (I) denote the set of all functions x : I → F

such that x (i) = 0 for all but a countable number of i and
∑
i∈I

|x (i) |2 <∞.

For x and y in l2 (I) define

〈x, y〉 =
∑
i

x (i) y (i).
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Then l2 (I) is Hilbert space.
Note: If I is countable then l2 (I) is denoted by l2.
PROOF: Clearly l2 is inner product space(Exercise for you).

Since 〈x, y〉 =
∞∑
i=1

x (i) y (i) is inner product on l2.

⇒ 〈x, x〉 =
∞∑
i=1

x (i)x (i).

=
∞∑
i=1

|x (i) |2

∴ ‖x‖ = 〈x, x〉1/2

⇒ ‖x‖ =

(
∞∑
i=1

|x (i) |2
)1/2

.

⇒ d (x, y) = ‖x− y‖

=

(
∞∑
i=1

|x (i)− y (i) |2
)1/2

Let {xn} be a Cauchy sequence in l2.
That is, for given ε > 0, there exists N ∈ N such that

d (xn, xm) < ε, ∀n,m > N.

⇒

(
∞∑
i=1

|xn (i)− xm (i) |2
)1/2

< ε, ∀n,m > N

⇒
∞∑
i=1

|xn (i)− xm (i) |2 < ε2, ∀n,m > N

Consider,

|xn (i)− xm (i) | ≤

(
∞∑
j=1

|xn (j)− xm (j) |2
)1/2

= d (xn, xm) < ε, ∀n,m > N
⇒ |xn (i)− xm (i) | < ε, ∀n,m > N.

∴ {xn(i)} is Cauchy sequence in F .
⇒ xn (i)→ x (i) as n→∞
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Consider,

x = (x (1) , x (2) , x (3) , ...)

⇒

(
i∑

j=1

|x (j) |2
)1/2

=

(
i∑

j=1

|x (j)− xn (j) + xn (j) |2
)1/2

≤

(
i∑

j=1

|x (j)− xn (j) |2
)1/2

+

(
i∑

j=1

|xn (j) |2
)1/2

< ε+

(
i∑

j=1

|xn (j) |2
)1/2

<∞

⇒

(
i∑

j=1

|x (i) |2
)1/2

< ∞

Now as i→∞, then we have

⇒

(
∞∑
j=1

|x (i) |2
)1/2

<∞

⇒ x ∈ l2.

Already we have,

(
∞∑
i=1

|xn (i)− xm (i) |2
)1/2

< ε

Fix n, taking limit as m→∞

lim
m→∞

(
∞∑
i=1

|xn (i)− xm (i) |2
)1/2

< ε

⇒

(
∞∑
i=1

|xn (i)− x (i) |2
)1/2

< ε

Now as n→∞,

(
∞∑
i=1

|xn (i)− x (i) |2
)1/2

→ 0

⇒ d (xn, x)→ 0 and n→∞
⇒ {xn} → x as n→∞ and x ∈ l2.
l2 is complete metric space with respect to above defined metric.
∴ l2 is Hilbert space. �
Example 3. Show that H = Rk = {(x (1) , x (2) , ..., x (k)) /x(i) ∈ R} is Hilbert space.
PROOF. Define an inner product on Rk as,
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〈x, y〉 =
k∑
i=1

x (i) y (i)

⇒ ‖x‖ = 〈x, x〉1/2

= (
k∑
i=1

x (i)x (i))1/2

= (
k∑
i=1

[x (i)]2)1/2

The metric induced by above inner product is given by,

d(x, y) = ‖x− y‖

= (
k∑
i=1

[x(i)− y(i)]2)1/2

Suppose {xn} be Cauchy sequence in Rk.
Therefore, for given ε > 0, there exists N ∈ N such that
d(xn, xm) < ε ∀n,m > N

⇒ (
k∑
i=1

[xn(i)− xm(i)]2)1/2 < ε

Consider,

|xn(i)− xm(i)| ≤ (
k∑
i=1

|xn(i)− xm(i)|2)1/2

= d(xm, xn)
< ε ∀n,m > N

⇒ {xn(i)} is Cauchy sequence in R.
We know that R is complete.
xn(i)→ x(i) in R as n→∞.
Consider, x = (x(1), x(2), ..., x(k)) then x ∈ Rk because each x(i) ∈ R.
Since,

(
k∑
i=1

|xn(i)− xm(i)|2)1/2 < ε

For fix n and taking m→∞.

(
k∑
i=1

|xn(i)− x(i)|2)1/2 < ε

⇒ d(xn, x) < ε

That is d(xn, x)→ 0 as n→∞.
⇒ {xn} → x as n→∞ and x ∈ Rk.
∴ Rk is complete.
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∴ Rk is Hilbert space. �
ORTHOGONALITY
Definition. If H is Hilbert space and f, g ∈ H, then f and g are orthogonal if 〈f, g〉 = 0.
In symbols, f ⊥ g.
If A,B ⊆ H, then A ⊥ B if f ⊥ g for every f ∈ A and g ∈ B.
If H = R2 then two non-zero vectors in R2 are orthogonal precisely when the angle be-
tween them is π

2
.

Pythagorean Theorem. If f1, f2, ..., fn are pairwise orthogonal vectors in H, then

‖f1 + f2 + ...+ fn‖2 = ‖f1‖2 + ‖f2‖2 + ...+ ‖fn‖2.

PROOF. We will prove this theorem by induction.
If f1 ⊥ f2, then

‖f1 + f2‖2 = 〈f1 + f2, f1 + f2〉
= 〈f1, f1〉+ 〈f1, f2〉+ 〈f2, f1〉+ 〈f2, f2〉
= ‖f1‖2 + ‖f2‖2

Therefore, result is true for n = 2.
Now assume that the result is true for n = k. That is if f1, f2, ..., fk are pairwise orthog-
onal then ‖f1 + f2 + ...+ fk‖2 = ‖f1‖2 + ‖f2‖2 + ...+ ‖fk‖2.
Now we have to show the result is true for n = k + 1.
Suppose f1, f2, ..., fk+1 are pairwise orthogonal vectors in H ⇒ h = f1 +f2 + ...+fk ∈ H.
Consider,

‖f1 + f2 + ...+ fk + fk+1‖2 = ‖h+ fk+1‖2
= ‖h‖2 + ‖fk+1‖2
= ‖f1 + f2 + ...+ fk‖2 + ‖fk+1‖2
= ‖f1‖2 + ‖f2‖2 + ...+ ‖fk‖2 + ‖fk+1‖2

Therefore, by mathematical induction
If f1, f2, ..., fn are pairwise orthogonal vectors in H, then
‖f1 + f2 + ...+ fn‖2 = ‖f1‖2 + ‖f2‖2 + ...+ ‖fn‖2. �
Parallelogram Law: If H is Hilbert space and f and g ∈ H, then

‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2).

PROOF. For any f, g ∈ H the polar identity implies,

‖f + g‖2 = ‖f‖2 + 2Re〈f, g〉+ ‖g‖2,
‖f − g‖2 = ‖f‖2 − 2Re〈f, g〉+ ‖g‖2.

Adding both identities we get,

‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2).

�
Result 1: Suppose X is vector space and 〈·, ·〉 is an inner product on X. If ‖xn−x‖ → 0
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as n→∞ and ‖yn − y‖ → 0 as n→∞, then show that 〈xn, yn〉 → 〈x, y〉 as n→∞.
PROOF. Consider,

|〈xn, yn〉 − 〈x, y〉| = |〈xn, yn〉 − 〈xn, y〉+ 〈xn, y〉 − 〈x, y〉|
≤ |〈xn, yn〉 − 〈xn, y〉|+ |〈xn, y〉 − 〈x, y〉|
= |〈xn, yn − y〉|+ |〈xn − x, y〉|
≤ ‖xn‖‖yn − y‖+ ‖xn − x‖‖y‖

⇒ |〈xn, yn〉 − 〈x, y〉| ≤ ‖xn‖‖yn − y‖+ ‖xn − x‖‖y‖

As n→∞ RHS of above inequality tend to 0.
Therefore, 〈xn, yn〉 → 〈x, y〉 as n→∞. �
Result 2: Subspace of Hilbert space is Hilbert space iff it is closed.
PROOF. Exercise.
Result 3: Among all norms ‖ · ‖p, 1 ≤ p < ∞ only ‖ · ‖2 is a norm coming from inner
product. That is only ‖ · ‖2 induced from inner product.
PROOF. For x = (x(1), x(2), ..., x(k)) ∈ F k,

‖x‖p = (
k∑
i=1

|x(i)|p)1/p

Choose x = (1, 0, 0, ..., 0) and y = (0, 1, 0, ..., 0)
By Parallelogram law we have ‖x+ y‖2p + ‖x− y‖2p = 2(‖x‖2p + ‖y‖2p).

LHS = ‖x+ y‖2p + ‖x− y‖2p

= (
k∑
i=1

|x(i) + y(i)|p)2/p + (
k∑
i=1

|x(i)− y(i)|p)2/p

= (1 + 1 + 0 + ...+ 0)2/p + (1 + 1 + 0 + ...+ 0)2/p

= 22/p + 22/p

= 21+2/p

RHS = 2(‖x‖2p + ‖y‖2p)

= 2[(
k∑
i=1

|x(i)|p)2/p + (
k∑
i=1

|y(i)|p)2/p]

= 2[1 + 1]
= 22

LHS = RHS
⇔ 21+2/p = 22

⇔ 1 + 2
p

= 2

⇔ p = 2.

∴ Only, ‖ · ‖2 induced from inner product. �
Result 4: Show that among all Lp([0, 1]) only L2([0, 2]) is an inner product space.
PROOF. Exercise.
Result 5: Show that C00 = {x : I → F} such that x(i) = 0 for all but finitely many i,
is not Hilbert space.
PROOF. Clearly C00 is a subspace of l2.
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It is sufficient to show there exists one Cauchy sequence which is not convergent in C00.
Suppose {xn} = {1, 1/2, 1/3, ..., 1/n, 0, 0, 0, ...}.
Since finitely many terms of this sequence are non-zero therefore {xn} ∈ C00.
Then, {xn} is Cauchy but it is not convergent in C00.
Hence, C00 is not Hilbert space. �
Definition. If X is any vector space over F and A ⊆ H, then A is convex set if for any
x, y ∈ A and 0 ≤ t ≤ 1, tx+ (1− t)y ∈ A.
Remark 1: Any linear subspace of X is convex(Check).
Remark 2: IfH is Hilbert space, then show that every open ballB(f ; r) = {g ∈ H/‖f − g‖ < r}
is convex.
PROOF. Let g, h ∈ B(f ; r).
To show: tg + (1− t)h ∈ B(f ; r).
Consider,

‖f − (tg + (1− t)h)‖ = ‖f − tg + tf − tf − (1− t)h‖
= ‖f − tf − tg + tf − (1− t)h‖
= ‖(1− t)f − (1− t)h+ t(f − g)‖
= ‖(1− t)(f − h) + t(f − g)‖
≤ ‖(1− t)(f − h)‖+ ‖t(f − g)‖
= (1− t)‖(f − h)‖+ t‖(f − g)‖
< (1− t)r + tr
= r − tr + tr

⇒ ‖f − (tg + (1− t)h)‖ < r

Therefore, Every open ball in H is convex set. �
Theorem. If H is Hilbert space, K is a closed convex non-empty subset of H, and
h ∈ H, then there is a unique point k0 in K such that

‖h− k0‖ = dist(h,K) ≡ inf {‖h− k‖/k ∈ K} .

PROOF. Let d = dist(h,K) ≡ inf {‖h− k‖/k ∈ K}.
Therefore, ∃ {kn} from K such that ‖h− kn‖ → d as n→∞.
That is, lim

n→∞
‖h− kn‖ = d.

Let kn and km be two elements from the sequence {kn}.
Then kn+km

2
∈ K (∵ K is convex)

∴ ‖h− kn+km
2
‖ ≥ d.

⇒ ‖2h− (kn + km)‖ ≥ 2d.
Also, lim

m→∞
‖h− km‖ = d and lim

n→∞
‖h− kn‖ = d.

Now, For any ε > 0, choose N such that for m,n > N ∈ N, then

‖kn − km‖2 = ‖kn − h+ h− km‖2
= 2(‖h− kn‖2 + ‖h− km‖2)− ‖h− kn + h− km‖2
< 2(‖h− kn‖2 + ‖h− km‖2)− ‖h− kn + h− km‖2 + ε2

⇒ ‖km − kn‖ < ε.
⇒ {kn} is a Cauchy sequence.
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Since K is closed subset of Hilbert space H hence it is Hilbert space.
⇒ K is complete.
⇒ {kn} must converges to some point in K.
That is, lim

n→∞
kn = k0 ∈ K.

∴ ‖h− k0‖ = ‖h− lim
n→∞

kn‖
= ‖ lim

n→∞
(h− kn)‖

= lim
n→∞

‖h− kn‖
= d
= dist(h,K).

Uniqueness:
Let, k1 and k2 be two points from K such that ‖h − k1‖ = dist(h,K) and ‖h − k2‖ =
dist(h,K).
∴ k1+k2

2
∈ K.

∴ ‖h− k1+k2
2
‖ ≥ d

∴ ‖2h− (k1 + k2)‖ ≥ 2d
Now,

‖k1 − k2‖2 = ‖k1 − h+ h− k2‖2
= ‖ − (h− k1) + (h− k2)‖2
= 2(‖h− k1‖2 + ‖h− k2‖2)− ‖h− k1 + h− k2‖2
= 2(‖h− k1‖2 + ‖h− k2‖2)− ‖2h− (k1 + k2)‖2
≤ 2d2 + 2d2 − 4d2

= 0
⇒ ‖k1 − k2‖ ≤ 0.

But we know that norm is always greater equal to 0. That is, ‖k1 − k2‖ ≥ 0
⇒ ‖k1 − k2‖ = 0
⇒ k1 − k2 = 0
⇒ k1 = k2. �
Note: The above theorem also holds, if we replace convex set by closed linear subspace
of H.
Theorem. If M is a closed linear subspace of H, h ∈ H, and f0 is unique element of
M such that ‖h − f0‖ = dist(h,M), then h − f0 ⊥ M . Conversely, if f0 ∈ M such that
h− f0 ⊥M , then ‖h− f0‖ = dist(h,M) .
PROOF. Given f0 unique element from M such that ‖h− f0‖ = dist(h,M).
Let f ∈M =⇒ f0 + f ∈M ∵M is linear subspace ⇒ closed under addition.
We know that

‖h− f0‖2 ≤ ‖h− (f0 + f)‖2
= ‖h− f0 − f‖2
= ‖h− f0‖2 − 2Re〈h− f0, f〉+ ‖f‖2

⇒ ‖h− f0‖2 ≤ ‖h− f0‖2 − 2Re〈h− f0, f〉+ ‖f‖2
⇒ −2Re〈h− f0, f〉+ ‖f‖2 ≥ 0

Prof. K. R. Shinde 17 Department of Mathematics



Functional Analysis Modern College of ASC(Autonomous), Pune

⇒ 2Re〈h− f0, f〉 ≤ 〈f, f〉, ∀f ∈M
Now fix f in M and substitute teiθf for f in preceding inequality,
⇒ 2Re〈h− f0, teiθf〉 ≤ 〈teiθf, teiθf〉, t ∈ R
⇒ 2Re

{
te−iθ〈h− f0, f〉

}
≤ t2〈f, f〉, t ∈ R

Now put 〈h− f0, f〉 = reiθ where r ≥ 0.
⇒ 2Re

{
te−iθre−iθ

}
≤ t2‖f‖2

⇒ 2tr ≤ t2‖f‖2
For t 6= 0 and t→ 0 =⇒ r ≤ 0
⇒ r = 0
⇒ 〈h− f0, f〉 = 0 for arbitrary f ∈M
∴ h− f0 ⊥M .
Conversely, suppose f0 ∈M such that h− f0 ⊥M .
Consider, f ∈M , then f0 − f ∈M .
∴ h− f0 ⊥ f0 − f

‖h− f‖2 = ‖h− f0 + f0 − f‖2
= ‖h− f0‖2 + ‖f0 − f‖2
≥ ‖h− f0‖2

∴ ‖h− f‖2 ≥ ‖h− f0‖2,∀f ∈M .
∴ ‖h− f0‖ = inf {‖h− f‖/f ∈M}. �
Result. If A ⊆ H, then A⊥ = {f ∈ H/f ⊥ g, ∀g ∈ A} is closed linear subspace of H.
PROOF. Let f1, f2 ∈ A⊥ =⇒ 〈f1, g〉 = 0 and 〈f2, g〉 = 0, ∀g ∈ A.
∴ 〈f1 + f2, g〉 = 〈f1, g〉+ 〈f2, g〉 = 0, ∀g ∈ A.
∴ f1 + f2 ∈ A⊥.
Also, for any α ∈ F and f ∈ A⊥.
〈αf, g〉 = α〈f, g〉 = 0.
∴ αf ∈ A⊥.
⇒ A⊥ is linear subspace of H.
Suppose z is limit point of A⊥, then there exists a sequence {zn} in A⊥ such that {zn} → z.
∴ 〈zn, g〉 = 0, ∀g ∈ A.
Consider,

〈z, g〉 = 〈 lim
n→∞

zn, g〉
= lim

n→∞
〈zn, g〉

= 0, ∀g ∈ A.

⇒ z ∈ A⊥
Therefore, A⊥ is closed linear subspace of H. �
Projection theorem. Let H be a Hilbert space and M be a closed linear subspace of H
then H = M ⊕M⊥.
PROOF. Suppose h ∈M ∩M⊥.
⇒ h ∈M and h ∈M⊥.
⇒ 〈h, h〉 = 0.
⇒ h = 0.
∴M ∩M⊥ = {0}.
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Since M is closed linear subspace of H and M ⊥M⊥.
∴ N = M +M⊥ is closed .
M ⊂ N and M⊥ ⊂ N . ∵ if S1 ⊂ S2 ⇒ S⊥2 ⊂ S⊥1 .
⇒ N⊥ ⊂M⊥ and N⊥ ⊂M⊥⊥.
∴ N⊥ ⊂M⊥ ∩M⊥⊥ = {0}.
⇒ N⊥ = {0}.
⇒ N⊥⊥ = {0}⊥.
⇒ N⊥⊥ = H. ∵ {0}⊥ = H .
⇒ N = H. ∵ N is closed linear subspace of Hilbert space H.
H = M +M⊥.
∴ H = M ⊕M⊥. �
Note. In previous two theorems we have proved that, if M is closed linear subspace of
H and h ∈ H, then there exist unique point f0 in M such that h − f0 ∈ M⊥. Thus we
can define a mapping P : H →M by Ph = f0.
Theorem. If M is closed linear subspace of H and h ∈ H, let Ph be the unique point in
M such that h− Ph ⊥M . Then
(a) P is a linear transformation on H,
(b) ‖Ph‖ ≤ ‖h‖ for every h ∈ H,
(c) P 2 = P (here P 2 is composition of P with itself),
(d) kerP = M⊥ and ranP = M .
PROOF. (a) Suppose P : H →M is a function defined by h 7→ Ph.
Let h1, h2 ∈ H, f ∈M and α, β ∈ F .
We want to show P (αh1 + βh2) = αP (h1) + βP (h2).
Consider,

〈αh1 + βh2 − (αP (h1) + βP (h2)), f〉 = 〈αh1 − αP (h1), f〉+ 〈βh2 − βP (h2), f〉
= α〈h1 − P (h1), f〉+ β〈h2 − P (h2), f〉
= α(0)− β(0)
= 0

.

∴ 〈αh1 + βh2 − (αP (h1) + βP (h2)), f〉 = 0.
Given that, ∀h ∈ H, h− Ph ⊥M .
⇒ αh1 + βh2 − P (αh1 + βh2) ⊥M and P (αh1 + βh2) is unique.
∴ P (αh1 + βh2) = αP (h1) + βP (h2).
∴ P is linear transformation.
(b) Given h− Ph ⊥M,∀h ∈ H.

∴ ‖h‖2 = ‖h− Ph+ Ph‖2
= ‖h− Ph‖2 + ‖Ph‖2
≥ ‖Ph‖2

∴ ‖Ph‖2 ≤ ‖h‖.
(c) Consider, P 2(h) = P (P (h)) = Ph. ∵ Ph ∈M ⊂ H ⇒ Ph ∈ H.
∴ P 2 = P .
(d) kerP = {h ∈ H/Ph = 0}.
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Let h ∈ kerP =⇒ Ph = 0.
h = h− 0 = h− Ph ∈M⊥.
=⇒ h ∈M⊥.
=⇒ kerP ⊂M⊥.
Now, Let h ∈M⊥.
=⇒ h− 0 ∈M⊥.
Also we know that h− Ph ∈M⊥ and Ph is unique.
=⇒ Ph = 0.
=⇒ h ∈ kerP . =⇒M⊥ ⊆ kerP .
∴ kerP = M⊥.
If M is closed linear subspace of H then H = M ⊕M⊥ and we know that P : H → M
is a linear transformation such that P 2 = P . Then H = kerP⊕ ranP .
=⇒ kerP+ ranP = H = M +M⊥.
=⇒ ranP = M .
DEFINITION. If M is closed linear subspace of H and P is linear transformation from
H to M , then P is called as Orthogonal projection of H onto M .
Result. If P is orthogonal projection onto M , then I − P is orthogonal projection onto
M⊥.
PROOF. Let f ∈M⊥.
Consider,

〈h− (I − P )h, f〉 = 〈h− h+ Ph, f〉
= 〈Ph, f〉
= 0, ∀f ∈M.∵ f ∈M⊥ and Ph ∈M. =⇒ f ⊥ Ph.

∴ h− (I − P )h ⊥M⊥.
Suppose g ∈M⊥.
=⇒ h− (I − P )h ⊥ (I − P )h− g. ∵ h− (I − P )h ⊥M⊥.

∴ ‖h− g‖2 = ‖h− (I − P )h+ (I − P )h− g‖2
= ‖h− (I − P )h‖2 + ‖(I − P )h− g‖2 ∵ By Pythagorean theorem.
≥ ‖h− (I − P )h‖2

∴ ‖h− g‖ ≥ ‖h− (I − P )h‖, ∀g ∈M⊥.
=⇒ ‖h− (I − P )h‖ = dist(h,M⊥).
∴ (I − P )h is unique.
∴ I − P is orthogonal projection onto M⊥.
Corollary. If M is closed linear subspace of H(M ≤ H), then (M⊥)⊥ .
PROOF. Let P be orthogonal projection onto M , then I − P is orthogonal projection
onto M⊥.
Also,

ker(I − P ) = {h ∈ H/(I − P )h = 0}
= {h ∈ H/h− Ph = 0}
= {h ∈ H/h = Ph}
= ranP
= M
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For I − P orthogonal projection of M⊥.
ker(I − P ) = (M⊥)⊥.
=⇒ ker(I − P ) = (M⊥)⊥.
=⇒ (M⊥)⊥ = M. �
DEFINITION. If A ⊆ H, let ∨A ≡ the intersection of all closed linear subspace of H
that contains A. ∨A is called closed linear span of A.
Corollary. If A ⊆ H, then (A⊥)⊥ is closed linear span of A in H.
PROOF. By definition of closed linear space ∨A = [A], where [A] is linear span of A.
For any subset A ⊆ H,A ⊂ (A⊥)⊥. ∵ (A⊥)⊥ is closed linear subspace of H.
=⇒ [A] ⊆ (A⊥)⊥. (1) ∵ [A] is smallest closed set which contains
A.
Also, A ⊂ [A] =⇒ A ⊂ [A].

=⇒ [A]
⊥
⊂ A⊥.

=⇒ (A⊥)⊥ ⊂ [A]
⊥⊥

= [A]. (2)
From (1) and (2) we get, [A] = (A⊥)⊥.
∴ Closed linear span of A is (A⊥)⊥. �
Definition. Y is called linear manifold if Y is linear subspace of H and Y may not be
closed.
Corollary. If Y is linear manifold in H, then Y is dense in H iff Y ⊥ = (0).
PROOF. Suppose Y is dense in H.
=⇒ Y = H.
=⇒ Y

⊥
= H⊥ = {0} .

=⇒ Y
⊥

= {0} .
=⇒ Y ⊥ = {0}.
Conversely, suppose Y ⊥ = {0}.
We know that (Y ⊥)⊥ = Y . ∵ Y is linear space hence (Y ⊥)⊥ = Y .
=⇒ Y = {0}⊥.
=⇒ Y = H.
=⇒ Y is dense in H. �
Proposition. Let H be a Hilbert space and L : H → F be a linear functional. Then
following statements are equivalent.
(a) L is continuous.
(b) L is continuous at 0.
(c) L is continuous at some point.
(d) There exist a constant c > 0 such that |L(h)| ≤ c‖h‖ for every h in H.
PROOF. Clearly, (a) =⇒ (b) =⇒ (c).
(d) =⇒ (b)
Suppose there exists a constant c > 0 such that |L(h)| ≤ c‖h‖ for every h in H.
Now for given ε > 0, choose δ = ε/c such that ‖h− 0‖ < ε/c.
=⇒ |L(h)| ≤ c‖h‖ < c · ε/c = ε.
=⇒ |L(h)− L(0)| < ε.
=⇒ L is continuous at 0.
(b) =⇒ (d)
Suppose L is continuous at 0.
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=⇒ For given ε = 1, there exists δ > 0 such that
B(0, δ) ⊆ L−1({α/|α| < 1}). ∵ Inverse image of open set is open.
=⇒ For h ∈ H and ‖h‖ < δ =⇒ |L(h)| < 1.
Choose, hδ

‖h‖+ε ∈ B(0, δ). ∵ δ = δ · 1 > ‖ hδ
‖h‖+ε‖.

∴ ‖ hδ
‖h‖+ε‖ < δ =⇒ |L( hδ

‖h‖+ε)| < 1.

=⇒ δ
‖h‖+ε |L(h)| < 1.

=⇒ |L(h)| < 1
δ
(‖h‖+ ε).

Let, ε→ 0 in above inequality,
=⇒ |L(h)| < 1

δ
‖h‖.

Choose, c = 1
δ
.

=⇒ |L(h)| < c‖h‖.
(c) =⇒ (a)
Let L be continuous at some point h0 ∈ H.
Let h ∈ H be any arbitrary point and consider {hn} → h as n→∞.
=⇒ {hn − h+ h0} → h0 as n→∞.
=⇒ lim

n→∞
L(hn − h+ h0) = L(h0). ∵ L is continuous at h0.

=⇒ lim
n→∞

[L(hn)− L(h) + L(h0)] = L(h0).

=⇒ lim
n→∞

L(hn)− L(h) + L(h0) = L(h0).

=⇒ lim
n→∞

L(hn) = L(h).

=⇒ L is continuous at h ∈ H.
Therefore, L is continuous on H. �
Definition. A bounded linear functional L on H is a linear functional for which there
is a constant c > 0 such that |L(h)| ≤ c‖h‖ for all h ∈ H.
Note. By preceding proposition, a linear functional is bounded if and only if it is
continuous.
For a bounded linear functional L : H → F , define ‖L‖ = sup {|L(h)|/‖h‖ < 1}.
By definition ‖L‖ <∞ and ‖L‖ is called the norm of L.
Proposition. If L is a bounded linear functional, then

‖L‖ = sup {|L(h)| : ‖h‖ = 1}
= sup {|L(h)|/‖h‖ : h ∈ H, h 6= 0}
= inf {c > 0 : |L(h)| ≤ c‖h‖, h ∈ H} .

PROOF. Let α = inf {c > 0 : |L(h)| < c‖h‖, h ∈ H}. (1)
By definition of norm L,
‖L‖ = sup {|L(h)| : ‖h‖ < 1}. For a given ε > 0, |L( h

‖h‖+ε)| ≤ ‖L‖.
=⇒ h

‖h‖+ε |L(h)| ≤ ‖L‖.
=⇒ |L(h)| ≤ (‖h‖+ ε)‖L‖.
Taking ε→ 0,
|L(h)| ≤ ‖L‖‖h‖.
=⇒ α ≤ ‖L‖. (*)
Let |L(h)| ≤ c‖h‖.
If ‖h‖ ≤ 1.
|L(h)| ≤ c.
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=⇒ ‖L‖ ≤ c. ∵ by definition of ‖L‖.
Taking infimum on both side =⇒ ‖L‖ ≤ α. (**)
∴ α = ‖L‖ ∵ from (*) and (**).
Let β = sup {|L(h)| : ‖h‖ < 1}.
Clearly, β ≤ ‖L‖. ∵ by definition of ‖L‖.
Consider,

|L(h)| = |L(h)‖h‖ · ‖h‖|
= |L( h

‖h‖)| · ‖h‖
≤ sup {|L(z)| : ‖z‖ = 1, z ∈ H} · ‖h‖.

∴ |L(h)| ≤ β‖h‖.
=⇒ α ≤ β. ∵ by definition of α
=⇒ ‖L‖ ≤ β.
=⇒ β = ‖L‖.
Let γ = sup

{
|L(h)|
‖h‖ : h ∈ H, h 6= 0

}
.

|L(h)| = |L(h)‖h‖ · ‖h‖|.
=⇒ |L(h)| = |L(h)|

‖h‖ · ‖h‖.

=⇒ |L(h)| ≤ sup
{
|L(h)|
‖h‖ : h ∈ H, h 6= 0

}
· ‖h‖.

=⇒ |L(h)| ≤ γ · ‖h‖.
=⇒ α ≤ γ. ∵ by definition of α
=⇒ ‖L‖ ≤ γ.
Clearly, γ ≤ ‖L‖.
∴ γ = ‖L‖. �
Fix an h0 in H and define L : H → F by L(h) = 〈h, h0〉.
For h1, h2 ∈ H and α ∈ F .
Consider,

L(h1 + αh2) = 〈h1 + αh2, h0〉
= 〈h1, h0〉+ 〈αh2, h0〉
= 〈h1, h0〉+ α〈h2, h0〉
= L(h1) + αL(h2)

=⇒ L is linear.
Also, by CBS inequality |L(h)| = |〈h, h0〉| ≤ ‖h‖‖h0‖.
=⇒ L is bounded.
=⇒ ‖L‖ ≤ ‖h0‖.
Now for h0

‖h0‖ ∈ H.

L( h0
‖h0‖) = 〈 h0

‖h0‖ , h0〉.
= 1
‖h0‖〈h0, h0〉.

= ‖h0‖2
‖h0‖ .

=⇒ L( h0
‖h0‖) = ‖h0‖.

=⇒ ‖L‖ = ‖h0‖.
The Riesz Representation Theorem. If L : H → F is a bounded linear functional,
then there is a unique vector h0 ∈ H such that L(h) = 〈h, h0〉 for every h ∈ H. Moreover,
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‖L‖ = ‖h0‖.
PROOF. Let M = kerL.
Let h1, h2 ∈ kerL and α ∈ F .
Consider, L(h1 + αh2) = L(h1) + αL(h2) = 0. ∵ h1, h2 ∈ kerL⇒ L(h1) = 0 = L(h2).
=⇒ kerL is linear subspace of H.
Let x ∈ H be a limit point of kerL.
=⇒ ∃{xn} of points from kerL such that {xn} → x.
=⇒ lim

n→∞
L({xn}) = L(x). ∵ L is linear and bounded⇒ L is continuous.

=⇒ 0 = L(x). ∵ xn ∈ kerL for all n.
=⇒ x ∈ kerL.
=⇒ kerL is closed linear subspace of H.
∴M is closed linear subspace of H.
case(i) If M = H =⇒M⊥ = (0).
Then, simply choose L(h) = 〈h, 0〉 =⇒ ‖L‖ = ‖h0‖, where h0 = 0.
case(ii) If M 6= H =⇒M⊥ 6= (0).
=⇒ ∃ some non-zero f0 ∈M⊥ such that L(f0) = 1.
Now if h ∈ H and α = L(h), then L(h− αf0) = L(h)− αL(f0) = L(h)− L(h) = 0.
=⇒ h− αf0 ∈ kerL = M.
=⇒ h− αf0 ∈M.
=⇒ 〈h− αf0, f0〉 = 0. ∵ f0 ∈M⊥.
=⇒ 〈h, f0〉 − α〈f0, f0〉 = 0.
=⇒ 〈h, f0〉 − α‖f0‖2 = 0.
=⇒ α = 〈h, f0

‖f0‖2 〉.
=⇒ L(h) = 〈h, f0

‖f0‖2 〉.
Choose, h0 = f0

‖f0‖2 .

=⇒ L(h) = 〈h, h0〉.
Uniqueness, Suppose there are two h1, h2 ∈ H such that L(h) = 〈h, h1〉 and L(h) = 〈h, h2〉
for all h ∈ H.
=⇒ 〈h, h1〉 = 〈h, h2〉.
=⇒ 〈h, h1〉 − 〈h, h2〉 = 0.
=⇒ 〈h, h1 − h2〉 = 0, ∀h ∈ H.
=⇒ h1 − h2 = 0.
⇐= h1 = h2.
Also, we have proved ‖L‖ = ‖h0‖. �
Corollary. If (X,Ω, µ) is a measure space and F : L2(µ) → F is bounded linear func-
tional, then there is unique h0 in L2(µ) such that F (h) =

∫
hh̄0dµ, for every h in L2(µ).

PROOF. Choose, H = L2(µ) and L = F , then by Riesz representation theorem there
exists h0 ∈ H such that,
L(h) = 〈h, h0〉.
=⇒ L(h) =

∫
hh̄0dµ.

=⇒ F (h) =
∫
hh̄0dµ. �

ORTHOGONAL SET OF VECTORS AND BASES
Definition. An orthonormal subset of a Hilbert space H is subset E having the proper-
ties:
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(a) For e ∈ E , ‖e‖ = 1.
(b) If e1, e2 ∈ E and e1 6= e2, then e1 ⊥ e2.
Definition. A basis for H is a maximal orthonormal set. Also called as Hamal basis.
Note. The concept of basis is different from Hamal basis because for an infinite dimen-
sional Hilbert space, basis is not Hamal basis.
Proposition. Every Hilbert space has an orthonormal basis.
PROOF. Let

∑
be the collection of all orthonormal subsets of H ordered by inclusion.

We know that 0 6= h ∈ H, then the singleton set
{

h
‖h‖

}
is orthonormal and hence

∑
is non-empty. If we take C : E1 ⊆ E2 ⊆ ... be chain in

∑
, then ∪Ei, i = 1, 2, ... is or-

thonormal set which is upper bound. Therefore by Zorn’s Lemma there exists a maximal
element E ∈

∑
which is required maximal orthonormal set in H. �

Example 1. Let H = L2
C[0, 2π] and for n in Z define en ∈ H by en(t) = 1√

2π
eint. Then

{en : n ∈ Z} is an orthogonal set in H.
Solution. Let en(t) = 1√

2π
eint then,

‖en(t)‖ = 〈en, en〉1/2
= (

∫ 2π

0
enendt)

1/2

= (
∫ 2π

0
|en|2dt)1/2

= (
∫ 2π

0
1
2π
dt)1/2

= 1√
2π

√
2π

= 1

=⇒ ‖en‖ = 1.
Now if n 6= m, then

〈en, em〉 =
∫ 2π

0
enemdt

=
∫ 2π

0
1√
2π
eint 1√

2π
e−imtdt

= 1
2π

∫ 2π

0
ei(n−m)tdt

= 0

∴ {en : n ∈ Z} is orthogonal.
Example 2. If H = F d and for 1 ≤ k ≤ d, ek = the d-tuple with 1 in the kth place and
zeros elsewhere, then {e1, e2, ..., ed} is a basis for H.
Solution. Exercise.
Example 3. Let H = l2(I). For each i ∈ I define ei in H by ei(i) = 1 and ei(j) = 0 for
all i 6= j. Then {ei : i ∈ I} is a basis.
Solution. Exercise.
The Gram-Schmidt Orthogonalization Process. IfH is a Hilbert space and {hn : n ∈ N}
is a linearly independent subset of H, then there is an orthonormal set {en : n ∈ N} such
that for every n, the linear space of {e1, e2, ..., en} equals the linear span of {h1, h2, ..., hn}.
Proposition. Let {e1, e2, ..., en} be an orthonormal set in H and let M = ∨{e1, e2, ..., en}.
If P is the orthogonal projection on H onto M , then

Ph =
n∑
k=1

〈h, ek〉ek

Prof. K. R. Shinde 25 Department of Mathematics



Functional Analysis Modern College of ASC(Autonomous), Pune

for all h in H.

PROOF. Let Qh =
n∑
k=1

〈h, ek〉ek

〈Qh, e1〉 = 〈
n∑
k=1

〈h, ek〉ek, e1〉

= 〈〈h, e1〉e1 + 〈h, e2〉e2 + ...+ 〈h, en〉en, e1〉
= 〈h, e1〉〈e1, e1〉+ 〈h, e2〉〈e2, e1〉+ ...+ 〈h, en〉〈en, e1〉
= 〈h, e1〉

Consider, 〈h−Qh, e1〉 = 〈h, e1〉 − 〈Qh, e1〉 = 0.
=⇒ h−Qh ⊥ e1.
Similarly, h−Qh ⊥ ej ∀1 ≤ j ≤ n.
=⇒ h−Qh ⊥M, ∀h ∈ H.
But we know that P is orthogonal projection of H on M , then h − Ph ⊥ M and Ph is
unique.
=⇒ Ph = Qh.

=⇒ Ph =
n∑
k=1

〈h, ek〉ek. �

Bessel’s Inequality. If {en : n ∈ N} is an orthonormal set and h ∈ H, then

∞∑
n=1

|〈h, en〉|2 ≤ ‖h‖2.

PROOF. For any fixed n, let hn = h−
n∑
k=1

〈h, ek〉ek.

Consider,

〈hn, e1〉 = 〈h−
n∑
n=1

〈h, ek〉ek, e1〉

= 〈h, e1〉 − 〈
n∑
n=1

〈h, ek〉ek, e1〉

= 〈h, e1〉 − 〈h, e1〉〈e1, e1〉 − 〈h, e2〉〈e2, e1〉 − ...− 〈h, en〉〈en, e1〉
= 〈h, e1〉 − 〈h, e1〉
= 0

=⇒ hn ⊥ e1.
Similarly, hn ⊥ ej, ∀1 ≤ j ≤ n.
Also,

〈hn,
n∑
k=1

〈h, ek〉ek〉 = 〈hn, 〈h, e1〉e1 + 〈h, e2〉e2 + ...+ 〈h, en〉en〉

= 〈h, e1〉〈hn, e1〉+ 〈h, e2〉〈hn, e2〉+ ...+ 〈h, en〉〈hn, en〉
= 0
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Since, h = hn +
n∑
k=1

〈h, ek〉ek.

=⇒ ‖h‖2 = ‖hn +
n∑
k=1

〈h, ek〉ek‖2 ∵ By Pythagorean theorem

= ‖hn‖2 + ‖
n∑
k=1

〈h, ek〉ek‖2 ∵ hn ⊥
n∑
k=1

〈h, ek〉ek

≥ ‖
n∑
k=1

〈h, ek〉ek‖2 (1)

Now consider,

‖
n∑
k=1

〈h, ek〉ek‖2 = 〈
n∑
k=1

〈h, ek〉ek,
n∑
k=1

〈h, ek〉ek〉

= 〈〈h, e1〉e1 + 〈h, e2〉e2 + ...+ 〈h, en〉en, 〈h, e1〉e1 + 〈h, e2〉e2 + ...+ 〈h, en〉en〉
= 〈h, e1〉〈h, e1〉〈e1, e1〉+ 〈h, e2〉〈h, e2〉〈e2, e2〉+ ...+ 〈h, en〉〈h, en〉〈en, en〉
= |〈h, e1〉|2 + |〈h, e2〉|2 + ...+ |〈h, en〉|2

=
n∑
k=1

|〈h, ek〉|2.

Therefore, inequality (1)

=⇒ ‖h‖2 ≥
n∑
k=1

|〈h, ek〉|2, ∀h ∈ H.

=⇒
∞∑
k=1

|〈h, ek〉|2 ≤ ‖h‖2. �

Proposition. If E is an orthonormal set in H and h ∈ H, then 〈h, e〉 6= 0 for at most a
countable number of vectors e ∈ E .
PROOF. Let En =

{
e ∈ E/|〈h, e〉| ≥ 1

n

}
.

∴
k∑

n=1

1

n2
≤

k∑
n=1

|〈h, e〉|2 ≤ ‖h‖2.

∴ En must be finite.
∪∞n=1En is countable union of finite set and hence countable.
∴ 〈h, e〉 6= 0 for countable number of e ∈ E . �

Corollary. Let E be an orthonormal set, then
∑
e∈E

|〈h, e〉|2 ≤ ‖h‖2.

PROOF. Proof of this corollary follows from Bassel’s inequality and above corollary. �

Result. Show that
∞∑
n=1

|〈h, en〉|2 = ‖h‖2 iff h =
∞∑
n=1

〈h, en〉en.

PROOF. Let, hm =
m∑
n=1

〈h, en〉en.
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‖hm − h‖2 = 〈hm − h, hm − h〉

= ‖hm‖2 − 〈hm, h〉 − 〈h, hm〉+ ‖h‖2

= ‖hm‖2 − 〈
m∑
n=1

〈h, en〉en, h〉 − 〈h,
m∑
n=1

〈h, en〉en〉+ ‖h‖2

= ‖hm‖2 − 〈〈h, e1〉e1 + 〈h, e2〉e2 + ...+ 〈h, em〉em, h〉

−〈h, 〈h, e1〉e1 + 〈h, e2〉e2 + ...+ 〈h, em〉em〉+ ‖h‖2

= ‖hm‖2 − 〈h, e1〉〈e1, h〉 − 〈h, e2〉〈e2, h〉 − ...− 〈h, em〉〈em, h〉

−〈h, e1〉〈h, e1〉 − 〈h, e2〉〈h, e2〉 − ...− 〈h, em〉〈h, em〉+ ‖h‖2

= ‖hm‖2 − 〈h, e1〉〈h, e1〉 − 〈h, e2〉〈h, e2〉 − ...− 〈h, em〉〈h, em〉

−〈h, e1〉〈h, e1〉 − 〈h, e2〉〈h, e2〉 − ...− 〈h, em〉〈h, em〉+ ‖h‖2

= ‖hm‖2 − 2〈h, e1〉〈h, e1〉 − 2〈h, e2〉〈h, e2〉 − ...− 2〈h, em〉〈h, em〉+ ‖h‖2

= ‖hm‖2 − 2
m∑
n=1

|〈h, en〉|2 + ‖h‖2

= ‖h‖2 −
m∑
n=1

|〈h, en〉|2. ∵ ‖hm‖2 =
m∑
n=1

|〈h, en〉|2

∴ ‖hm − h‖2 = ‖h‖2 −
m∑
n=1

|〈h, en〉|2.

Now taking m→∞.

=⇒ ‖h−
∞∑
n=1

〈h, en〉en‖2 = ‖h‖2 −
∞∑
n=1

|〈h, en〉|2.

=⇒ ‖h−
∞∑
n=1

〈h, en〉en‖2 = ‖h‖2 − ‖h‖2.

=⇒ ‖h−
∞∑
n=1

〈h, en〉en‖2 = 0.

=⇒ h−
∞∑
n=1

〈h, en〉en = 0.

=⇒ h =
∞∑
n=1

〈h, en〉en.

Converse is left for exercise. �
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If I is an infinite uncountable set. Then consider F be collection of all finite subset
of I. Define order on F by inclusion, then define hF =

∑
{hi/i ∈ F, F ∈ F}. Then

{hF/F ∈ F} is called as net in H.
Definition. The sum

∑
{hi/i ∈ I} is convergent if then net {hF/F ∈ F} converges; the

value of sum is the limit of the net.

Result. If I is countable, then
∑
{hi/i ∈ I} converges implies

∞∑
n=1

hn converges.

PROOF. Let |F | = n for each F ∈ F .
Then hF = h1 + h2 + ...+ hn.

=⇒
∞∑
n=1

hn converges.

Converse is not true.

That is, convergence of
∞∑
n=1

hn does not implies convergence of
∑
{hi/i ∈ I}.

Lemma. If E is an orthonormal set and h ∈ H, then
∑
{〈h, e〉e/e ∈ E} converges in H.

PROOF. We have seen that {e ∈ E/〈h, e〉 6= 0} is countable.
Therefore, {e ∈ E/〈h, e〉 6= 0} = {e1, e2, ...}.
From Bessel’s inequality we have,
∞∑
n=1

|〈h, en〉|2 ≤ ‖h‖2.

∴ ∃ some N ∈ N such that
∞∑
n=N

|〈h, en〉|2 < ε.

F0 = {e1, e2, ..., eN−1}.
Define, hF =

∑
{〈h, e〉e/e ∈ F}, where F ∈ F and F is collection of all finite subsets of

E .
Let F and G be two members of F such that F0 ⊆ F and F0 ⊆ G.
Consider,

‖hF − hG‖2 =
∑
{|〈h, e〉|2 : e ∈ (F −G) ∪ (G− F )}

<
∞∑
n=N

|〈h, en〉|2

< ε

∴ {hF : F ∈ F} is Cauchy net and hence convergent and converges to
∞∑
n=1

〈h, en〉en. �

Theorem. If E is an orthonormal set in H, then following statements are equivalent.
(a) E is a basis for H.
(b) If h ∈ H and h ⊥ E, then h = 0.
(c) ∨E = H.
(d) If h ∈ H, then h =

∑
{〈h, e〉e : e ∈ E}.

(e) If h, g ∈ H, then 〈g, h〉 =
∑
{〈g, e〉〈e, h〉 : e ∈ E}.

(f) If h ∈ H, then ‖h‖2 =
∑
{|〈h, e〉|2 : e ∈ E}(Parseval’s Inequality).

PROOF. (a) =⇒ (b)
Suppose E is basis for H.
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=⇒ E is maximal orthonormal set in H.
If h ∈ H and h ⊥ E then h = 0.
Because if h 6= 0 then E1 = E ∪

{
h
‖h‖

}
become orthonormal set containing E .

→← to maximality of E .
(b) ⇐⇒ (c)
Suppose, if h ∈ H and h ⊥ E , then h = 0.
⇐⇒ E⊥ = {0}.
⇐⇒ (E⊥)⊥ = {0}⊥.
⇐⇒ ∨E = H.
For h ∈ H, h =

∑
{〈h, e〉e : e ∈ E}.

(b) =⇒ (d)
If h ∈ H and h ⊥ E then h = 0.
To show: If h ∈ H then h =

∑
{〈h, e〉e : e ∈ E}.

Suppose f = h−
∑
{〈h, e〉e : e ∈ E}.

=⇒ If e1 ∈ E , then 〈f, e1〉 = 〈h, e1〉 −
∑
{〈h, e〉〈e, e1〉 : e ∈ E}.

=⇒ 〈f, e1〉 = 〈h, e1〉 − 〈h, e1〉 = 0.
=⇒ 〈f, e1〉 = 0.
=⇒ f ∈ E⊥ hence f = 0.
=⇒ h =

∑
{〈h, e〉e : e ∈ E}.

(d) =⇒ (e)
Suppose h, g ∈ H then h =

∑
{〈h, e〉e : e ∈ E} and g =

∑
{〈g, e〉e : e ∈ E}.

Consider,
〈g, h〉 = 〈

∑
〈g, e〉e,

∑
〈h, e〉e〉

=⇒ 〈g, h〉 =
∑{
〈g, e〉〈h, e〉〈e, e〉 : e ∈ E

}
=⇒ 〈g, h〉 =

∑
{〈g, e〉〈e, h〉 : e ∈ E}

(e) =⇒ (f)
Suppose h, g ∈ H, then 〈g, h〉 =

∑
{〈g, e〉〈e, h〉 : e ∈ E}.

Consider, ‖h‖2 = 〈h, h〉.
=⇒ ‖h‖2 =

∑
{〈h, e〉〈e, h〉 : e ∈ E}.

=⇒ ‖h‖2 =
∑
{|〈h, e〉|2 : e ∈ E}.

(f) =⇒ (a)
Suppose E is orthonormal set in H.
To show: E is maximal orthonormal set in H.
On contrary assume that E is not maximal orthonormal set.
=⇒ ∃ orthonormal set E1 such that E ⊆ E1.
=⇒ There is unit vector e0 ∈ E1 such that ‖e0‖ = 1, e0 ⊥ E .
But by our assumption, ‖e0‖2 =

∑
{|〈e0, e〉|2 : e ∈ E} = 0.

→←.
Therefore, E is maximal orthonormal set in H and hence basis. �
Proposition. If H is a Hilbert space, any two bases have same cardinality.
PROOF. Let H be Hilbert space.
Consider, E and F be two bases for H.
case(i) If |E| = η1 and |F| = η2, where η1, η2 both are infinite.
For each e ∈ E , consider, Fe = {f ∈ F/〈f, e〉 6= 0}.
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=⇒ Fe is countable.
Each f ∈ F must belongs to one of the Fe.
If f ∈ F and f /∈ Fe for all e ∈ E .
=⇒ 〈f, e〉 = 0, ∀e ∈ E .
=⇒ f ⊥ E =⇒ f = 0→← .
∴ F = ∪e∈EFe.
=⇒ |F| ≤

∑
e∈E

|Fe|.

=⇒ η2 ≤ η1 · ℵ0 = η1.
∴ η2 ≤ η1.
Similarly, η1 ≤ η2.
=⇒ η1 = η2.
case(ii) If |E| = η1 and |F| = η2, where η1, η2 both are finite.
If E is basis for H and F is orthonormal set in H.
=⇒ η2 ≤ η1. ∵ E is maximal orthonomal set.
Similarly, if F is basis of H and E is orthonormal set in H.
=⇒ η1 ≤ η2. ∵ F is maximal orthonomal set.
∴ η1 = η2. �
Definition. The dimension of a Hilbert space is cardinality of a basis and denoted by
dimH.
Result. If (X, d) is a metric space that is separable and {Bi = B(xi, εi) : i ∈ I} is a
collection of pairwise disjoint open balls in X, then I must be countable.
PROOF. Let D be countable dense set in X.
Then for each B(xi, εi), B(xi, εi) ∩D 6= φ.
Let yi ∈ B(xi, εi) ∩D.
{yi/i ∈ I} is countable. ∵ yi ∈ D and D is countable.
=⇒ I is countable. �
Proposition. If H is infinite dimensional Hilbert space, then H is separable if and only
if dimH = ℵ0.
PROOF. Suppose H is separable Hilbert space.
Let E be a basis for H.
For e1, e2 ∈ E , ‖e1 − e2‖2 = ‖e1‖2 + ‖e2‖2.
=⇒ ‖e1 − e2‖ =

√
2.

Hence,
{
B(e, 1√

2
) : e ∈ E

}
is collection of pairwise disjoint open balls in H.

=⇒ E is countable.
∴ dimH = ℵ0.
Conversely, suppose dimH = ℵ0.
That is, H has countable basis. Say E = {e1, e2, ...}.

If H is Hilbert space over R, then Dn =

{
n∑
i=1

qiei : qi ∈ Q for 1 ≤ i ≤ n

}
are countable

for 1 ≤ n ≤ ∞.
=⇒ D = ∪∞n=1Dn is countable and dense in H.
The closure of each Dn is seen to be the linear span of {e1, e2, ..., en} and so the closure
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of D includes all finite linear combinations
n∑
i=1

hiei. But, each h ∈ H is a limit of such

finite linear combinations. Hence the closure of D is all of H. As D is countable, this
shows that H must be separable.
If H is Hilbert space over C. Then we take qi ∈ Q + iQ, so that we can get all finite
linear combinations of ei in the closure of D. �
ISOMORPHIC HILBERT SPACES
Definition. If H and K are Hilbert spaces, an isomorphism between H and K is a linear
surjection U : H → K such that
〈Uh, Ug〉 = 〈h, g〉 for all h, g ∈ H. In this case H and K are said to be isomorphic.
Definition. An isometry between metric spaces is a map that preserves distance.
That is, A map T : X → Y is called an isometry if dX(x1, x2) = dY (T (x1), T (x2)) ∀x1, x2 ∈
X.
Theorem. If V : H → K is a linear map between Hilbert spaces, then V is isometry if
and only if 〈V h, V g〉 = 〈h, g〉 ∀h, g ∈ H.
PROOF. Let V : H → K is an isometry.
That is, V preserves distance.
∴ For h, g ∈ H and λ ∈ F, ‖h+ λg‖2 = ‖V (h+ λg)‖2.

=⇒ 〈h+ λg, h+ λg〉 = 〈V h+ λV g, V h+ λV g〉.

=⇒ 〈h, h〉+〈h, λg〉+〈λg, h〉+〈λg, λg〉 = 〈V h, V h〉+〈V h, λV g〉+〈λV g, V h〉+〈λV g, λV g〉.

=⇒ ‖h‖2 + λ〈h, g〉+ λ〈g, h〉+ λλ‖g‖2 = ‖V h‖2 + λ〈V h, V g〉+ λ〈V g, V h〉+ λλ‖V g‖2.

=⇒ λ〈h, g〉+ λ̄〈h, g〉 = λ〈V h, V g〉+ λ̄〈V h, V g〉.

=⇒ 2Reλ〈h, g〉 = 2Reλ〈V h, V g〉.

Case (i) If F = R.
=⇒ Reλ〈h, g〉 = Reλ〈V h, V g〉.
=⇒ 〈h, g〉 = 〈V h, V g〉.
Case (ii) If F = C.
λ = 1 =⇒ Re〈h, g〉 = Re〈V h, V g〉. (1)
λ = i =⇒ −Re i〈h, g〉 = −Re i〈V h, V g〉. (2)
Equation (1) and (2) =⇒ 〈h, g〉 = 〈V h, V g〉.
Conversely, suppose 〈h, g〉 = 〈V h, V g〉, ∀h, g ∈ H.
∴ In particular, 〈h, h〉 = 〈V h, V h〉.
=⇒ ‖h‖2 = ‖V h‖2.
=⇒ ‖h‖ = ‖V h‖, ∀h ∈ H.
Consider,

dH(h, g) = ‖h− g‖
= ‖V (h− g)‖
= ‖V h− V g‖
= dK(V h, V g)
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∴ V is an isometry. �
Example. Define S : l2 → l2 by S(α1, α2, ...) = (0, α1, α2, ...). Then S is an isometry
that is not surjective.
PROOF. Consider, S : l2 → l2 defined by S(α1, α2, ...) = (0, α1, α2, ...), then S is
not onto because (1, 0, 0, ...) ∈ l2 but there does not exists (α1, α2, ...) ∈ S such that
S(α1, α2, ...) = (1, 0, 0, ...).
Let α = (α1, α2, ...) and β = (β1, β2, ...) ∈ l2. Then

〈S(α), S(β)〉 = 〈(0, α1, α2, ...), (0, β1, β2, ...)〉

=
∞∑
i=1

αiβi

= 〈(α1, α2, ...), (β1, β2, ...)〉
= 〈α, β〉

∴ S is an isometry but not surjective. �
Theorem. If H is Hilbert space and E is a basis for H, then H is isomorphic
to l2(E).
PROOF. Let U : H → l2(E) be a map defined by Uh = ĥ, where ĥ : E → F defined by

ĥ(e) = 〈h, e〉 and
∑
e∈E

|ĥ(e)|2 <∞.

To show U is linear: Let h1, h2 ∈ H and α ∈ F .

Consider, U(h1 + αh2) = ̂h1 + αh2.

Claim: ̂h1 + αh2 = ĥ1 + αĥ2.

For e ∈ E ,

( ̂h1 + αh2)(e) = 〈h1 + αh2, e〉

= 〈h1, e〉+ 〈αh2, e〉

= 〈h1, e〉+ α〈h2, e〉

= ĥ1(e) + αĥ2(e), ∀e ∈ E

∴ ̂h1 + αh2 = ĥ1 + αĥ2

∴ U(h1 + αh2) = ̂h1 + αh2 = ĥ1 + αĥ2.
=⇒ U(h1 + αh2) = U(h1) + αU(h2).
To show U is isometry:
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Consider,

‖Uh‖2 = ‖ĥ‖2

= 〈ĥ, ĥ〉

=
∑
e∈E

|ĥ(e)|2

=
∑
e∈E

|〈h, e〉|2

= ‖h‖2 ∵ By Parseval’s Identity.

=⇒ U is isometry.
To show: U is surjective.
l2(E) contains all functions f : E → F such that f(e) = 0 for all but finitely many e ∈ E .
∴ l2(E) ⊆ Im(U).
=⇒ l2(E) ⊆ Im(U).
=⇒ Im(U) = l2(E).
=⇒ Im(U) is dense in l2(E). ∵ It contains all indicators δe for e ∈ E
∴ Im(U) is complete. ∵ Im(U) is image of complete space under isometry.
=⇒ Im(U) is closed.
=⇒ Im(U) = l2(E).
=⇒ U is surjective.
∴ U is an isomorphism.
∴ H is isomorphic to l2(E). �
Theorem. Two Hilbert spaces are isomorphic if and only if they have the same dimen-
sion.
PROOF. Let H and K are Hilbert spaces such that H and K are isomorphic to each
other.
∴ ∃U : H → K is an isomorphism.
Let E is basis for H.
=⇒ U(E) = {U(e)/e ∈ E} is basis for K.
∴ |E| = |U(E)|.
∴ dimH = dimK.
Conversely, suppose dimH = dimK.
Let E be basis for H and F be a basis for K.
=⇒ |E| = |F|.
∴ ∃ an isomorphism T : l2(E)→ l2(F).
=⇒ T (eα) = fα, where eα ∈ l2(E) and fα ∈ l2(F). ∵ |E| = |F|.
∴ H ∼= l2(E) ∼= l2(F) ∼= K.
=⇒ H ∼= K.
∴ H and K are isomorphic to each other. �
Corollary. All separable infinite dimensional Hilbert spaces are isomorphic.
PROOF. If Hilbert spaces H and K are infinite dimensional and separable, then dimH =

Prof. K. R. Shinde 34 Department of Mathematics



Functional Analysis Modern College of ASC(Autonomous), Pune

ℵ0 and dimK = ℵ0.
∴ dimH = dimK.
=⇒ H ∼= K.
Therefore, all separable infinite dimensional Hilbert spaces are isomorphic. �
Theorem. If f : ∂D → C, where ∂D = {z ∈ C/|z| = 1} is a continuous function, then
there is a sequence {pn(z, z̄)} of polynomials in z and z̄ such that pn(z, z̄) → f(z) uni-
formly on ∂D.
Note that if z ∈ ∂D, z̄ = z−1. Thus a polynomial in z and z−1 on ∂D become a function

of the form
m∑

k=−m

αkz
k.

If we put z = eiθ, this become function of the form
m∑

k=−m

αke
ikθ.

such functions are called as trigonometric polynomials.
Theorem. If for each n ∈ Z, en(t) = 1√

2π
eint, then {en : n ∈ Z} is a basis for L2

C[0, 2π].

PROOF. Already we have shown E = {en : n ∈ Z} is orthonormal set.
We want to show ∨E = L2

C[0, 2π].

For this consider, T =

{
n∑

k=−n

αkek/αk ∈ C, n ≥ 0

}
, where ek(t) = 1√

2π
eikt.

Also consider, C = {f ∈ CC[0, 2π]/f(0) = f(2π)}.
To show uniform closure of T is C.
That is to show, T = E .
Let f ∈ C =⇒ f(0) = f(2π).
For any h ∈ T , h(0) = h(2π).
Now define F : ∂D→ C, where ∂D = {z ∈ C/|z| = 1} by F (eiθ) = f(θ).
Then F is continuous function on ∂D. ∵ f is continuous.
∴ pn(eiθ, e−iθ) converges uniformly to F (eiθ).
=⇒ T = C. ∵ pn(eiθ, e−iθ) ∈ T .
Also, we know that C = L2

C[0, 2π].

=⇒ T = C = L2
C[0, 2π].

=⇒ T = L2
C[0, 2π].

=⇒ ∨E = T = L2
C[0, 2π].

∴ ∨E = L2
C[0, 2π].

∴ E is a basis for L2
C[0, 2π]. �

Remark 1. If f ∈ L2
C[0, 2π], then ĥ(n) = 〈f, en〉 = 1

2π

∫ 2π

0
f(t)e−intdt is called nth Fourier

coefficient of f .
Consider, f ∈ L2

C[0, 2π] and E = {en/n ∈ Z} is basis for L2
C[0, 2π].

Therefore, f =
∞∑

n=−∞

〈f, en〉en =
∞∑

n=−∞

f̂(n)en is called Fourier series corresponding to f .

Remark 2. If f ∈ L2
C[0, 2π], then
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‖f‖2 = 〈f, f〉

= 〈
∞∑

n=−∞

f̂(n)en,
∞∑

n=−∞

f̂(n)en〉

= 〈f̂(1)e1 + f̂(2)e2, f̂(1)e1 + f̂(2)e2〉 For n = 1, 2

= f̂(1)f̂(1)〈e1, e1〉+ f̂(1)f̂(2)〈e1, e2〉+ f̂(2)f̂(1)〈e2, e1〉+ f̂(2)f̂(2)〈e2, e2〉
= |f̂(1)|2 + |f̂(2)|2

∴ For f ∈ L2
C[0, 2π].

‖f‖2 =
∞∑

n=−∞

|f̂(n)|2 <∞.

The Reimann-Lebesgue Lemma. If f ∈ L2
C[0, 2π], then

∫ 2π

0
f(t)e−intdt → 0 as

n→ ±∞.

PROOF. From result 2. we have
∞∑

n=−∞

|f̂(n)|2 <∞.

=⇒ lim
n→∞

|f̂(n)|2 = 0.

=⇒ lim
n→∞

|f̂(n)| = 0.

=⇒ lim
n→∞

f̂(n) = 0.

=⇒ 1
2π

∫ 2π

0
f(t)e−int → 0 and n→∞.

=⇒
∫ 2π

0
f(t)e−int → 0 and n→∞.

Note. For f in L2
C[0, 2π], the function f̂ : Z→ C is called the Fourier transform of f .

That is, the map U : L2
C[0, 2π]→ l2(Z) defined by Uf = f̂ is the Fourier transform.

Theorem. The Fourier transform is a linear isometry from L2
C[0, 2π] onto l2(Z).

PROOF. Let U : L2
C[0, 2π] → l2(Z) is Fourier transform defined by Uf = f̂ , where

f̂(n) = 〈f, en〉 = 1
2π

∫ 2π

0
f(t)e−intdt.

To show U is linear:
Let f1, f2 ∈ L2

C[0, 2π] and α ∈ F .
To show U(f1 + αf2) = U(f1) + αU(f2).

That is, to show ̂f1 + αf2 = f̂1 + αf̂2.
For en ∈ E consider,

̂f1 + αf2(n) = 〈f1 + αf2, en〉
= 〈f1, en〉+ α〈f2, en〉
= f̂1(n) + αf̂2(n)

= (f̂1 + αf̂2)(n)

=⇒ ̂f1 + αf2 = f̂1 + αf̂2

To show U is isometry:
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Consider,

‖Uf‖2 = ‖f̂‖2
= 〈f̂ , f̂〉

=
∞∑

n=−∞

|f̂(n)|2

= ‖f‖2 ∵ Parsevals identity

∴ U is isometry.
To show U is onto:
Let {{αn} ∈ l2(Z)/αn = 0 for all but finitely many n ∈ Z}
Then clearly T is dense in l2(Z).
Now we want to show that range(U) = T .
Take {αn} ∈ T .

Consider, f =
∞∑

n=−∞

αnen.

Here,
‖f‖2 = 〈f, f〉

= 〈
∞∑

n=−∞

αnen,
∞∑

n=−∞

αnen〉

=
∞∑

n=−∞

|αn|2

< ∞

∴ f ∈ L2
C[0, 2π].

U(f(n)) = f̂(n)
= 〈f, en〉

= 〈
∞∑

n=−∞

αnen, en〉

= αn

∴ U(f) = {αn}.
=⇒ T ⊆ range(U)
=⇒ T ⊆ range(U) ⊆ l2(Z).
=⇒ l2(Z) ⊆ range(U) ⊆ l2(Z).
But range(U) is closed being image of complete space under isometry.
∴ l2(Z) ⊆ range(U) ⊆ l2(Z).
=⇒ range(U) = l2(Z).
Therefore, U is onto map.
Therefore, U is linear isometry map from L2

C[0, 2π] to l2(Z).
THE DIRECT SUM OF HILBERT SPACES
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Suppose H and K are Hilbert space, then H ⊕K = {h⊕ k : h ∈ H, k ∈ K}.
If h1 ⊕ k1, h2 ⊕ k2 ∈ H ⊕K, then (h1 ⊕ k1) + (h2 ⊕ k2) = (h1 + h2)⊕ (k1 + k2).
Definition. If H and K are Hilbert spaces then 〈h1 ⊕ k1, h2 ⊕ k2〉 = 〈h1, h2〉+ 〈k1, k2〉.
H ⊕K is complete inner product space with respect to above inner product hence it is
Hilbert space.
Proposition. If H1, H2, ... are Hilbert spaces, let H = {(hn)∞n=1 : hn ∈ Hn} for all n and
∞∑
n=1

‖hn‖2 <∞. For h = (hn) and g = (gn) in H, define 〈h, g〉 =
∞∑
n=1

〈hn, gn〉. Then 〈·, ·〉

is an inner product on H. With this inner product H is Hilbert space.
PROOF. Exercise.
Definition. H1, H2, ... are Hilbert spaces, the Hilbert space H in previous preposition is
called direct sum of H1, H2, ... and it is denoted by H = H1 ⊕H2 ⊕ ....

♣♣♣
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CHAPTER 2

Operators on Hilbert Spaces

ELEMENTARY PROPERTIES AND EXAMPLES
Proposition. Let H and K be Hilbert spaces and A : H → K a linear transformation.
The following statements are equivalent.
(a) A is continuous.
(b) A is continuous at 0.
(c) A is continuous at some point.
(d) There is a constant c > 0 such that ‖Ah‖ ≤ c‖h‖ for all h ∈ H.
PROOF. Already done. �
If

‖A‖ = sup {‖Ah‖ : h ∈ H, ‖h‖ ≤ 1} ,

then
‖A‖ = sup {‖Ah‖ : ‖h‖ = 1}

= sup {‖Ah‖/‖h‖ : h 6= 0}
= inf {c > 0 : ‖Ah‖ ≤ c‖h‖, h ∈ H} .

Also ‖Ah‖ ≤ ‖A‖‖h‖. ‖A‖ is called the norm of A and a linear transformation with
finite norm is called bounded. Let B(H,K) be the set of bounded linear transformations
from H to K. For H = K,B(H,H) ≡ B(H). Note that B(H,F) = all the bounded linear
functionals on H.
Proposition. (a) If A and B ∈ B(H,K), then A + B ∈ B(H,K), and ‖A + B‖ ≤
‖A‖+ ‖B‖.
(b) If α ∈ F and A ∈ B(H,K), then αA ∈ B(H,K) and ‖αA‖ = |α|‖A‖.
(c) If A ∈ B(H,K) and B ∈ B(K,L), then BA ∈ B(H,L) and ‖BA‖ ≤ ‖B‖‖A‖.
PROOF. (a) Let A,B ∈ B(H,K).
∴ A+B : H → K is a linear transformation.

‖(A+B)h‖ = ‖Ah+Bh‖
≤ ‖Ah‖+ ‖Bh‖
≤ ‖A‖‖h‖+ ‖B‖‖h‖
≤ (‖A‖+ ‖B‖)‖h‖, ∀h ∈ H

=⇒ A+B ∈ B(H,K).
Also, ‖A+B‖ = inf {c > 0 : ‖(A+B)h‖ ≤ c‖h‖}.
=⇒ ‖A+B‖ ≤ ‖A‖+ ‖B‖.
(b) Clearly, αA : H → K is a linear transformation.
Consider,

‖αA(h)‖ = |α|‖Ah‖
≤ |α|‖A‖‖h‖, ∀h ∈ H.

∴ αA is bounded and it is bounded by |α|‖A‖.
By definition of ‖αA‖,
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‖αA‖ = sup {‖αA(h)‖ : ‖h‖ ≤ 1}
= |α| sup {‖Ah‖ : ‖h‖ ≤ 1}
= |α|‖A‖

(c) Clearly, BA is a linear transformation from H to L.

‖(BA)h‖ = ‖B(A(h))‖
≤ ‖B‖‖Ah‖
≤ ‖B‖‖A‖‖h‖

∴ BA is a bounded operator with upper bound as ‖B‖‖A‖.
∴ ‖BA‖ ≤ ‖B‖‖A‖. �
Definition. If H and K are Hilbert spaces, a function u : H × K → F is sesquilinear
form if for h, g, f ∈ H and α, β ∈ F.
(a) u(αh+ βg, k) = αu(h, k) + βu(g, k);
(b) u(h, αk + βf) = ᾱu(h, k) + β̄u(h, f).
A sesquilinear form is bounded if there is constantM such that |u(h, k)| ≤M‖h‖‖k‖, ∀h ∈
H and k ∈ K. The constant M is called a bound for u.
Result. Given A ∈ B(H,K) we can construct a sesquilinear form u(h, k) = 〈Ah, k〉.
Solution: For h1, h2 ∈ H, k1, k2 ∈ K and α, β ∈ F. Then

u(αh1 + βh2, k) = 〈A(αh1 + βh2), k〉
= 〈αA(h1) + βA(h2), k〉
= α〈A(h1), k〉+ β〈A(h2), k〉
= αu(h1, k) + βu(h2, k)

Similarly, u(h, αk1 + βk2) = ᾱu(h, k1) + β̄u(h, k2).
Now boundedness,

|u(h, k)| = |〈Ah, k〉|
≤ ‖Ah‖‖k‖ ∵ By CBS inequality.
≤ ‖A‖‖h‖‖k‖, ∀h ∈ H, k ∈ K.

Theorem. If u : H ×K → F is bounded sesquilinear form with bound M , then there is
a unique operator A ∈ B(H,K) and B ∈ B(K,H) such that u(h, k) = 〈Ah, k〉 = 〈h,Bk〉
for all h ∈ H and k ∈ K and ‖A‖, ‖B‖ ≤M .
PROOF. Define Lh : K → F by,
Lh(k) = u(h, k).
Claim: Lh is linear functional.
Consider, k1, k2 ∈ K and α ∈ F.

Lh(k1 + αk2) = u(h, k1 + αk2)

= u(h, k1) + u(h, αk2)

= u(h, k1) + αu(h, k2)
= Lh(k1) + αLh(k2)

∴ Lh is linear functional.
Consider, |Lh(k)| = |u(h, k)| = |u(h, k)| ≤M‖h‖‖k‖, ∀k ∈ K.
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∴ Lh is a bounded linear functional with upper bound M‖h‖.
∴ ‖Lh‖ ≤M‖h‖.
∴ Lh : K → F is a bounded linear functional, hence by Riesz Representation theorem,
there is some k1 ∈ K such that
Lh(k) = 〈k, k1〉, ∀k ∈ K and ‖Lh‖ = ‖k1‖.
Put, k1 = Ah.
Claim: A is linear.
Consider, 〈k, k1〉 = 〈k,Ah〉.
Let h1, h2 ∈ H,α ∈ F.

〈k,A(h1 + αh2)〉 = u(h1 + αh2, k)

= u(h1, k) + u(αh2, k)
= 〈k,Ah1〉+ 〈k, αAh2〉
= 〈k,Ah1 + αAh2〉, ∀k ∈ K

=⇒ A(h1 + αh2) = Ah1 + αAh2.
Also, 〈Ah, k〉 = 〈k,Ah〉 = 〈k, k1〉 = u(h, k).
∴ u(h, k) = 〈Ah, k〉.
We know, ‖Lh‖ = ‖k1‖
=⇒ ‖Lh‖ ≤M‖h‖
=⇒ ‖k1‖ ≤M‖h‖
=⇒ ‖Ah‖ ≤M‖h‖, ∀h ∈ H.
Uniqueness:
If possible, there exists A1 ∈ B(H,K) such that
u(h, k) = 〈A1h, k〉.
=⇒ 〈Ah, k〉 = 〈A1h, k〉, ∀h ∈ H and k ∈ K.
=⇒ 〈Ah, k〉 − 〈A1h, k〉 = 0.
=⇒ 〈Ah− A1h, k〉 = 0.
=⇒ 〈(A− A1)h, k〉 = 0, ∀h ∈ H.
=⇒ A− A1 = 0.
=⇒ A = A1. �
Definition. If A ∈ B(H,K), then the unique operator B ∈ B(K,H) such that 〈Ah, k〉 =
〈h,Bk〉 is called adjoint of A and denoted by A∗.
Proposition. If U ∈ B(H), then U is an isomorphism if and only if U is invertible and
U−1 = U∗.
PROOF. Let U : H → K is an isomorphism.
That is, U is linear, surjective isometry.
Since U is isometry,
=⇒ 〈Uh, Ug〉 = 〈h, g〉, ∀h, g ∈ H.
In particular, 〈Uh, Uh〉 = 〈h, h〉.
If Uh = 0 =⇒ 〈h, h〉 = 0 =⇒ h = 0. =⇒ kerU = {0}.
=⇒ U is injective.
=⇒ U is bijective and hence invertible.
For h1, h2 ∈ H, 〈Uh1, Uh2〉 = 〈h1, h2〉.
Also, 〈Uh1, Uh2〉 = 〈h1, U∗Uh2〉.
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=⇒ 〈h1, U∗Uh2〉 = 〈h1, h2〉, ∀h1, h2 ∈ H.
=⇒ 〈h1, U∗Uh2〉 − 〈h1, h2〉 = 0.
=⇒ 〈h1, U∗Uh2 − h2〉 = 0.
=⇒ 〈h1, (U∗U − I)h2〉 = 0.
=⇒ U∗U − I = 0.
=⇒ U∗U = I.
=⇒ U−1 = U∗.
Conversely, suppose U is invertible and U∗ = U−1.
Clearly, U is linear, surjective mapping.
Consider,

〈Uh1, Uh2〉 = 〈h1, U∗Uh2〉
= 〈h1, Ih2〉
= 〈h1, h2〉

∴ U is an isometry.
∴ U is an isomorphism. �
Proposition. If A,B ∈ B(H,K) and α ∈ F, then:
(a)(αA+B)∗ = ᾱA∗ +B∗

(b)(AB)∗ = B∗A∗

(c)A∗∗ = (A∗)∗ = A
(d) If A is invertible in B(H) and A−1 is its inverse, then A∗ is invertible and (A∗)−1 =
(A−1)∗.
PROOF. (a) If A ∈ B(H) then αA ∈ B(H). Also, for αA,B ∈ B(H).
Consider, 〈(αA+B)h1, h2〉 = 〈h1, (αA+B)∗h2〉.
Now,

〈h1, (αA+B)∗h2〉 = 〈(αA+B)h1, h2〉
= 〈αAh1, h2〉+ 〈Bh1, h2〉
= α〈Ah1, h2〉+ 〈Bh1, h2〉
= α〈h1, A∗h2〉+ 〈h1, B∗h2〉
= 〈h1, ᾱA∗h2〉+ 〈h1, B∗h2〉
= 〈h1, (ᾱA∗ +B∗)h2〉

〈h1, (αA+B)∗h2〉 − 〈h1, (ᾱA∗ +B∗)h2〉 = 0.
〈h1, [(αA+B)∗ − (ᾱA∗ +B∗)]h2〉 = 0, ∀h1, h2 ∈ H.
=⇒ [(αA+B)∗ − (ᾱA∗ +B∗)]h2 = 0, ∀h2 ∈ H.
=⇒ (αA+B)∗ − (ᾱA∗ +B∗) = 0.
=⇒ (αA+B)∗ = ᾱA∗ +B∗.
(b) Suppose A,B ∈ B(H).
Consider,

〈(AB)h1, h2〉 = 〈A(Bh1), h2〉
= 〈(Bh1), A∗h2〉
= 〈h1, B∗A∗h2〉

=⇒ 〈(AB)h1, h2〉 − 〈h1, B∗A∗h2〉 = 0.
=⇒ 〈h1, (AB)∗h2〉 − 〈h1, B∗A∗h2〉 = 0.
=⇒ 〈h1, (AB)∗h2 −B∗A∗h2〉 = 0.
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=⇒ 〈h1, [(AB)∗ −B∗A∗]h2〉 = 0, h1, h2 ∈ H.
=⇒ [(AB)∗ −B∗A∗]h2 = 0, h2 ∈ H.
=⇒ (AB)∗ = B∗A∗.
(c) Let A ∈ B(H).
Consider,

〈Ah1, h2〉 = 〈h1, A∗h2〉
= 〈(A∗)∗h1, h2〉

=⇒ 〈Ah1, h2〉 − 〈(A∗)∗h1, h2〉 = 0.
=⇒ 〈(A− (A∗)∗)h1, h2〉 = 0, h1, h2 ∈ H.
=⇒ (A− (A∗)∗)h1 = 0, h1 ∈ H.
=⇒ A− (A∗)∗ = 0.
=⇒ A = (A∗)∗ = A∗∗.
(d) Suppose A ∈ B(H) and A is invertible.
Let A−1 is inverse of A.
Clearly, A∗ is surjective mapping.
Let A∗h = 0.
Consider, 〈h1, A∗h〉 = 〈Ah1, h〉.
=⇒ 〈Ah1, h〉 = 0, ∀h1, h ∈ H.
In particular, 〈h, h〉 = 0.
=⇒ h = 0.
=⇒ kerA∗ = {0}.
=⇒ A∗ is injective.
∴ A∗ is invertible.
Consider, 〈h1, h2〉 = 〈A∗(A∗)−1h1, h2〉.
=⇒ 〈h1, h2〉 = 〈(A∗)−1h1, Ah2〉.
Also, 〈h1, h2〉 = 〈h1, A−1Ah2〉.
=⇒ 〈h1, h2〉 = 〈(A−1)∗h1, Ah2〉, ∀h1, h2 ∈ H.
=⇒ 〈(A−1)∗h1, Ah2〉 = 〈(A∗)−1h1, Ah2〉.
=⇒ 〈(A−1)∗h1, Ah2〉 − 〈(A∗)−1h1, Ah2〉 = 0.
=⇒ 〈[(A−1)∗ − (A∗)−1]h1, Ah2〉 = 0.
In particular, 〈[(A−1)∗ − (A∗)−1]h1, [(A

−1)∗ − (A∗)−1]h1〉 = 0.
=⇒ [(A−1)∗ − (A∗)−1]h1 = 0, ∀h1 ∈ H.
=⇒ (A−1)∗ = (A∗)−1. �
Proposition. If A ∈ B(H), ‖A‖ = ‖A∗‖ = ‖A∗A‖1/2.
PROOF. Let h ∈ H and ‖h‖ ≤ 1.
Consider,

‖Ah‖2 = 〈Ah,Ah〉
= 〈A∗Ah, h〉
≤ ‖A∗Ah‖‖h‖
≤ ‖A∗A‖‖h‖‖h‖
≤ ‖A∗A‖

=⇒ sup {‖Ah‖2 : ‖h‖ ≤ 1} ≤ ‖A∗A‖.
=⇒ ‖A‖2 ≤ ‖A∗A‖ ≤ ‖A∗‖‖A‖. (1)
=⇒ ‖A‖2 ≤ ‖A∗‖‖A‖.
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=⇒ ‖A∗‖‖A‖ − ‖A‖2 ≥ 0.
=⇒ (‖A∗‖ − ‖A‖)‖A‖ ≥ 0.
=⇒ ‖A∗‖ ≥ ‖A‖. (2)
For A ∈ B(H) we have A∗ ∈ B(H).
Replacing A by A∗ we get, ‖A∗∗‖ ≥ ‖A∗‖.
=⇒ ‖A‖ ≥ ‖A∗‖. (3) ∵ A∗∗ = A
∴ By (2) and (3) ‖A‖ = ‖A∗‖.
Put ‖A∗‖ = ‖A‖ in inequality (1).
‖A‖2 ≤ ‖A∗A‖ ≤ ‖A‖2.
=⇒ ‖A∗A‖ = ‖A‖2.
=⇒ ‖A∗A‖1/2 = ‖A‖.
∴ ‖A‖ = ‖A∗‖ = ‖A∗A‖1/2. �
Proposition. If S : l2 → l2 is defined by S(α1, α2, ...) = (0, α1, α2, ...), then S is isometry
and S∗(α1, α2, ...) = (α2, α3, ....).
PROOF. Let α = (α1, α2, ...), β = (β1, β2, ...) ∈ l2.
Consider,

〈Sα, Sβ〉 = 〈S(α1, α2, ...), S(β1, β2, ...)〉
= 〈(0, α1, α2, ...), (0, β1, β2, ...)〉
= 0 · 0 + α1β1 + α2β2 + ...

=
∞∑
n=1

αnβn

= 〈(α1, α2, ...), (β1, β2, ...)〉
= 〈α, β〉

=⇒ S is isometry.
Now, to show: S∗(α1, α2, ...) = (α2, α3, ....).
Consider,

〈S∗α, β〉 = 〈S∗(α1, α2, ...), (β1, β2, ...)〉
= 〈(α1, α2, ...), S(β1, β2, ...)〉
= 〈(α1, α2, ...), (0, β1, β2, ...)〉
= α1 · 0 + α2β1 + ...

=
∞∑
n=1

αn+1βn

= 〈(α2, α3, ...), (β1, β2, ...)〉
= 〈(α2, α3, ...), β〉

=⇒ 〈S∗α, β〉 = 〈(α2, α3, ...), β〉.
=⇒ 〈S∗(α1, α2, ...), β〉 − 〈(α2, α3, ...), β〉 = 0.
=⇒ 〈S∗(α1, α2, ...)− (α2, α3, ...), β〉 = 0, ∀β ∈ l2.
=⇒ S∗(α1, α2, ...)− (α2, α3, ...) = 0.
=⇒ S∗(α1, α2, ...) = (α2, α3, ...). �
Note. The operator S is called unilateral shift and the operator S∗ is called backward
shift.
Definition. If A ∈ B(H), then: (a) A is hermitian or self-adjoint if A∗ = A; (b) A is
normal if AA∗ = A∗A.
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Proposition. If H is C-Hilbert space and A ∈ B(H), then A is hermitian if and only if
〈Ah, h〉 ∈ R for all h in H.
PROOF. Suppose A is hermitian.
=⇒ A∗ = A.
Consider,

〈Ah, h〉 = 〈h,A∗h〉
= 〈h,Ah〉
= 〈Ah, h〉

=⇒ 〈Ah, h〉 ∈ R.
Conversely, suppose 〈Ah, h〉 ∈ R, ∀h ∈ H.
To show: A is hermitian.
That is to show: A∗ = A.
For h, g ∈ H and α ∈ F =⇒ h+ αg ∈ H.
∴ 〈A(h+ αg), h+ αg〉 ∈ R.

=⇒ 〈A(h+ αg), h+ αg〉 = 〈A(h+ αg), h+ αg〉.

=⇒ 〈Ah, h〉+ᾱ〈Ah, g〉+α〈Ag, h〉+|α|2〈Ag, g〉 = 〈Ah, h〉+ ᾱ〈Ah, g〉+ α〈Ag, h〉+ |α|2〈Ag, g〉.

=⇒
〈Ah, h〉+ ᾱ〈Ah, g〉+α〈Ag, h〉+ |α|2〈Ag, g〉 = 〈Ah, h〉+α〈Ah, g〉+ ᾱ〈Ag, h〉+ |α|2〈Ag, g〉.

=⇒ ᾱ〈Ah, g〉+ α〈Ag, h〉 = α〈Ah, g〉+ ᾱ〈Ag, h〉.

=⇒ ᾱ〈Ah, g〉+ α〈Ag, h〉 = α〈A∗g, h〉+ ᾱ〈A∗h, g〉.

For α = 1
=⇒ 〈Ah, g〉+ 〈Ag, h〉 = 〈A∗g, h〉+ 〈A∗h, g〉. (1)
For α = i
=⇒ −i〈Ah, g〉+ i〈Ag, h〉 = i〈A∗g, h〉 − i〈A∗h, g〉
=⇒ 〈Ah, g〉 − 〈Ag, h〉 = −〈A∗g, h〉+ 〈A∗h, g〉 (2)
Subtracting (2) from (1) we get,
2〈Ag, h〉 = 2〈A∗g, h〉
=⇒ 〈Ag, h〉 = 〈A∗g, h〉
=⇒ 〈Ag, h〉 − 〈A∗g, h〉 = 0, ∀h, g ∈ H.
=⇒ 〈Ag − A∗g, h〉, ∀h, g ∈ H.
=⇒ Ag − A∗g = 0, ∀g ∈ H.
=⇒ A = A∗.
∴ A is hermitian. �
Remark. If H is R−Hilbert space, then above proposition may not be true.
Counter example:
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Consider, A =

[
0 1
−1 0

]
and h =

[
h1
h2

]
, Then

〈Ah, h〉 = 〈
[
h2
−h1

]
,

[
h1
h2

]
〉

= 〈(h2,−h1), (h1, h2)〉
= h2h1 − h1h2
= 0

=⇒ 〈Ah, h〉 = 0 ∈ R.
Here A∗ is conjugate transpose of matrix A.

=⇒ A∗ =

[
0 −1
1 0

]
6= A.

=⇒ A is not hermitian. �
Proposition. If A = A∗, then

‖A‖ = sup {|〈Ah, h〉| : ‖h‖ = 1} .

PROOF. Suppose M = sup {|〈Ah, h〉| : ‖h‖ = 1}.
If ‖h‖ = 1, then

|〈Ah, h〉| ≤ ‖Ah‖‖h‖ ∵ By CBS inequality.
≤ ‖A‖‖h‖‖h‖
≤ ‖A‖ ∵ ‖h‖ = 1.

=⇒ |〈Ah, h〉| ≤ ‖A‖.
=⇒ sup {|〈Ah, h〉| : ‖h‖ = 1} ≤ ‖A‖.
∴M ≤ ‖A‖. (1)
If h, g ∈ H and ‖h‖ = ‖g‖ = 1, then

〈A(h± g), h± g〉 = 〈Ah, h〉 ± 〈Ah, g〉 ± 〈Ag, h〉+ 〈Ag, g〉
= 〈Ah, h〉 ± 〈Ah, g〉 ± 〈g, A∗h〉+ 〈Ag, g〉
= 〈Ah, h〉 ± 〈Ah, g〉 ± 〈g, Ah〉+ 〈Ag, g〉 ∵ A = A∗

= 〈Ah, h〉 ± 〈Ah, g〉 ± 〈Ah, g〉+ 〈Ag, g〉
= 〈Ah, h〉 ± 2Re〈Ah, g〉+ 〈Ag, g〉

∴ 〈A(h+ g), h+ g〉 = 〈Ah, h〉+ 2Re〈Ah, g〉+ 〈Ag, g〉 (2)
and 〈A(h− g), h− g〉 = 〈Ah, h〉 − 2Re〈Ah, g〉+ 〈Ag, g〉 (3)
Subtracting equation (3) from equation (2) we get,

〈A(h+ g), h+ g〉 − 〈A(h− g), h− g〉 = 4Re〈Ah, g〉.

=⇒ 4Re〈Ah, g〉 ≤ |〈A(h+ g), h+ g〉|+ |〈A(h− g), h− g〉|. (4)
Now for any u = f

‖f‖ ∈ H,

|〈Au, u〉| = |〈A f
‖f‖ ,

f
‖f‖〉|

= 1
‖f‖2 |〈Af, f〉|
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=⇒ 1
‖f‖2 |〈Af, f〉| = |〈Au, u〉| ≤M .

=⇒ 1
‖f‖2 |〈Af, f〉| ≤M .

=⇒ |〈Af, f〉| ≤M‖f‖2, ∀f ∈ H.
∴ 4Re〈Ah, g〉 ≤ |〈A(h+ g), h+ g〉|+ |〈A(h− g), h− g〉|.
=⇒ 4Re〈Ah, g〉 ≤M(‖h+ g‖2 + ‖f − g‖2).
=⇒ 4Re〈Ah, g〉 ≤ 2M(‖h‖2 + ‖g‖2).
=⇒ 4Re〈Ah, g〉 ≤ 2M(1 + 1).
=⇒ 4Re〈Ah, g〉 ≤ 4M .
∴ Re〈Ah, g〉 ≤M, ∀h, g ∈ H such that ‖h‖ = ‖g‖ = 1.
Now suppose 〈Ah, g〉 = eiθ|〈Ah, g〉|.
Replacing h in above inequality by e−iθh gives,
Re〈Ae−iθh, g〉 ≤M .
=⇒ |〈Ah, g〉| ≤M, ∀g ∈ H such that ‖g‖ = 1. ∵ 〈Ah, g〉 = eiθ|〈Ah, g〉|.
Taking supremum over all g ∈ H such that ‖g‖ = 1 on both side,
‖Ah‖ ≤M, ∀h ∈ H such that ‖h‖ = 1.
=⇒ sup {‖Ah‖ : ‖h‖ = 1} ≤M .
=⇒ ‖A‖ ≤M . (4)
∴ from equation (1) and (4).
‖A‖ = M .
=⇒ ‖A‖ = sup {|〈Ah, h〉| : ‖h‖ = 1}. �
Proposition. If A = A∗ and 〈Ah, h〉 = 0 for all h in H, then A = 0.
PROOF. Suppose A = A∗ and 〈Ah, h〉 = 0, ∀h ∈ H.
∴ By previous proposition ‖A‖ = {|〈Ah, h〉| : ‖h‖ = 1} = 0.
∴ ‖A‖ = 0.
=⇒ A = 0. �
Proposition. If H is C−Hilbert space and A ∈ B(H) such that 〈Ah, h〉 = 0, ∀h ∈ H,
then A = 0.
PROOF. If 〈Ah, h〉 = 0, ∀h ∈ H.
That is, 〈Ah, h〉 ∈ R =⇒ A = A∗.
∴ 〈Ah, h〉 = 0 and A = A∗.
∴ By previous corollary A = 0. �
Note. If H is a C−Hilbert space and A ∈ B(H), then B = (A + A∗)/2 and C = (A −
A∗)/2i are self-adjoint and A = B + iC. The operator B and C are called, respectively,
the real and imaginary parts of A.
Proposition. If A ∈ B(H), the following statement are equivalent.
(a) A is normal.
(b) ‖Ah‖ = ‖A∗h‖ for all h.
If H is a C−Hilbert space, then these statements are also equivalent to:
(c) The real and imaginary parts of A commute.
PROOF. Consider,

‖Ah‖2 − ‖A∗h‖2 = 〈Ah,Ah〉 − 〈A∗h,A∗h〉
= 〈A∗Ah, h〉 − 〈AA∗h, h〉
= 〈(A∗A− AA∗)h, h〉, ∀h ∈ H

=⇒ ‖Ah‖2 − ‖A∗h‖2 = 〈(A∗A− AA∗)h, h〉. (1)
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(a) =⇒ (b)
Let A is normal.
=⇒ AA∗ = A∗A.
From equation (1), ‖Ah‖2 − ‖A∗h‖2 = 〈0, h〉.
=⇒ ‖Ah‖2 − ‖A∗h‖2 = 0.
=⇒ ‖Ah‖2 = ‖A∗h‖2.
=⇒ ‖Ah‖ = ‖A∗h‖.
(b) =⇒ (a)
Let ‖Ah‖ = ‖A∗h‖.
From (1), =⇒ 〈(A∗A− AA∗)h, h〉 = 0.
Let B = A∗A− AA∗.

B∗ = (A∗A− AA∗)∗
= (A∗A)∗ − (AA∗)∗

= A∗A∗∗ − A∗∗A∗
= A∗A− AA∗
= B

=⇒ B = B∗.
∴ 〈Bh, h〉 = 0, ∀h ∈ H,B ∈ B(H) and B = B∗.
=⇒ B = 0.
=⇒ A∗A− AA∗ = 0 =⇒ A∗A = AA∗.
=⇒ A is normal.
(c) =⇒ (a)
A = A+A∗

2
+ iA−A

∗

2i
.

Let B = A+A∗

2
, C = A−A∗

2i
.

Therefore, B and C are real and imaginary parts of A.
∴ By our assumption, BC = CB.
A = B + iC.
=⇒ A∗ = (B + iC)∗ = B∗ − iC∗ = B − iC.

A∗A = (B − iC)(B + iC)
= B2 + iBC − iCB + C2

= B2 + C2 ∵ BC = CB
AA∗ = (B + iC)(B − iC)

= B2 − iBC + iCB + C2

= B2 + C2 ∵ BC = CB

=⇒ AA∗ = A∗A.
=⇒ A is normal.
(a) =⇒ (c)
Let A is normal.
That is, A∗A = AA∗

=⇒ B2 + iBC − iCB + C2 = B2 − iBC + iCB + C2.
=⇒ iBC − iCB = −iBC + iCB
=⇒ BC − CB = −BC + CB
=⇒ 2(BC − CB) = 0
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=⇒ BC = CB. �
Proposition. If A ∈ B(H), the following statements are equivalent.
(a) A is an isometry.
(b) A∗A = I.
(c) 〈Ah,Ag〉 = 〈h, g〉 for all h, g ∈ H.
PROOF. (a) =⇒ (b)
A is isometry.
=⇒ ‖Ah‖2 = ‖h‖2, ∀h ∈ H.
=⇒ 〈Ah,Ah〉 = 〈h, h〉, ∀h ∈ H.
=⇒ 〈A∗Ah, h〉 = 〈h, h〉, ∀h ∈ H.
=⇒ 〈A∗Ah, h〉 − 〈h, h〉 = 0, ∀h ∈ H.
=⇒ 〈A∗Ah− h, h〉 = 0, ∀h ∈ H.
=⇒ 〈(A∗A− I)h, h〉 = 0, ∀h ∈ H.
=⇒ (A∗A− I)h = 0, ∀h ∈ H.
=⇒ A∗A− I = 0.
=⇒ A∗A = I.
(b) =⇒ (c)
Let A∗A = I

A∗A = I
〈h, g〉 = 〈A∗Ah, g〉

= 〈Ah,Ag〉, ∀h, g ∈ H
(c) =⇒ (b)
〈Ah,Ag〉 = 〈h, g〉, ∀h, g ∈ H.
〈A∗Ah, g〉 − 〈h, g〉 = 0, ∀h, g ∈ H.
〈(A∗A− I)h, g〉 = 0 ∀h, g ∈ H.
=⇒ A∗A− I = 0.
=⇒ A∗A = I. �
Proposition. If A ∈ B(H), then the following statements are equivalent.
(a) A∗A = AA∗ = I.
(b) A is unitary.(That is, A is a surjective isometry.)
(c) A is a normal isometry.
PROOF. (a) =⇒ (b)
Let A∗A = AA∗ = I.
Clearly, A is linear and A is surjective.
Take, A∗A = I.
Then, 〈h, g〉 = 〈A∗Ah, g〉 = 〈Ah,Ag〉, ∀h, g ∈ H.
=⇒ A is an isometry which is surjective and hence it is unitary.
(b) =⇒ (c)
Let A is unitary.
That is, A is linear, surjective isometry.
=⇒ A−1 is also isometry.
=⇒ (A−1)∗A−1 = I. ∵ 〈A−1h,A−1g〉 = 〈h, g〉 =⇒ 〈(A−1)∗A−1h, g〉 = 〈h, g〉
=⇒ I = (A−1)∗A−1 = (A∗)−1A−1 = (AA∗)−1.
=⇒ AA∗ = I.
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Also, A is an isometry =⇒ A∗A = I.
∴ A∗A = I = AA∗.
=⇒ A∗A = AA∗ = I.
=⇒ A is normal isometry. �
Theorem. If A ∈ B(H), then kerA = (ranA∗)⊥.
PROOF. We know that (ranA∗)⊥ = {h ∈ H : 〈h, y〉 = 0,∀y ∈ ranA∗}.
Let y ∈ ranA∗ =⇒ y = A∗g for some g ∈ H.
Consider, 〈h, y〉 = 〈h,A∗g〉 = 〈Ah, g〉 = 〈0, g〉 = 0, ∀y ∈ ranA∗.
∴ h ∈ (ranA∗)⊥ =⇒ kerA ⊆ (ranA∗)⊥.
Conversely, let h ∈ (ranA∗)⊥.
=⇒ 〈h, y〉 = 0, ∀y ∈ ranA∗.
=⇒ 〈h,A∗g〉 = 0, ∀g ∈ H.
=⇒ 〈Ah, g〉 = 0, ∀g ∈ H.
=⇒ Ah = 0.
=⇒ h ∈ kerA.
=⇒ (ranA∗)⊥ ⊆ kerA.
=⇒ (ranA∗)⊥ = kerA. �
Observation. We know for A ∈ B(H), A∗ ∈ B(H) and by replacing A by A∗ in previous
theorem we get,
kerA∗ = (ranA∗∗)⊥ = (ranA)⊥.
Notation. Let BallH denote unit ball in H.
Definition. A linear transformation T : H → K is compact if, cl[T (BallH)] is compact
in K.
Notation. B0(H,K) = The set of all compact operators from H to K.
Note. Let X be a complete metric space. If A is totally bounded then clA is compact.
Proposition. (a) B0(H,K) ⊆ B(H,K).
(b) B0(H,K) is a linear space and if {Tn} ⊆ B0(H,K) and T ∈ B(H,K) such that
‖Tn − T‖ → 0, then T ∈ B0(H,K).
(c) If A ∈ B(H), B ∈ B(K), and T ∈ B0(H,K), then TA and BT ∈ B0(H,K).
PROOF. (a) Let T ∈ B(H,K).
=⇒ cl[T (BallH)] is compact.
=⇒ cl[T (BallH)] ⊆ {k ∈ K : ‖k‖ ≤M, for some M > 0}.
=⇒ T (BallH) ⊆ {k ∈ K : ‖k‖ ≤M, for some M > 0}.
=⇒ If h ∈ H, then ‖Th‖ ≤M .
If ‖h‖ ≤ 1 and ‖Th‖ ≤M .
=⇒ ‖T‖ ≤M ≤ ∞.
=⇒ T is bounded.
=⇒ T ∈ B(H,K).
∴ B0(H,K) ⊆ B(H,K).
Clearly, B0(H,K) is subspace of B(H,K)(Exercise).
Suppose, {Tn} ⊆ B0(H,K) and T ∈ B(H,K) such that ‖Tn − T‖ → 0.
To show: T ∈ B0(H,K).
That is, To show: cl[T (BallH)] is compact.
Here K is Hilbert space and hence it is complete.
Now, if some how we can show that, T (BallH) is totally bounded that will prove that,

Prof. K. R. Shinde 50 Department of Mathematics



Functional Analysis Modern College of ASC(Autonomous), Pune

cl[T (BallH)] is compact.
It is given that, ‖Tn − T‖ → 0 as n→ 0.
That is, ∀ε > 0, ∃N ∈ N such that
‖Tn − T‖ < ε/3, ∀n ≥ N .
Also, it is given that {Tn} is sequence of compact linear transformations from H to K.
=⇒ cl[Tn(BallH)] is compact for all n.
Let ∪αB(Tnhα, ε/3) be an open covering of T (BallH).
=⇒ cl[Tn(BallH)] ⊆ ∪αB(Tnhα, ε/3).
Since Tn is compact for all n hence, there are vectors h1, h2, ..., hm in H such that
cl[Tn(BallH)] ⊆ ∪mj=1B(Tnhj, ε/3).
=⇒ Tn(BallH) ⊆ ∪mj=1B(Tnhj, ε/3).
So if ‖h‖ ≤ 1, then there is an hj such that ‖Th− Tnhj‖ ≤ ε/3.
Consider,

‖Th− Thj‖ = ‖Th− Tnh+ Tnh− Tnhj + Tnhj − Thj‖
≤ ‖Th− Tnh‖+ ‖Tnh− Tnhj‖+ ‖Tnhj − Thj‖
< ‖(T − Tn)h‖+ ε/3 + ‖(T − Tn)hj‖
< ‖T − Tn‖+ ε/3 + ‖T − Tn‖
< 2‖T − Tn‖+ ε/3
< 2 · ε/3 + ε/3
< ε

=⇒ ‖Th− Thj‖ < ε.
=⇒ Th ∈ B(Thj, ε).
=⇒ T (BallH) ⊆ ∪mj=1B(Thj, ε).
=⇒ cl[T (BallH)] is compact.
=⇒ T ∈ B0(H,K).
To show: B0(H,K) is linear space.
Let T1, T2 ∈ B0(H,K) =⇒ cl[T1(BallH)] and cl[T2(BallH)] are compact.
We know that,

=⇒ cl[(T1 + T2)(BallH)] = cl[T1(BallH) + T2(BallH)]
= cl[T1(BallH)] + cl[T2(BallH)]

=⇒ cl[(T1 + T2)(BallH)] is compact.
=⇒ T1 + T2 ∈ B0(H,K).
For α ∈ F and T ∈ B0(H,K).
=⇒ cl[αT (BallH)] is compact.
=⇒ αT ∈ B0(H,K).
(c) Let A ∈ B(H), B ∈ B(K).
To show: TA ∈ B0(H,K).
Since, A ∈ B(H) =⇒ A(BallH) is compact. ∵ BallH is closed and bounded subset of H.
=⇒ TA(BallH) is compact. ∵ T ∈ B0(H,K) ⊆ B(H,K).
=⇒ clTA(BallH) is compact.
=⇒ TA ∈ B0(H,K).
Similarly, BT ∈ B0(H,K). �
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Definition. An operator T on H has finite rank if ranT is finite dimensional. The set
of continuous finite rank operators is denoted by B00(H,K);B00(H) = B00(H,H).
Exercise. Show that B00(H,K) ⊆ B0(H,K).
Theorem. If T ∈ B(H,K), the following statements are equivalent.
(a) T is compact.
(b) T ∗ is compact.
(c) There is sequence {Tn} of operators of finite rank such that ‖T − Tn‖ → 0.
PROOF. (c) =⇒ (a)
From part (b) of previous theorem we have {Tn} be sequence of continuous operators
with finite rank with ‖T − Tn‖ → 0 then, T ∈ B0(H,K).
=⇒ T is compact.
(a) =⇒ (c)
Let T is compact operator.
=⇒ cl(T (Ball H)) is compact.
=⇒ cl(ranT ) = L is separable subspace of K. ∵ X is compact metric space then, X is
separable.
Assume that {e1, e2, ...} is basis for L.
Let M = ∨{ei : 1 ≤ i ≤ n} and let Pn be the projection of K onto M .
Denote Tn = PnT .
Claim: For h ∈ H, ‖Tnh− Th‖ → 0.

Consider, k ∈ K, k =
∑
i

〈k, ei〉ei.

Also, any element Pnk ∈M can be written as Pnk =
n∑
i=1

〈k, ei〉ei.

=⇒ ‖Pnk − k‖ → 0 as n→∞.
In particular, ‖PnTh− Th‖ → 0. Hence claim.
It is given that T is compact.
=⇒ cl(T (Ball H)) is compact.
We know that every compact space is complete and totally bounded.
=⇒ cl(T (Ball H)) is totally bounded.
=⇒ ∃h1, h2, ..., hm ∈ H such that cl(T (Ball H)) ⊆ ∪mj=1B(Thj, ε/3).
=⇒ ‖Th− Thj‖ < ε/3.
Consider,

‖Th− Tnh‖ = ‖Th− Thj + Thj − Tnhj + Tnhj − Tnh‖
≤ ‖Th− Thj‖+ ‖Thj − Tnhj‖+ ‖Tnhj − Tnh‖
≤ ‖Th− Thj‖+ ‖Thj − Tnhj‖+ ‖PnThj − PnTh‖
≤ ‖Th− Thj‖+ ‖Thj − Tnhj‖+ ‖Pn(Thj − Th)‖
≤ ‖Th− Thj‖+ ‖Thj − Tnhj‖+ ‖Thj − Th‖
≤ 2‖Th− Thj‖+ ‖Thj − Tnhj‖
≤ 2ε/3 + ε/3

=⇒ ‖Th− Tnh‖ < ε, ∀n ≥ n0 for some n0 ∈ N. (1)
Now, ‖Tn − T‖ = sup {‖Tnh− Th‖ : ‖h‖ ≤ 1}.
From (1) ‖Tn − T‖ → 0. Also, Tn = PnT .
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=⇒ Tn has finite rank.
∴ {Tn} is sequence of finite rank operators such that ‖Tn − T‖ → 0.
(c) =⇒ (b)
Let {Tn} is a sequence in B00(H,K) such that ‖Tn − T‖ → 0.
Consider,

‖T ∗n − T ∗‖ = ‖(Tn − T )∗‖
= ‖Tn − T‖

∴ ‖T ∗n − T ∗‖ = ‖Tn − T‖ → 0.
But T ∗n ∈ B00(K,H) and ‖T ∗n − T ∗‖ → 0.
=⇒ T ∗ ∈ B00(K,H) ⊆ B0(K,H).
=⇒ T ∗ is compact.
(b) =⇒ (a)
Apply (c) =⇒ (b) for T ∗. �
Corollary.If T ∈ B0(H,K), then cl(ranT ) is separable and if {ei} is a basis for cl(ranT )
and Pn is the projection of K onto ∨{ei : 1 ≤ i ≤ n} , then ‖PnT − T‖ → 0.
PROOF. Exercise. �
Definition. If A ∈ B(H), a scalar α is an eigenvalue of A if ker(A− αI) 6= 0.
If h is non-zero vector in ker(A− αI), h is called eigenvector for α.
Notation. σp(A) = Set of eigenvalues of A.
Proposition. If A ∈ B0(H), λ ∈ σp(T ) and λ 6= 0, then eigenspace ker(T − λI) is finite
dimensional.
PROOF. Suppose there is an infinite orthonormal sequence in {en} in ker(T − λI).
Since T is compact operator.
∴ there is subsequence {enk

} of {en} such that {T (enk
)} is convergent.

=⇒ {T (enk
)} is Cauchy sequence.

But for nk 6= nj.
Consider,

‖T (enk
− Tenj

)‖2 = ‖Tenk
− Tenj

‖2
= ‖λenk

− λenj
‖2

= |λ|2‖enk
− enj

‖2
= 2|λ|2
> 0 ∵ λ 6= 0.

→← to saying that ker(T − λI) contain an infinite orthonormal sequence {en}.
∴ ker(T − λI) must be finite dimensional. �
Result. If T is a compact self-adjoint operator, then there is a sequence {µn} of real
numbers and an orthonormal basis {en} for (kerT )⊥ such that for all h,

Th =
∞∑
n=1

µn〈h, en〉en.

Proposition. If T ∈ B0(H), T = T ∗ and kerT = (0), then H is separable.
PROOF. Suppose T is compact self adjoint operator.
=⇒ kerT = (ranT )⊥.
Given that kerT = (0).
=⇒ (kerT )⊥ = (0)⊥ = H.
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=⇒ (ranT ) = H. ∵ kerT = (ranT ∗)⊥ and T = T ∗ =⇒ kerT = (ranT )⊥. (1)
Also, if T is compact self adjoint operator on H, then there is sequence of {µn} of real
numbers and orthonormal basis {en} for (kerT )⊥ such that for all h,

Th =
∞∑
n=1

µn〈h, en〉en. (2)

From (1) and (2) we can say that ranT is a countable dense subset of H.
=⇒ H is separable. �
Proposition. If A is normal operator and λ ∈ F, then ker(A − λ) = ker(A − λ)∗ and
ker(A− λ) is a reducing subspace for A.
PROOF. Suppose A is normal operator.
Consider,

(A− λ)(A− λ)∗ = (A− λ)(A∗ − λ)

= AA∗ − Aλ− A∗λ+ λλ

= A∗A− A∗λ− Aλ+ λλ ∵ A is normal operator.

= A∗(A− λ)− λ(A− λ)

= (A∗ − λ)(A− λ)
= (A− λ)∗(A− λ)

=⇒ (A− λ) is normal operator.
∴ ‖(A− λ)h‖ = ‖(A− λ)∗h‖. ∵ If A is normal operator if and only if ‖Ah‖ = ‖A∗h‖.
Now, h ∈ ker(A− λ)⇐⇒ (A− λ)h = 0.
⇐⇒ ‖(A− λ)h‖ = 0.
⇐⇒ ‖(A− λ)∗h‖ = 0.
⇐⇒ (A− λ)∗h = 0.
⇐⇒ h ∈ ker(A− λ)∗.
∴ ker(A− λ) = ker(A− λ)∗.
If h ∈ ker(A− λ) = ker(A− λ)∗.
=⇒ h ∈ ker(A− λ)∗.
=⇒ h ∈ ker(A∗ − λ).
=⇒ A∗h = λh.

(A∗ − λ)(λh) = A∗λh− (λ)2h

= λA∗h− (λ)2h

= (λ)2h− (λ)2h
= 0

∴ For h ∈ ker(A− λ);λh ∈ ker(A− λ)∗ = ker(A− λ).
∴ ker(A− λ) reduces a subspace for A. �
Proposition. If A is normal operator and µ, λ are distinct eigenvalues of A, then
ker(A− λ) ⊥ ker(A− µ).
PROOF. Let h ∈ ker(A− λ) and g ∈ ker(A− µ) = ker(A− µ)∗.
=⇒ Ah = λh, g ∈ ker(A∗ − µ̄) =⇒ A∗g = µ̄g.
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Consider,

λ〈h, g〉 = 〈λh, g〉
= 〈Ah, g〉
= 〈h,A∗g〉
= 〈h, µ̄g〉
= µ〈h, g〉

=⇒ λ〈h, g〉 − µ〈h, g〉 = 0.
=⇒ (λ− µ)〈h, g〉 = 0.
=⇒ 〈h, g〉 = 0. ∵ λ 6= µ.
∴ h ⊥ g, ∀h ∈ ker(A− λ), ∀g ∈ ker(A− µ).
=⇒ ker(A− λ) ⊥ ker(A− µ). �
Proposition. If A = A∗ and λ ∈ σp(A), then λ is real number.
PROOF. Let h ∈ ker(A− λ).
=⇒ Ah = λh. (1)
Also, h ∈ ker(A− λ)∗.
=⇒ h ∈ ker(A∗ − λ̄).
=⇒ A∗h = λ̄h. (2)
It is given that A∗ = A.
From (1) and (2) we can write,
λh = λ̄h.
=⇒ λh− λ̄h = 0.
=⇒ (λ− λ̄)h = 0, ∀h ∈ H.
=⇒ λ− λ̄ = 0.
=⇒ λ = λ̄.
∴ λ is real number. �
Result. If T is a compact operator on H, λ 6= 0, and inf {‖(T − λ)h‖ : ‖h‖ = 1} = 0,
then λ ∈ σp(T ).
Lemma. If T is compact self-adjoint operator, then either ±‖T‖ is an eigenvalue of T .
PROOF. We know that for self-adjoint operator T ,
‖T‖ = sup {|〈Th, h〉| : ‖h‖ = 1}.
=⇒ ∃ a sequence {hn} of units vectors such that
|〈Thn, hn〉| → ‖T‖.
Let |λ| = ‖T‖.
So |〈Thn, hn〉| → λ.
Claim: λ ∈ σp(T ).
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0 ≤ ‖(T − λ)hn‖2
≤ ‖Thn − λhn‖2
≤ 〈Thn − λhn, Thn − λhn〉
≤ 〈Thn, Thn〉 − 〈Thn, λhn〉 − 〈λhn, Thn〉+ 〈λhn, λhn〉
≤ ‖Thn‖2 − λ〈Thn, hn〉 − λ〈hn, Thn〉+ λ2〈hn, hn〉. ∵ λ = λ̄ for self-adjoint operator.
≤ ‖Thn‖2 − λ〈Thn, hn〉 − λ〈T ∗hn, hn〉+ λ2‖hn‖2
≤ ‖Thn‖2 − λ〈Thn, hn〉 − λ〈Thn, hn〉+ λ2 ∵ ‖hn‖ = 1
≤ ‖Thn‖2 − 2λ〈Thn, hn〉+ λ2

≤ ‖T‖2 − 2λ〈Thn, hn〉+ λ2

≤ λ2 − 2λ〈Thn, hn〉+ λ2

≤ 2λ2 − 2λ〈Thn, hn〉

=⇒ 0 ≤ ‖(T − λ)hn‖2 ≤ 2λ2 − 2λ〈Thn, hn〉.
But 〈Thn, hn〉 → λ.
=⇒ ‖(T − λ)hn‖2 = 0 and n→∞.
Also, we know that for compact operator if inf {‖(T − λ)h‖ : ‖h‖ = 1} = 0,
then λ ∈ σp(T ).
=⇒ inf {‖(T − λ)h‖ : ‖h‖ = 1} = 0. ∵ ‖(T − λ)hn‖ = 0 as n→∞.
=⇒ λ ∈ σp(T ). �

♣♣♣
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CHAPTER 3

Banach Spaces

ELEMENTARY PROPERTIES AND EXAMPLES
Definition. If X is vector space over F, a seminorm is function p : X → [0,∞) having
the properties:
(a) p(x+ y) = p(x) + p(y) for all x, y ∈ X.
(b) p(αx) = |α|p(x) for all α ∈ F and x ∈ X.
A norm is seminorm p such that
(c) p(x) = 0 =⇒ x = 0.
Notation. Usually norm is denoted by ‖ · ‖.
Normed space. A vector space X together with some norm is called normed space.
That is, A normed space is pair (X, ‖ · ‖), where X is vector space and ‖ · ‖ is norm on
X.
Banach space. Banach space is a normed space which is complete with respect to the
metric defined by norm.
NORMED SPACES
Let X be metric space.
(1) The set of all bounded continuous F−valued functions on X is denoted by C(X).
That is, C(X) = {f : X → F : f is bounded and continuous}
This is linear space w.r.t pointwise addition and scalar multiplication and

‖f‖ = sup {|f(x)| : x ∈ X}

defines norm on C(X).
(2) The set of all functions f ∈ C(X) satisfying the property: For every ε > 0 there is
compact set S of X, depending on f and ε such that

|f(x)| < ε, ∀x /∈ S.

is denoted by C0(X). Then C0(X) is subspace of C(X) and hence normed space.
That is, C0(X) is set consisting of functions f ∈ C(X) such that,
for given ε > 0, S = {x ∈ X : |f(x)| ≥ ε} is compact set in X.
(3) The set of all functions f ∈ C(X) with the property: There is compact set S of X,
depending on f , such that f(x) = 0 for all x /∈ S is denoted by Cc(X).
That is, Cc(X) is set consisting of functions f ∈ C(X) such that, S = {x ∈ X : f(x) 6= 0}
is compact set in X.
(4) Let X be the set of natural numbers with the discrete metric. Then C(X) is the set
of all bounded sequences x(n) in F. This space is denoted by l∞, and the norm is given by

‖x‖ = sup {|x(n)| : n ∈ N} , x ∈ l∞.

The subspace C0(X) becomes

c0 =
{
x ∈ l∞ : lim

n→∞
x(n) = 0

}
,
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and Cc(X) becomes

c00 = {x ∈ l∞ : x(n) = 0 for all but finitely many n ∈ N} .

(5) Let X be measure space with measure µ. If 1 ≤ p < ∞, then set of all measurable
functions f with

∫
X
|f |pdµ <∞ is denoted by Lp(X) or Lp(µ). This is linear space and

‖f‖p = (
∫
X
|f |pdµ)

1
p , f ∈ Lp(X),

defines a norm on Lp(X).
(6) The set of all essentially bounded measurable functions is denoted by L∞(X) or
L∞(µ). This also is linear space, and

‖f‖∞ = ess. sup {|f(x)| : x ∈ X} , x ∈ L∞(X),

defines a norm on L∞(X). The spaces Lp(X), with 1 ≤ p ≤ ∞, are called Lebesgue
spaces.
(7) Let X be the set of all natural numbers with counting measure. If 1 ≤ p <∞, then
Lp(X) becomes the set lp of all scalar sequences {x(n)} with

‖x‖p = (
∞∑
n=1

|x(n)|p)
1
p <∞.

(8) The space L∞(X) become the sequence space l∞.
(9) If X = {1, 2, ..., n} with counting measure, then Lp(X) become Fn with norm ‖ · ‖p
given by

‖x‖p = (
n∑
j=1

|x(j)|p)
1
p , if 1 ≤ p <∞,

‖x‖∞ = sup
1≤j≤n

{|x(j)|} , if p =∞.

(10) If X and Y are normed spaces, then X × Y is linear space with addition and scalar
multiplication defined coordinatewise and

‖(x, y)‖ = ‖x‖+ ‖y‖, x ∈ X, y ∈ Y,

defines a norm on it.
Examples. (1) lp is Banach space for 1 ≤ p <∞.
(2) Lp(E) is Banach space, where E is measurable subset of F and 1 ≤ p <∞.

(3) l∞ =

{
x : N→ F : sup

i=1,2,...
|x(i)| <∞

}
is Banach space.

PROOF. Clearly, l∞ is vector space over F.
Define norm on l∞ as ‖x‖ = sup

i
|x(i)|.

Let {xn} be a cauchy sequence from l∞.
Therefore, for given ε > 0, there exists N ∈ N such that
‖xn − xm‖ < ε, ∀n,m ≥ N .
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=⇒ sup
i
|xn(i)− xm(i)| < ε, ∀n,m ≥ N .

=⇒ |xn(i)− xm(i)| < ε, ∀n,m ≥ N .
=⇒ {xn(i)} is a cauchy sequence in F and we know that F is complete.
=⇒ {xn(i)} → x(i) for some x(i) ∈ F.
Now for fixed n > N and taking m→∞ we get,
lim
m→∞

|xn(i)− xm(i)| = |xn(i)− x(i)| < ε .

=⇒ sup
i
|xn(i)− x(i)| < ε.

=⇒ ‖xn − x‖ < ε, ∀n > N .
=⇒ {xn} → x ∈ l∞. ∵ x : N→ F.
∴ l∞ complete normed space.
=⇒ l∞ is Banach space.
(4) Show that C00 = {x ∈ lp} such that x(i) = 0 for all but finitely many i, is not Banach
space.
PROOF. Clearly C00 is a subspace of l∞.
Claim: C00 is not closed.
It is sufficient to show there exists a sequence which is not convergent in C00.
Suppose {xn} =

{
1, 1

2
, 1
3
, ..., 1

n
, 0, 0, 0, ...

}
.

Since finitely many terms of this sequence are non-zero therefore {xn} ∈ C00.
Then, {xn} is Cauchy but it is not convergent in C00.
Because as n→∞ the sequence {xn} →

{
1, 1

2
, 1
3
, ..., 1

n
, ...
}

but
{

1, 1
2
, 1
3
, ..., 1

n
, ...
}
/∈ C00.

Hence, C00 is not closed.
=⇒ C00 is not Banach space. �
Proposition. If X is a normed space, then
(a) the function X ×X → X defined by (x, y) = x+ y is continuous;
(b) the function F×X → X defined by (α, x) = αx is continuous.
PROOF. (a) Let f : X ×X → X defined by f(x, y) = x+ y.
To show: f is continuous.
Suppose {xn} → x and {yn} → y be any sequences in X.
That is, =⇒ ‖xn − x‖ → 0 and ‖yn − y‖ → 0 as n→∞.
Then, ({xn} , {yn})→ (x, y).
Consider,

‖(xn + yn)− (x+ y)‖ = ‖(xn − x) + (yn − y)‖
≤ ‖xn − x‖+ ‖yn − y‖

As n→∞ =⇒ ‖(xn + yn)− (x+ y)‖ → 0.
=⇒ {xn + yn} → x+ y as n→∞.
=⇒ f({xn} , {yn})→ f(x, y).
=⇒ f is continuous.
(b) Let g : F×X → X defined by g(α, x) = αx.
To show: g is continuous.
Suppose {xn} → x be any sequence in X and {αn} → α be any sequence in F.
=⇒ ‖xn − x‖ → 0 and |αn − α| → 0 as n→∞.
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Consider,

‖αnxn − αx‖ = ‖αnxn − αnx+ αnx− αx‖
= ‖αn(xn − x) + x(αn − α)‖
≤ |αn|‖xn − x‖+ ‖x‖|αn − α|

As n→∞ =⇒ ‖αnxn − αx‖ → 0.
=⇒ {αnxn} → αx.
=⇒ g({αn} , {xn})→ g(α, x) as n→∞.
=⇒ g is continuous. �
Lemma. If p and q are seminorms on a vector space X, then following statements are
equivalent.
(a) p(x) ≤ q(x) for all x.
(b) {x ∈ X : q(x) < 1} ⊆ {x ∈ X : p(x) < 1}.
(b′) p(x) < 1 whenever q(x) < 1.
(c) {x : q(x) ≤ 1} ⊆ {x : p(x) ≤ 1}.
(c′) p(x) ≤ 1 whenever q(x) ≤ 1.
(d) {x : q(x) < 1} ⊆ {x : p(x) ≤ 1}.
(d′) p(x) ≤ 1 whenever q(x) < 1.
PROOF. (b) and (b′), (c) and (c′), (d) and (d′) are equivalent.
Also (a) implies all the remaining conditions and that both (b) and (c) implies (d).
It remains to show (d) =⇒ (a).
Given, {x : q(x) < 1} ⊆ {x : p(x) ≤ 1}.
Let q(x) = α. If ε > 0, then q( x

α+ε
) = 1

α+ε
q(x) = α

α+ε
< 1.

p( x
α+ε

) ≤ 1

=⇒ 1
α+ε

p(x) ≤ 1.
=⇒ p(x) ≤ α + ε.
Letting ε→ 0 =⇒ p(x) ≤ α.
=⇒ p(x) ≤ q(x), ∀x ∈ X. �
Definition. Let ‖ · ‖1 and ‖ · ‖2 are two norms on X. They are said to be equivalent
norms if they define same topology.
That is, Let T1 be the topology induced by ‖ · ‖1 and T2 is a topology induced by ‖ · ‖2.
Then, ‖ · ‖1 and ‖ · ‖2 are said to be equivalent if and only if T1 = T2.
Proposition. If ‖ · ‖1 and ‖ · ‖2 are two norms on X, then these norms are equivalent
if and only if there are positive constants c and C such that
c‖ · ‖1 ≤ ‖ · ‖2 ≤ C‖ · ‖1 for all x in X.
PROOF. Suppose ‖ · ‖1 and ‖ · ‖2 are equivalent.
Let T1 be the topology induced by ‖ · ‖1 and T2 be the topology induced by ‖ · ‖2.
∴ T1 = T2. ∵ ‖ · ‖1 and ‖ · ‖2 are equivalent.
Let B1(0, 1) be an open ball in T1 centred at 0 and has radius 1.
=⇒ ∃r1 > 0 such that B2(0, r1) ⊆ B1(0, 1) ∵ T1 = T2 =⇒ T2 ⊆ T1
=⇒ {x ∈ X : ‖x− 0‖2 < r1} ⊆ {x ∈ X : ‖x− 0‖1 < 1}.
=⇒

{
x ∈ X : r−11 ‖x‖2 < 1

}
⊆ {x ∈ X : ‖x‖1 < 1}.

=⇒ {x ∈ X : q(x) < 1} ⊆ {x ∈ X : p(x) < 1}, where q(x) = r−11 ‖x‖2 and p(x) = ‖x‖1.
∴ p(x) ≤ q(x) ∀x ∈ X. ∵ by previous lemma.
=⇒ ‖x‖1 ≤ r−11 ‖x‖2.
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=⇒ r1‖x‖1 ≤ ‖x‖2.
Choose c = r1 =⇒ c‖x‖1 ≤ ‖x‖2. (1)
Similarly, B2(0, 1) is open ball in T2 centred at 0 and has radius 1.
=⇒ ∃r2 > 0 such that B1(0, r2) ⊆ B2(0, 1). ∵ T1 = T2 =⇒ T1 ⊆ T2.
=⇒ {x ∈ X : ‖x− 0‖1 < r2} ⊆ {x ∈ X : ‖x− 0‖2 < 1} .
=⇒

{
x ∈ X : r−12 ‖x‖1 < 1

}
⊆ {x ∈ X : ‖x‖2 < 1} .

q(x) = r−12 ‖x‖1 and p(x) = ‖x‖2.
=⇒ p(x) ≤ q(x) ∀x ∈ X.
=⇒ ‖x‖2 ≤ r−12 ‖x‖1.
=⇒ ‖x‖2 ≤ C‖x‖1, where C = r−12 . (2)
From (1) and (2) we have, c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1.
Conversely, suppose there exists constants c and C such that c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1.(1)
Let T1 and T2 are the topologies given by ‖ · ‖1 and ‖ · ‖2 respectively.
Let B2(x0, ε) ∈ T2.
Now, B2(x0, ε) = {x ∈ X : ‖x− x0‖2 < ε}.
From (1) we have ‖x‖2 ≤ C‖x‖1.
=⇒ {x ∈ X : ‖x− x0‖1 < ε/C} ⊆ {x ∈ X : ‖x− x0‖2 < ε}.
=⇒ B1(x0, ε/C) ⊆ B2(x0, ε).
∴ B2(x0, ε) is open in T1.
∴ T2 ⊆ T1. (2)
Let B1(y0, ε) be an open set in T1.
Now, B1(y0, ε) = {x ∈ X : ‖y0 − x‖1 < ε}.
From (1) we have c‖x‖1 ≤ ‖x‖2.
∴ {x ∈ X : ‖y0 − x‖2 < cε} ⊆ {x ∈ X : ‖y0 − x‖1 < ε}.
=⇒ B2(y0, ε) ⊆ B1(y0, ε).
∴ B1(y0, ε) is open in T2.
T1 ⊆ T2. (3)
From (2) and (3) T1 = T2.
∴ ‖ · ‖1 and ‖ · ‖2 are equivalent. �
Result 1. Define an relation ∼ on set of all norms on a normed linear space X by
‖ · ‖1 ∼ ‖ · ‖2 if and only if ‖ · ‖1 and ‖ · ‖2 are equivalent, then ∼ is equivalence relation.
PROOF. Let T = {‖ · ‖ : (X, ‖ · ‖) is normed linear space}.
(i) For ‖ · ‖ ∈ T . Since ‖x‖ = ‖x‖ = ‖x‖,, where c = 1 = C.
=⇒ ‖ · ‖ ∼ ‖ · ‖.
(ii) Let ‖ · ‖1 ∼ ‖ · ‖2 =⇒ ‖ · ‖1 is equivalent to ‖ · ‖2.
∴ ∃c, C such that c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1 ∀x ∈ X. (1)
From (1) we have c‖x‖1 ≤ ‖x‖2.
=⇒ ‖x‖1 ≤ 1

c
‖x‖2.

=⇒ ‖x‖1 ≤ C ′‖x‖2, where 1
c

= C ′.
Also from (1) we have, ‖x‖2 ≤ C‖x‖1 .
=⇒ 1

C
‖x‖2 ≤ ‖x‖1.

=⇒ c′‖x‖2 ≤ ‖x‖1, where 1
C

= c′.
∴ c′‖x‖2 ≤ ‖x‖1 ≤ C ′‖x‖2.
=⇒ ‖ · ‖2 is equivalent to ‖ · ‖1.
(iii) Similarly transitivity holds.
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∴∼ is equivalence relation on T . �
Remark 2. There are two properties on a norm linear space one is topological property
and another is metric property. The metric property depends on the precise norm but
topological property depends only on the equivalence class of norms.
Example. Let X be any Hausdorff space and let Cb(X) = all continuous functions
f : X → F such that ‖f‖ = sup {|f(x)| : x ∈ X} < ∞. For f, g ∈ Cb(X), define
f + g : X → F by (f + g)(x) = f(x) + g(x); for α ∈ F define (αf)(x) = αf(x). Then
Cb(X) is Banach space.
PROOF. Clearly Cb(X) is vector space over F(Exercise).
To show: ‖ · ‖ : Cb(X)→ F defined by ‖f‖ = sup{|f(x)| : x ∈ X} is norm.
(i) ‖f‖ ≥ 0.
If ‖f‖ = 0 =⇒ sup

x
{|f(x)| : x ∈ X} = 0.

=⇒ sup
x∈X
|f(x)| = 0.

=⇒ |f(x)| = 0, ∀x ∈ X.
=⇒ f(x) = 0, ∀x ∈ X.
=⇒ f = 0.
(ii) For f, g ∈ Cb(X).
Consider,

‖f + g‖ = sup
x
{|(f + g)(x)| : x ∈ X}

= sup
x
{|f(x) + g(x)| : x ∈ X}

≤ sup
x
{|f(x)|+ |g(x)| : x ∈ X}

= sup
x
{|f(x)| : x ∈ X}+ sup

x
{|g(x)| : x ∈ X}

= ‖f‖+ ‖g‖

∴ ‖f + g‖ ≤ ‖f‖+ ‖g‖.
(iii) For any f ∈ Cb(X), α ∈ F

‖αf‖ = sup
x
{|(αf)(x)| : x ∈ X}

= sup
x
{|αf(x)| : x ∈ X}

= |α| sup
x
{|f(x)| : x ∈ X}

= |α|‖f‖

∴ ‖αf‖ = |α|‖f‖

∴ Cb(X) is normed linear space.
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Let {fn} be Cauchy sequence in Cb(X).
=⇒ ∀ε > 0,∃N ∈ N such that

‖fn − fm‖ < ε, ∀n,m ≥ N

=⇒ sup
x∈X
|(fn − fm)(x)| < ε

=⇒ sup
x∈X
|fn(x)− fm(x)| < ε

=⇒ |fn(x)− fm(x)| < ε, ∀n,m ≥ N

For fixed x ∈ X,
=⇒ |fn(x)− fm(x)| < ε, ∀n,m ≥ N .
=⇒ {fn(x)} is a Cauchy sequence in F and F is complete.
∴ fn(x)→ f(x) as n→∞.
=⇒ f(x) = lim

x→∞
fn(x).

|fn(x)− f(x)| = |fn(x)− fm(x) + fm(x)− f(x)|

≤ |fn(x)− fm(x)|+ |fm(x)− f(x)|

≤ sup
x
|fn(x)− fm(x)|+ |fm(x)− f(x)|

≤ ‖fn(x)− fm(x)‖+ |fm(x)− f(x)|

< ε+ |fm(x)− f(x)|, ∀n,m ≥ N

As m→∞
|f(x)− fn(x)| < ε, ∀n,m ≥ N.
This is true for all x ∈ X.
∴ sup

x∈X
|fn(x)− f(x)| < ε, ∀n,m ≥ N.

=⇒ ‖fn − f‖ < ε, ∀n,m ≥ N.
∴ fn → f uniformly. ∵ N is independent of x.
∴ f must be continuous.
Now,

‖f‖ = ‖f − fn + fn‖

≤ ‖f − fn‖+ ‖fn‖

< ε+ ‖fn‖ <∞

Therefore, fn → f and f ∈ Cb(X).
∴ Cb(X) is Banach space. �
Proposition. If X is locally compact space and C0(X) = all continuous functions
f : X → F such that for all ε > 0, {x ∈ X : |f(x)| ≥ ε} is compact, then C0(X) is
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closed subspace of Cb(X) and hence Banach space.
PROOF. To show : C0(X) is subspace of Cb(X).
It is given that for f ∈ C0(X), f is continuous. If we can show f is bounded that will
prove f ∈ Cb(X).
It is given that {x ∈ X : |f(x)| ≥ ε} is compact and we know that continuous image of
compact space is compact.
=⇒ {f(x) : |f(x)| > ε} is compact.
=⇒ {f(x) : |f(x)| > ε} is bounded.
Suppose |f(x)| < m, ∀x ∈ X.
=⇒ ε < |f(x)| < m.
Choose M = max {ε,m}.
=⇒ |f(x)| < M .
=⇒ f is bounded.
=⇒ f ∈ Cb(X).
=⇒ C0(x) is subspace of Cb(X)(Exercise).
Let f be limit point of C0(X).
=⇒ ∃{fn} ⊂ C0(X) such that fn → f .
That is, for all ε > 0,∃N ∈ N such that ‖fn − f‖ < ε/2, ∀n,m ≥ N .
=⇒ sup

x
|fn(x)− f(x)| < ε/2.

=⇒ |fn(x)− f(x)| < ε/2.
‖f‖ = ‖f − fn + fn‖.
=⇒ ‖f‖ ≤ ‖f − fn‖+ ‖fn‖.
Let ε > 0 and |f(x)| ≥ ε.

∴ ε ≤ |f(x)|
= |f(x)− fn(x) + fn(x)|
≤ |f(x)− fn(x)|+ |fn(x)|
= ε/2 + |fn(x)|

=⇒ ε− ε/2 ≤ |fn(x)|.
=⇒ ε/2 ≤ |fn(x)|.
Therefore, If ε ≥ f(x) =⇒ |fn(x)| ≥ ε/2.
=⇒ {x ∈ X : |f(x)| ≥ ε} ⊆ {x ∈ X : |fn(x)| ≥ ε/2}.
=⇒ {x ∈ X : |f(x)| ≥ ε} is compact. ∵ each fn ∈ C0(X).
∴ f ∈ C0(X).
=⇒ C0(X) is closed subspace of Banach space and hence Banach space. �
Proposition. If p is a seminorm on X, |p(x)− p(y)| ≤ p(x− y) for all x, y ∈ X. If ‖ · ‖
is a norm, then |‖x‖ − ‖y‖| ≤ ‖x− y‖ for all x, y ∈ X.
PROOF. For any x, y ∈ X, then
p(x) = p(x− y + y) ≤ p(x− y) + p(y).
=⇒ p(x)− p(y) ≤ p(x− y).
Similarly, p(y)− p(x) ≤ p(x− y).
=⇒ −(p(x)− p(y)) ≤ p(x− y).
=⇒ −p(x− y) ≤ p(x)− p(y).
=⇒ −p(x− y) ≤ p(x)− p(y) ≤ p(x− y).
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∴ |p(x)− p(y)| ≤ p(x− y).
If ‖ · ‖ is norm then |‖x‖ − ‖y‖| ≤ ‖x− y‖, ∀x, y ∈ X. �
Definition. If X and Y are normed spaces, X and Y are said to be isometrically iso-
morphic if there is surjective linear isometry from X onto Y .
LINEAR OPERATORS ON NORMED SPACES
Let B(X, Y ) = all continuous linear transformations from X to Y .
Proposition. If X and Y are normed spaces and A : X → Y is a linear transformation,
the following statements are equivalent.
(a) A ∈ B(X, Y ).
(b) A is continuous at 0.
(c) A is continuous at some point.
(d) There is a positive constant c such that Ax ≤ c‖x‖ for all x ∈ X.
If A ∈ B(X, Y ) and
‖A‖ = sup {‖Ax‖ : ‖x‖ ≤ 1},
then

‖A‖ = sup {‖Ax‖ : ‖x‖ = 1}
= sup {‖Ax‖/‖x‖ : x 6= 0}
= inf {c > 0 : ‖Ax‖ ≤ c‖x‖ for x ∈ X}

‖x‖ is called the norm of A and B(X, Y ) become normed space if addition and scalar
multiplication are defined pointwise.
Result. B(X, Y ) is Banach space, if Y is Banach space.
PROOF. To show: B(X, Y ) is Banach space.
Let {Tn} be a cauchy sequence in B(X, Y ).
Then, for every ε > 0,∃N ∈ N such that
‖Tn − Tm‖ < ε, ∀n,m ≥ N .
Now,

‖Tn(x)− Tm(x)‖ = ‖(Tm − Tn)(x)‖
≤ ‖(Tm − Tn)‖‖x‖
< ε‖x‖, ∀n,m ≥ N

For a fixed x and x 6= 0,
Choose ε1 = ε‖x‖.
Then ‖Tn(x)− Tm(x)‖ < ε1, ∀n,m ≥ N .
=⇒ {Tn(x)} is cauchy sequence in Y and Y is Banach and hence complete.
∴ {Tn(x)} → T (x).
That is, lim

n→∞
Tn(x) = T (x).

We have, ‖Tn(x)− Tm(x)‖ < ε1, ∀n,m ≥ N .
As m→∞
‖Tn(x)− T (x)‖ < ε‖x‖, ∀n ≥ N .

=⇒ sup
x
{‖Tn(x)− T (x)‖} < ε. ∵ ‖x‖ < 1

=⇒ sup
x
{‖(Tn − T )(x)‖} < ε.
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=⇒ ‖Tn − T‖ < ε, ∀n ≥ N .

=⇒ {Tn} → T as n→∞.
To show: T ∈ B(X, Y ).
That is, To show T is continuous linear transformation.
Clearly, T is continuous.
Because Tn is sequence of continuous functions and converges to T hence T is continuous.
For any x, y ∈ X and α ∈ F.

T (x+ αy) = lim
n→∞

Tn(x+ αy)

= lim
n→∞

(Tn(x) + αTn(y))

= lim
n→∞

Tn(x) + α lim
n→∞

Tn(y)

= T (x) + αT (y)

=⇒ T is continuous linear transformation.
=⇒ T ∈ B(X, Y ).
∴ B(X, Y ) is Banach space. �
Note. A continuous linear operator is also called bounded linear operator.
Example 1. If (X,Ω, µ) is σ−finite measure space and φ ∈ L∞(X,Ω, µ), define
Mφ : Lp(X,Ω, µ)→ Lp(X,Ω, µ), 1 ≤ p ≤ ∞, by Mφf = φf for all f ∈ Lp(X,Ω, µ). Then
Mφ ∈ B(Lp(X,Ω, µ)) and ‖Mφ‖ = ‖φ‖∞.
Result 1. Let X and Y be normed linear spaces. A linear mapping T : X → Y
is said to be homeomorphism if and only if there exists constant α, β > 0 such that
α‖x‖ ≤ ‖T (x)‖ ≤ β‖x‖. ∀x ∈ X.
PROOF. Suppose T : X → Y is homeomorphism.
To prove: ∃α, β such that α‖x‖ ≤ ‖T (x)‖ ≤ β‖x‖.
Since T is homeomorphism means T and T−1 both are continuous.
T is continuous.
=⇒ ‖T (x)‖ ≤ β‖x‖ for some β > 0.
T−1 is continuous.
=⇒ ‖T−1(y)‖ ≤ γ‖y‖ for some γ > 0 and T (x) = y.
=⇒ ‖x‖ ≤ γ‖T (x)‖.
=⇒ 1

γ
‖x‖ ≤ ‖T (x)‖.

=⇒ α‖x‖ ≤ ‖T (x)‖. where α = 1
γ
.

∴ α‖x‖ ≤ ‖T (x)‖ ≤ β‖x‖.
Conversely, ∃α, β such that α‖x‖ ≤ ‖T (x)‖ ≤ β‖x‖.
To show: T is homeomorphism.
Suppose x ∈ kerT .
=⇒ T (x) = 0.
=⇒ ‖T (x)‖ = 0.
=⇒ α‖x‖ = 0. ∵ 0 ≤ α‖x‖ ≤ ‖T (x)‖ = 0 and α > 0.
=⇒ ‖x‖ = 0. ∵ α > 0.
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=⇒ x = 0.
=⇒ kerT = {0}.
=⇒ T is injective.
Now consider, T−1 : R(T )→ X.
Clearly, T−1 is bijective mapping.
Also, T−1 is linear because for y1, y2 ∈ R(T ).
∴ y1 = T (x1), y2 = T (x2) for some x1, x2 ∈ X.
Now,

T−1(y1 + αy2) = T−1(T (x1) + αT (x2))
= T−1(T (x1 + αx2))
= x1 + αx2
= T−1(y1) + αT−1(y2)

Form given inequality we have ‖T (x)‖ ≤ β‖x‖ for some β > 0 and ∀x ∈ X.
=⇒ T is continuous.
Also, α‖x‖ ≤ ‖T (x)‖.
=⇒ α‖T−1(y)‖ ≤ ‖y‖.
=⇒ ‖T−1(y)‖ ≤ 1

α
‖y‖.

=⇒ T−1 is continuous.
∴ T and T−1 both are continuous.
∴ T is homeomorphism. �
Result 2. Y is a subspace of a normed space X, then Y and it’s closure are normed
spaces with respect to induced norm.
PROOF. Clearly, Y is normed space means (Y, ‖ · ‖) is normed linear space, because X
is normed linear space and Y is subspace of X.
To show: Ȳ subspace of X.
Let x, y ∈ Ȳ , then there exist sequences {xn} and {yn} in Y such that {xn} → x and
{yn} → y as n→∞.
Consider,

x+ y = lim
n→∞

{xn}+ lim
n→∞

{yn}

= lim
n→∞

{xn + yn}

= lim
n→∞

{zn} . where xn + yn = zn.

=⇒ x+ y ∈ Ȳ .
Now for any α ∈ F and x ∈ Ȳ =⇒ ∃{xn} of points in Y such that {xn} → x.
Consider,

αx = α lim
n→∞

{xn}

= lim
n→∞

{αxn}

=⇒ αx ∈ Ȳ .
∴ Ȳ is subspace of X.
∴ (Ȳ , ‖ · ‖) is subspace of X. �
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Result 3. Let Y be a closed subspace of a normed space X. For x + Y in the quotient
space X/Y , let |‖x + Y ‖| = inf {‖x+ y‖/y ∈ Y }. Then (X/Y, |‖ · ‖|) is normed space
and |‖ · ‖| is called quotient norm on X/Y .
PROOF. (i) |‖x+ Y ‖| ≥ 0. ‖x+ y‖ ≥ 0 ∀y ∈ Y .
If |‖x+ Y ‖| = 0.
=⇒ |‖x+ y‖| = 0, ∀y ∈ Y .
=⇒ inf {‖x+ y‖/y ∈ Y } = 0.
∴ ∃ sequence {yn} from Y such that ‖x+ yn‖ → 0 as n→∞.
Because, if inf {a/a ∈ S} = 0 then there exists a sequence {an} from S such that {an} → a
as n→∞.
=⇒ {x+ yn} → 0 as n→∞.
=⇒ {yn} → −x ∈ Ȳ = Y . ∵ Y is closed.
=⇒ x ∈ Y .
=⇒ x+ Y = 0 + Y .
∴ |‖x+ Y ‖| = 0 =⇒ x+ Y = 0 + Y .
(ii) Let x1 + Y, x2 + Y ∈ X/Y for some x1, x2 ∈ X.
To show : |‖(x1 + Y ) + (x2 + Y )‖| ≤ |‖x1 + Y ‖|+ |‖x2 + Y ‖|.
Consider, |‖x1 + Y ‖| = inf {‖x1 + y‖/y ∈ Y }.
∴ ∀ε/2 > 0 there exists y1 ∈ Y such that ‖x1 + y1‖ ≤ |‖x1 + Y ‖|+ ε/2.
Similarly, there exists y2 ∈ Y such that ‖x2 + y2‖ ≤ |‖x2 + Y ‖|+ ε/2.
Now

‖(x1 + y1) + (x2 + y2)‖ ≤ ‖x1 + y1‖+ ‖x2 + y2‖
≤ |‖x1 + Y ‖|+ ε/2 + |‖x2 + Y ‖|+ ε/2

=⇒ ‖(x1 + x2) + (y1 + y2)‖ ≤ |‖x1 + y1‖|+ |‖x2 + y2‖|+ ε.
Taking infimum on left hand side we get,
=⇒ inf {‖(x1 + x2) + y/y ∈ Y ‖} ≤ |‖x1 + y1‖|+ |‖x2 + y2‖|+ ε. ∵ y = y1 + y2 ∈ Y .
=⇒ |‖(x1 + x2) + Y ‖| ≤ |‖x1 + y1‖|+ |‖x2 + y2‖|+ ε.
∴ ∀ε > 0, |‖(x1 + Y ) + (x2 + Y )‖| ≤ |‖x1 + y1‖|+ |‖x2 + y2‖|+ ε.
Now taking ε→ 0.
|‖(x1 + Y ) + (x2 + Y )‖| ≤ |‖x1 + y1‖|+ |‖x2 + y2‖|.
(iii) Let α ∈ F and x+ Y ∈ X/Y .
Consider,

‖α(x+ Y )‖ = inf {‖α(x+ y)‖/y ∈ Y }
= inf {|α|‖x+ y‖/y ∈ Y }
= |α| inf {‖x+ y‖/y ∈ Y }
= |α||‖x+ Y ‖|

∴ |‖ · ‖| is norm on X/Y . �
Result 4. A sequence {xn + Y } converges to x + Y if and only if ∃ {yn} such that
{xn + yn} → x.
PROOF. Suppose ∃ {yn} such that {xn + yn} → x.

|‖(xn + Y )− (x+ Y )‖| = |‖(xn − x) + Y ‖|
= |‖(xn − x) + Y ‖|
= inf {‖(xn − x) + y‖/y ∈ Y }
≤ ‖xn − x+ yn‖
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Now, as n→∞ =⇒ RHS of above inequality goes to 0.
∴ {xn + Y } → x+ Y as n→∞.
Conversely, suppose {xn + Y } → x+ Y as n→∞.
|‖(xn + Y )− (x+ Y )‖| = inf {‖xn − x+ y‖/y ∈ Y }.
∴ ∃yn ∈ Y such that ‖xn − x+ yn‖ = |‖(xn + Y )− (x+ Y )‖|.
=⇒ ‖xn − x+ yn‖ < |‖(xn + Y )− (x+ Y )‖|+ 1

n
.

Now, for n→∞.
=⇒ {xn + yn} → x.

Definition. A series
∞∑
n=1

x is said to be convergent if the partial sum S of sequence {xn}

is converges in X, where S = x1 + x2 + ...+ xm.

Definition. Let X is normed linear space. If xn ∈ X and
∑
‖xn‖ < ∞, then

∑
xn is

called absolutely convergent.
Theorem. A normed space X is a Banach space if and only if every absolutely conver-
gent series in it convergent.
PROOF. Let X is Banach space.
Suppose that X is Banach space and

∑
xn is absolutely convergent series in X.

=⇒
∞∑
n=1

‖xn‖ <∞.

Let tn = ‖x1‖+ ‖x2‖+ ...+ ‖xn‖, and yn = x1 + x2 + ...+ xn.
Then, for n ≥ m ≥ 1,

‖yn − ym‖ = ‖xm+1 + xm+2 + ...+ xn‖
≤ ‖xm+1‖+ ‖xm+2‖+ ...+ ‖xn‖
= tn − tm

Since {tn} converges and hence it is Cauchy sequence.
=⇒ tn − tm ≤ ‖tn − tm‖ < ε.
=⇒ ‖yn − ym‖ < ε.
=⇒ {yn} is a Cauchy sequence in X and hence convergent in X. ∵ X is Banach space.
∴
∑
xn converges.

Conversely, suppose every absolutely convergent series in X converges.
To show: X is Banach space.
Let {xn} be Cauchy sequence in X.
∴ ‖xn − xn1‖ < 1, ∀n ≥ n1.
Choose n2, n3, ..., successively, such that nr > nr−1 and
‖xn − xnr‖ < 1

r2
for all n ≥ nr, r = 2, 3, ....

Then, ‖xnr+1 − xnr‖ < 1
r2

for r = 1, 2, ....
Let zr = xnr+1 − xnr , r = 1, 2, ....
Then,
∞∑
r=1

‖zr‖ =
∞∑
r=1

‖xnr+1 − xnr‖ ≤
∞∑
r=1

1

r2
<∞.

Thus,
∑
zr is absolutely convergent.

Suppose
∑
zr converges to x ∈ X.
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=⇒ z1 + z2 + ...+ zr−1 = xn2 − xn1 + xn3 − xn2 + ...+ xnr − xnr−1 .

=⇒
r−1∑
j=1

zj = xnr − xn1 .

=⇒ xnr =
r−1∑
j=1

zj + xn1 .

=⇒ xnr → x+ xn1 as r →∞.
∴ {xnr} is convergent.
=⇒ {xn} is convergent. ∵ {xnr} is convergent subsequence of Cauchy sequence {xn}.
∴ X is Banach space.

∴
∞∑
n=1

xn is summable. �

Corollary. T is homeomorphism from X onto Y . Then X is complete if and only
if Y is complete.
PROOF. Suppose T is homeomorphism from X onto Y .
∴ ∃α, β > 0 such that α‖x‖ ≤ ‖T (x)‖ ≤ β‖x‖. (1)
Suppose X is complete.
To show: Y is complete.
Let {yn} be Cauchy sequence in Y .
∴ ∃ {xn} in X such that T (xn) = yn.
From inequality (1) we have,
α‖xn − xm‖ ≤ ‖T (xm)− T (xn)‖.
=⇒ α‖xn − xm‖ ≤ ‖ym − yn‖.
=⇒ ‖xn − xm‖ ≤ 1

α
‖ym − yn‖ < ε.

=⇒ ‖xn − xm‖ < ε.
=⇒ {xn} is a Cauchy sequence in X and X is complete.
=⇒ {xn} → x for some x ∈ X.
Again from inequality (1) we have, ‖T (xn − x)‖ ≤ β‖xn − x‖.
=⇒ ‖T (xn)− T (x)‖ ≤ β‖xn − x‖ < ε1, ∀n ≥ N1 ∈ N .
=⇒ ‖T (xn)− T (x)‖ < ε1.
=⇒ ‖yn − y‖ < ε1, ∀n ≥ N1 ∈ N, where y = T (x).
∴ {yn} → y and y ∈ Y .
=⇒ Y is complete.
Similarly converse holds so left for exercise. �
Theorem. Let Y is closed subspace of X. Then X is a Banach space if and only if Y
and X/Y are Banach spaces.
PROOF. Let X is Banach space.
We know that closed subspace of Banach Space is Banach space.
=⇒ Y is Banach space.
To show: X/Y is Banach space.
Let {xn + Y } be a absolutely convergent sequence in X/Y . That is, |‖xn + Y ‖| <∞.
To show: {xn + Y } is convergent in X/Y .
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That is we have to show
∞∑
n=1

xn + Y <∞.

By definition of |‖ · ‖|, ∃ {yn} in Y such that
‖xn + yn‖ < |‖xn − yn‖|+ 1

n2 .

=⇒
∞∑
n=1

‖xn + yn‖ <∞. ∵
∞∑
n=1

|‖xn + Y ‖| <∞ and
∞∑
n=1

1

n2
<∞.

Let
∞∑
n=1

xn + yn = C.

Consider,

|‖
m∑
n=1

xn + Y − C + Y ‖| = |‖
m∑
n=1

xn + yn − C + Y ‖|

= |‖
m∑
n=1

(xn + yn − C) + Y ‖|

≤ ‖
m∑
n=1

xn + yn − C‖

As m→∞ RHS of above inequality goes to 0.

=⇒ |‖
m∑
n=1

xn + Y − C + Y ‖| → 0 as m→∞.

=⇒
∞∑
n=1

xn + Y = C + Y .

∴ X/Y is Banach space.
Conversely, Suppose Y and X/Y are Banach spaces.
To show: X is Banach space.
Let {xn} be Cauchy sequence in X.
For given ε > 0, ∃N ∈ N such that
‖xm − xn‖ < ε, ∀n,m ≥ N .
Consider, |‖xn + Y − (xm + Y )‖| = |‖xn − xm + Y ‖| ≤ ‖xn − xm‖ < ε, ∀n,m ≥ N.
∴ {xn + Y } is Cauchy sequence in X/Y .
∴ {xn + Y } → {x+ Y } for some x ∈ X.
=⇒ ∃yn ∈ Y such that {xn + yn} → x.
Consider,

‖yn − ym‖ = ‖yn + xn − x+ xm − xn − xm − ym + x‖
≤ ‖yn + xn − x‖+ ‖xm − xn‖+ ‖xm + ym − x‖
< ε, ∀n,m ≥ N.

=⇒ {yn} is Cauchy sequence in Y .
Given Y is Banach space.
∴ {yn} → y as n→∞ for some y ∈ Y .
∴ xn = xn + yn − yn.
=⇒ {xn} → x− y as n→∞. ∵ {xn + yn} → x and {yn} → y.
{xn} → x− y and x− y ∈ X.
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X is Banach space. �
FINITE DIMENSIONAL NORMED SPACES
Proposition. If X is finite dimensional vector space over F, then any two norms on X
are equivalent.
PROOF. Let {e1, e2, ..., ed} be a Hamal basis for X.

∴ for any x ∈ X, x =
d∑
j=1

xjej.

Define ‖x‖∞ = max {|xj| : 1 ≤ j ≤ d}, then ‖ · ‖∞ is a norm on X.
Let ‖ · ‖ be another norm on X.
To show: ‖ · ‖ and ‖ · ‖∞.
Consider,

‖x‖ = ‖
d∑
j=1

xjej‖

≤
d∑
j=1

‖xjej‖

≤
d∑
j=1

|xj|‖ej‖ ∵ x′js are scalar.

≤ max
1≤j≤d

|xj|
d∑
j=1

‖ej‖

∴ ‖x‖ ≤ C‖x‖∞, where C =
d∑
j=1

‖ej‖. (1)

Let T1 be topology defined by ‖ · ‖∞ and T2 be the topology defined by ‖ · ‖.
Claim: T1 ⊇ T2.
Let B2(x0, r) be an open set in T2.
∴ B2(x0, r) = {x ∈ X : ‖x− x0‖ < r}
=⇒

{
x ∈ X : ‖x− x0‖∞ < r

C

}
⊆ {x ∈ X : ‖x− x0‖ < r}.

=⇒ B1(x0,
r
C

) ⊆ B2(x0, r).
=⇒ B2(x0, r) is open in T1.
=⇒ T1 ⊇ T2.
Consider, B = {x ∈ X : ‖x‖∞ ≤ 1}.
Clearly, B is compact T1 compact.
Claim: B is T2 compact.
Let {Uα} be open cover for B with respect to T2−topology.
=⇒ {Uα} be a open cover for B with respect to T1−topology.
=⇒ {Ui}ni=1 covers B. ∵ B is T1 compact.
=⇒ B is T2 compact.
Let A = {x ∈ X : ‖x‖∞ < 1}.
Clearly, A is T1 open.
=⇒ A is open in (B, T2).
=⇒ ∃ some U ∈ T2 such that B ∩ U = A.
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Let x ∈ B ∩ U =⇒ x ∈ B and x ∈ U .
=⇒ ‖x‖∞ ≤ 1.
∴ x ∈ U and U is open in T2.
∴ ∃r > 0 such that {x ∈ X : ‖x‖ < r} ⊆ U .
∴ ‖x‖∞ ≤ 1 and ‖x‖ < r.
=⇒ ‖x‖∞ < 1. (2)
Claim: ‖x‖ < r =⇒ ‖x‖∞ < 1.
Let ‖x‖ < r and α = ‖x‖∞.
∴ ‖ x

α
‖∞ = 1.

If possible, α ≥ 1 =⇒ 1
α
≤ 1.

∴ ‖ x
α
‖ ≤ r.

∴ ‖ x
α
‖ ≤ r and ‖ x

α
‖∞ = 1.

=⇒ ‖ x
α
‖∞ < 1. ∵ By (2).

−→←−.
∴ We must have α < 1.
=⇒ ‖x‖∞ < 1.
=⇒ ‖x‖∞ ≤ 1

r
‖x‖.

=⇒ r‖x‖∞ ≤ ‖x‖.
=⇒ c‖x‖∞ ≤ ‖x‖, where r = c. (3)
∴ From (1) and (3) we get,
c‖x‖∞ ≤ ‖x‖ ≤ C‖x‖∞.
∴ ‖ · ‖ and ‖ · ‖∞ are equivalent.
Now, assume that ‖ · ‖1 and ‖ · ‖2 are any two norms on X.
Then, ‖ · ‖1 equivalent to ‖ · ‖∞ and ‖ · ‖2 equivalent to ‖ · ‖∞.
=⇒ ‖ · ‖1 equivalent to ‖ · ‖2. �
Theorem. Let X be finite dimensional norm linear space and M be a linear manifold in
X. Then M is closed.
PROOF. Since (X, ‖ · ‖) is norm linear space.
=⇒ (M, ‖ · ‖) be normed linear space.
Let {e1, e2, ..., en} be Hamal basis for M .

∴ For any x ∈M , x =
n∑
j=1

xjej, where xj ∈ F for all 1 ≤ j ≤ n.

Define another norm on M as ‖x‖∞ = max {|xj| : 1 ≤ j ≤ n}.
Let {xn} be Cauchy sequence in M .
=⇒ For any ε > 0, ∃N ∈ N such that,
‖xn − xm‖∞ < ε, ∀n,m ≥ N .
=⇒ max

{
|xnj
− xmj

| : 1 ≤ j ≤ n
}
< ε, ∀n,m ≥ N .

=⇒ |xnj
− xmj

| < ε, ∀n,m ≥ N .
=⇒

{
xnj

}
is Cauchy sequence in F.

∴
{
xnj

}
→ xj as nj →∞, and it is true for all 1 ≤ j ≤ n.

Let x = x1e1 + x2e2 + ...+ xnen.
Here {xn1} → x1, {xn2} → x2, ..., {xnn} → xn.
∴ {xn} → x.
Because, ‖xn − x‖∞ = max

{
|xnj
− xj| : 1 ≤ j ≤ n

}
.
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RHS goes to 0 and nj →∞.
=⇒ {xn} → x and x ∈M .
∴M is complete with respect to ‖ · ‖∞.
=⇒M is complete with respect to ‖ · ‖ and hence closed. �
Theorem. Let X and Y are normed spaces and X is finite dimensional. Then prove
that every linear transformation T : X → Y is continuous.
PROOF. Let {e1, e2, ..., ed} be a Hamal basis for X.

∴ For any x ∈ X, x =
d∑
j=1

xjej.

Define a norm on X as ‖x‖ = max {|xj| : 1 ≤ j ≤ d}.
Now,

‖T (x)‖ = ‖T (
d∑
j=1

xjej)‖

= ‖x1T (e1) + x2T (e2) + ...+ xdT (ed)‖
≤ |x1|‖T (e1)‖+ |x2|‖T (e2)‖+ ...+ |xd|‖T (ed)‖
≤ max

1≤j≤d
|xj|(‖T (e1)‖+ ‖T (e2)‖+ ...+ ‖T (ed)‖

≤ ‖x‖C, where, C = ‖T (e1)‖+ ‖T (e2)‖+ ...+ ‖T (ed)‖
=⇒ ‖T (x)‖ = C‖x‖

∴ T is continuous. �
QUOTIENT AND PRODUCT OF NORM LINEAR SPACES
Let X be a normed space, M be a linear manifold in X, and let Q : X → X/M be a
natural map defined by Qx = x+M . Then

|||x+M ||| = inf {‖x+ y‖ : y ∈M}

is norm on X/M , provided M is closed(Why?).
Theorem. If M ≤ X and |||x+Q||| is norm on X/M , Then
(a) |||Qx||| ≤ ‖x‖, ∀x ∈ X and hence Q is continuous.
(b) If X is Banach space then, X/M is Banach.
(c) A subset W of X/M is open relative to norm if and only if Q−1(W ) is open in X.
(d) If U is open in X, then Q(U) is open in X/M .
PROOF. (a) For all x ∈ X,
Consider,

|||Qx||| = |||x+M |||
= inf {‖x+ y‖ : y ∈M}
≤ ‖x‖

(b) Already done.
(c) From part (a) we have, Q : X → X/M defined by Qx = x+M is continuous.
∴ Inverse image of open set in X/M under mapping Q is open in X.
=⇒ If W is open in X/M then Q−1(W ) is open in X.
Conversely, Suppose W ⊆ X/M such that Q−1(W ) is open in X.
To show: W is open in X/M .
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Let x0 ∈ Q−1(W ).
=⇒ ∃r > 0, such that {x ∈ X : ‖x− x0‖ < r} ⊆ Q−1(W ).
Let y = x− x0, then
{x0 + y : ‖y‖ < r} ⊆ Q−1(W ).
Let Br = {x/‖x‖ < r}.
∴ x0 +Br = {x0 + y/‖y‖ < r} ⊆ Q−1(W ).
=⇒ x0 +Br ⊆ Q−1(W ).
Let T = {x+M/|||x+M ||| < r}.
Claim: Q(Br) = T .
Let y ∈ Q(Br) =⇒ ∃x ∈ Br such that Q(x) = y.
=⇒ y = x+M .
Now, x ∈ Br =⇒ ‖x‖ < r.
∴ |||x+M ||| ≤ ‖x‖ < r.
∴ Q(Br) ⊆ T .
Suppose, x+M ∈ T .
=⇒ |||x+M ||| < r.
∃y ∈M such that ‖x+ y‖ < r.
Now Q(x+ y) = x+ y +M = x+M .
=⇒ x+M = Q(x+ y) ∈ Q(Br).
∴ T ⊆ Q(Br).
∴ T = Q(Br).
Already we have x0 +Br ⊆ Q1(W ).
=⇒ {x0 + y/‖y‖ < r} ⊆ Q−1(W ).
=⇒ {x/‖x− x0‖ < r} ⊆ Q−1(W ).
=⇒ Q({x/‖x− x0‖ < r}) ⊆ W .
=⇒ {x+M/|||x− x0 +M ||| < r} ⊆ W .
=⇒ {x+M/|||(x+M)− (x0 +M)||| < r} ⊆ W .
=⇒ B(x0 +M, r) ⊆ W .
∴ W is open in X/M .
(d) Let U be an open set in X, QU = U/M .

∴ Q−1(QU) = Q−1(U/M)
= {x ∈ X : Qx ∈ U/M}
= {x ∈ X : x+M ∈ U/M}
= {u ∈ U : u+M ∈ U/M}
= U +M
= ∪{U + y : y ∈M}

=⇒ Q−1(QU) is open. ∵ Each U + y is open in X.
∴ QU is open. ∵ By part (c). �
Proposition. If X is a normed space, M ≤ X and N is a finite dimensional subspace
of X, then M +N is closed subspace of X.
PROOF. Consider, Q : X → X/M .
Then, QN = N/M .
dimQN = dimN/M = dimN − dimM ≤ dimN <∞.
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∴ QN is finite dimensional.
QN is closed in X/M .∵ Every finite dimensional subspace of norm linear space is closed
Also, we have Q is continuous mapping from X to X/M .
=⇒ Q−1(Q(N)) is closed in X.

∴ Q−1(QN) = Q−1(N/M)
= {x ∈ X/x+M ∈ N/M}
= N +M

=⇒ N +M is closed subspace in X. �
Let {Xi : i ∈ I} be collection of normed linear space. Then

∏
i∈I

Xi is a vector space.

Let ‖ · ‖ is norm on X is norm on each Xi. For each 1 ≤ p <∞, define

⊕pXi =

{
x ∈

∏
i∈I

Xi : ‖x‖ = [
∑
i

‖x‖p]1/p <∞

}
,

⊕∞Xi =

{
x ∈

∏
i∈I

Xi : ‖x‖ = sup
i
‖x‖ <∞

}
,

⊕0Xn =

{
x ∈

∏
i∈I

Xi : ‖x(n)‖ → 0

}
.

Then, ⊕pXi and ⊕∞Xi are normed linear spaces and ⊕0Xi is subspace of ⊕∞Xi.
Proposition. Let {Xi : i ∈ I} be a collection of normed spaces and let
X = ⊕pXi, 1 ≤ p ≤ ∞.
(a) X is normed space and the projection Pi : X → Xi is a continuous linear map with
‖Pi(x)‖ ≤ ‖x‖ for each x ∈ X.
(b) X is Banach space if and only if each Xi is Banach space.
(c) Each projection Pi is open map of X onto Xi.
PROOF. We shall prove the above result for 1 ≤ p ≤ ∞.
(a) Let x, y ∈ X and α ∈ F.
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(i)
‖x‖ = 0

⇐⇒ (
∑
i

‖x(i)‖p)1/p = 0

⇐⇒
∑
i

‖x(i)‖p = 0

⇐⇒ ‖x(i)‖p = 0

⇐⇒ ‖x(i)‖ = 0

⇐⇒ x(i) = 0, ∀i

⇐⇒ x = 0

(ii)

‖x+ y‖ = (
∑
i

‖(x+ y)(i)‖p)1/p

= (
∑
i

‖x(i) + y(i)‖p)1/p

≤ (
∑
i

‖x(i)‖p)1/p + (
∑
i

‖y(i)‖p)1/p ∵ By Minkowski’s Inequality

≤ ‖x‖+ ‖y‖
(iii)

‖αx‖ = (
∑
i

‖αx(i)‖p)1/p

= (|α|p
∑
i

‖x(i)‖p)1/p

= |α|(
∑
i

‖x(i)‖p)1/p

= |α|‖x‖
∴ X = ⊕pXi is normed linear space.
Let Pi : X → Xi be projection mapping defined by Pi(x) = x(i).
(i) For x, y ∈ X.

Pi(x+ y) = (x+ y)(i)
= x(i) + y(i)
= Pi(x) + Pi(y)
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(ii) For x ∈ X and α ∈ F.

Pi(αx) = (αx)(i)
= αx(i)
= αPi(x)

(iii) For any x ∈ X.

‖Pi(x)‖ = ‖x(i)‖

≤ (
∑
i

‖x(i)‖p)1/p

≤ ‖x‖
=⇒ Pi is continuous and linear mapping.
(b) To show: X is Banach space if and only if each Xi is Banach space.
Suppose X is Banach space.

=⇒
∏
i

Xi is Banach space.

Let {xn(i)} be a Cauchy sequence in X.
Choose xn = (0, 0, ..., 0, xn(i), 0...).
=⇒ {xn} is a Cauchy sequence in X.
=⇒ {xn} → x ∈ X. ∵ X is Banach space.
=⇒ {xn(i)} → x(i) ∈ Xi, where x = (0, 0, ..., x(i), 0, 0, ...).
=⇒ Xi is Banach space for each i.
Conversely, suppose Xi is Banach space for each i.
Let {xn} be Cauchy sequence in X.
For any ε > 0, ∃N ∈ N such that,
‖xn − xm‖ < ε, ∀n,m ≥ N .

(
∑
i

‖(xn − xm)(i)‖p)1/p < ε, ∀n,m ≥ N .

‖xn(i)− xm(i)‖ ≤ (
∑
i

‖(xn − xm)(i)‖p)1/p < ε, ∀n,m ≥ N .

=⇒ {xn(i)} is Cauchy sequence in Xi.
=⇒ {xn(i)} → x(i) ∈ Xi.
∴ {xn} → x ∈ X, where x = (x(1), x(2), ..., x(i), ....).
∴ X is Banach space.
(c) To show: Exercise. �
LINEAR FUNCTIONALS
Definition. Let X be vector space over a field F. The a linear mapping f : V → F is
called linear functional.
Definition. A hyperplane in X is a linear manifold M in X such that dim(X/M) = 1.
Proposition. (a) A linear manifold in X is a hyperplane if and only if it is the kernel
of a non-zero linear functional.
(b) Two linear functionals have the same kernel if and only if one is a non-zero multiple
of the other.
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PROOF. (a) Let M be a linear manifold which is hyperplane in X.
Consider, the map Q : X → X/M defined by Q(x) = x+M .
Also consider a non-zero linear isomorphism T : X/M → F, then f ≡ T ◦ Q is linear
functional from X to F.
Now,

ker f = {x ∈ X : f(x) = 0}
= {x ∈ X : (T ◦Q)(x) = 0}
= {x ∈ X : T (Q(x)) = 0}
= {x ∈ X : T (x+M) = 0}
= {x ∈ X : x+M = M}
= {x ∈ X : x ∈M}
= M

∴M is kernel of non-zero linear functional T ◦Q.
Conversely, Assume f : X → F be a non-zero linear functional.
To show: ker f is hyperplane.
By rank nullity theorem we have,
dimX = dim(ker f) + dim(Imf).
=⇒ dimX − dim(ker f) = dim(Imf).
=⇒ dim(X/ ker f) = dim(Imf).
=⇒ dim(X/ ker f) = 1.
=⇒ ker f is a hyperplane.
(b) Let f : X → F and g : X → F be two non-zero linear functionals and assume that
ker f = ker g.
Since f is non-zero functional hence there exist some element x0 ∈ X such that f(x0) = 1.
∴ g(x0) 6= 0.
Let β = g(x0) and α = f(x).
Consider, f(x− αx0) = f(x)− αf(x0).
=⇒ f(x− αx0) = α− α = 0.
=⇒ x− αx0 ∈ ker f = ker g.
=⇒ x− αx0 ∈ ker g.
=⇒ g(x− αx0) = 0.
=⇒ g(x)− αg(x0) = 0.
=⇒ g(x) = βf(x), ∀x ∈ X, where g(x0) = β.
Conversely, Suppose if g = βf .
x ∈ ker g.
⇐⇒ x ∈ ker βf .
⇐⇒ βf(x) = 0.
⇐⇒ f(x) = 0. β 6= 0.
⇐⇒ x ∈ ker f .
∴ ker g = ker f . �
Proposition. If X is a normed space and M is a hyperplane in X, then either M is
closed or M is dense.
PROOF. Suppose M is a hyperplane in X.
=⇒ dim(X/M) = 1.

Prof. K. R. Shinde 79 Department of Mathematics



Functional Analysis Modern College of ASC(Autonomous), Pune

We know that, M ⊆ clM .
=⇒ dim(X/clM) ≤ dim(X/M) = 1.
=⇒ Either dim(X/clM) = 0 or dim(X/clM) = 1.
If dim(X/clM) = 0 =⇒ X = clM .
=⇒M is dense in X.
If dim(X/clM) = 1 = dim(X/M).
=⇒ clM = M . M ⊆ clM .
=⇒M is closed. �
Theorem. If X is normed space and f : X → F is a linear functional, then f is contin-
uous if and only if ker f is closed.
PROOF. Let f : X → F be a linear functional.
Suppose f is continuous.
We know that, ker f = {x ∈ X : f(x) = 0}.
That is, ker f = f−1({0}).
∴ ker f is closed. ∵ {0} is closed in F and f is continuous.
Conversely, suppose ker f is closed.
Define Q : X → X/ ker f by Q(x) = x+ ker f .

|||Q(x)||| = |||x+ ker f |||
= inf {‖x+ y‖ : x ∈ ker f}
≤ ‖x‖

∴ Q is continuous.
Consider an isomorphism T : X/ ker f → F, then T ◦Q : X → F is continuous.

kerT ◦Q = {x ∈ X : (T ◦Q)(x) = 0}
= {x ∈ X : T (Q(x)) = 0}
= {x ∈ X : T (x+ ker f) = 0}
= {x ∈ X : x+ ker f = ker f}
= {x ∈ X : x ∈ ker f}
= ker f

Let T ◦Q = g.
=⇒ ker g = ker f .
=⇒ f = βg for some scalar β ∈ F.
=⇒ f is continuous. ∵ g is continuous. �
THE HAHN-BANACH THEOREM
Definition. If X is a vector space, a sublinear functional is a function q : X → R such
that
(a) q(x+ y) ≤ q(x) + q(y) for all x, y ∈ X.
(b) q(αx) = αq(x) for x ∈ X and α ≥ 0.
The Hahn-Banach Theorem. Let X be a vector space over R and let q be a sublinear
functional on X. If M is a linear manifold in X and f : M → R is a linear functional
such that f(x) ≤ q(x) for all x ∈ M , then there is a linear functional F : X → R such
that F |M = f and F (x) = f(x) for all x ∈M .
Lemma. Let X is vector space over C.
(a) if f : X → R is an R−linear functional, then f̃(x) : f(x) − if(ix) is a C−linear
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functional and f = Re f̃ .
(b) If g : X → C is C−linear, f = Re g, and f̃ as defined in (a), then f̃ = g.
(c) If p is a seminorm on X and f and f̃ are as in (a), then |f | ≤ p(x) for all x ∈ X if
and only if |f̃(x)| ≤ p(x) for all x ∈ X.
(d) If X is a normed space and f and f̃ are as in (a), then ‖f‖ = ‖f̃‖.
PROOF. If we can show that f̃(ix) = if̃ then our proof will be over.

f̃(ix) = f(ix)− if(−x)
= f(ix) + if(x)
= i[f(x)− if(ix)]

= if̃

=⇒ f̃ is C−linear.
(b) We know that Re g = f = Re f̃ .
It is sufficient to show Im g = Im f̃ .
Consider,

Im g(x) = −Re ig(x)
= −Re g(ix)
= −f(ix)

= Im f̃(x)

∴ f̃ = g.
(c) Let |f(x)| ≤ p(x) ∀x ∈ X.
Choose θ such that, f̃(x) = eiθ|f̃(x)|.

|f̃(x)| = e−iθf̃(x)

= f̃(e−iθx)

= Re f̃(e−iθx)
= f(e−iθx)
≤ p(e−iθx)
≤ p(x)

f(x) = Re f̃(x) ≤ |f̃(x)| ≤ p(x).
−f(x) = f(−x) = Re f̃(−x) ≤ |f̃(x)| ≤ p(x).
∴ |f(x)| ≤ p(x), for all x ∈ X.
(d) Follows from (c). �
Corollary 1. Let X be vector space, let M be a linear manifold in X, and let p : X →
[0,∞) be a seminorm. If f : M → F is a linear functional such that |f(x)| ≤ p(x) for all
x ∈M , then there is a linear functional F : X → F such that F |M = f and |F (x)| ≤ p(x)
for all x ∈ X.
PROOF. Case 1: If F = R.
We have f(x) ≤ |f(x)| ≤ p(x), ∀x ∈M .
=⇒ f(x) ≤ p(x), ∀x ∈M .
∴ By Hahn Banach theorem there is linear functional F : X → R such that F |M = f
and F (x) ≤ p(x).
Also, −F (x) = F (−x) ≤ |F (−x)| ≤ p(−x) = p(x).
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∴ |F (x)| ≤ p(x).
Case 2: If F = C.
Let f1 = Re f . Then by Case 1 there is an extension F1 : X → R such that F1|M = f1
and |F1(x)| ≤ p(x).
Let F = F1(x)− iF1(ix), ∀x ∈ X.
Also, by part (c) of previous lemma we have get |F (x)| ≤ p(x), ∀x ∈ X. �
Corollary 2. If X is a normed space, M is a linear manifold in X, and f : M → F is
bounded linear functional, then there is an F in X∗ such that F |M = f and ‖F‖ = ‖f‖.
PROOF. Let f : M → F is bounded linear functional.
∴ |f(x)| ≤ ‖f‖‖x‖ for all x ∈ X.
Take p(x) = ‖f‖‖x‖.
Clearly, p is seminorm on X.
∴ |F (x)| ≤ p(x), ∀x ∈ X.
Therefore, by corollary 1 there exist a linear functional F : X → F such that F |M = f
and |F (x)| ≤ p(x), ∀x ∈ X.
=⇒ |F (x)| ≤ ‖f‖‖x‖, for all x ∈ X.
Therefore, by definition of norm of function ‖F‖ = ‖f‖. �
Corollary 3. If X is normed space, {x1, x2, ..., xd} is linearly independent subset of X,
and α1, α2, ..., αd are arbitrary scalars, then there is an f in X∗ such that f(xj) = αj for
1 ≤ j ≤ d.
PROOF. Let M = 〈x1, x2, ..., xd〉.
That is, M is generated by {x1, x2, ..., xd}.

Define, a linear functional g : M → F such that g(
d∑
j=1

βjxj) =
d∑
j=1

βjαj.

Let x1, x2 ∈M =⇒ x1 =
d∑
j=1

βjxj, x2 =
d∑
j=1

γjxj and α ∈ F.

Consider,

g(x1 + αx2) = g(
d∑
j=1

βjxj + α
d∑
j=1

γjxj)

= g(
d∑
j=1

(βj + αγj)xj)

=
d∑
j=1

(βj + αγj)αj

=
d∑
j=1

βjαj +
d∑
j=1

αγjαj

= g(
d∑
j=1

βjxj) + αg(
d∑
j=1

γjxj)

= g(x1) + αg(x2)

∴ g is linear functional from finite dimensional vector space M to F.
Therefore, g is continuous.
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∴ by corollary 2, g can be extended to a linear functional f ∈ X∗ such that
f |M = g and f(xj) = g(xj).
Therefore, f(xj) = g(xj) = αj. �
Corollary 4. If X is normed space and x ∈ X, then

‖x‖ = sup {|f(x)| : f ∈ X∗ and ‖f‖ ≤ 1} .

PROOF. Let α = sup {|f(x)| : f ∈ X∗ and ‖f‖ ≤ 1}.
For any f ∈ X∗ and ‖f‖ ≤ 1.
Therefore, f is bounded linear functional on X.
Hence we can write,

|f(x)| ≤ ‖f‖‖x‖, ∀x ∈ X
≤ ‖x‖, ∵ ‖f‖ ≤ 1

Taking supremum on both side we get,
α ≤ ‖x‖, ∀x ∈ X.
Consider, M = {βx : β ∈ F}
Clearly M is linear manifold in X.
Define a linear functional on M such that
g(βx) = β‖x‖.
‖g‖ = sup {|g(x)| : ‖x‖ ≤ 1} = 1.
∴ g is bounded and ‖g‖ = 1.
By corollary 2, there exists a linear functional f : X → F such that f |M = g and
‖f‖ = ‖g‖.
∴ ‖f‖ = 1 and f |M = g =⇒ g(x) = f(x), ∀x ∈M .
=⇒ f(x) = ‖x‖, ∀x ∈M .
So we can choose, f(x) = ‖x‖, ∀x ∈ X.
∴ α = ‖x‖. �
Corollary 5. If X is a normed space M ≤ X, x0 ∈ X −M and d = dist(x0,M), then
there is an f in X∗ such that f(x0) = 1, f(x) = 0 for all x ∈M , and ‖f‖ = d−1.
PROOF. Suppose Q : X → X/M defined by Q(x) = x+M .
For x0 ∈ X/M, d = dist(x0,M) = ‖x0 +m‖.
∴ By corollary 4, there exist g ∈ (X/M)∗ such that g(x0 +M) = d and ‖g‖ = 1.
Consider, f = d−1g ◦Q : X → F.
∴ f is continuous linear functional.
Now,

|f(x)| = |d−1g ◦Q(x)|
= d−1|g(Q(x))|
≤ d−1|||Q(x)|||
≤ d−1‖x‖

Therefore, by definition of ‖f‖, ‖f‖ ≤ d−1.
∴ ‖g‖ = 1 there exist a sequence {xn +M} in X/M such that |g(xn + M)| → 1 for
|||xn +M ||| ≤ 1.
Consider, {yn} be sequence in M such that ‖xn + yn‖ ≤ 1.
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|f(x)| = d−1|g ◦Q(xn)|
= d−1|g(xn +M)|
→ d−1

Therefore, ‖f‖ = d−1.
Now,

f = d−1g ◦Q
∴ f(x0) = d−1g ◦Q(x0)

= d−1g(x0 +M)
= d−1d
= 1

Also, for x ∈M ,

f = d−1g ◦Q
∴ f(x) = d−1g ◦Q(x)

= d−1g(x+M)
= d−1g(0 +M)
= d−1g(M)
= 0

�
Theorem. If X is a normed space and M is a linear manifold in X, then

clM = ∩{ker f : f ∈ X∗ and M ⊆ ker f} .

PROOF. Let N = ∩{ker f : f ∈ X∗ and M ⊆ ker f}.
For f ∈ X∗, ker f is closed. ∵ f is continuous linear functional.
So M ⊆ ker f .
=⇒ cl(M) ⊆ cl(ker f).
=⇒ cl(M) ⊆ ker f .
So if f ∈ X∗ and M ⊆ ker f then cl(M) ⊆ ker f =⇒ cl(M) ⊆ N .
Let y /∈ cl(M).
=⇒ dist(y,M) ≥ 0.
Let d = dist(y,M).
By corollary 5, there exists f ∈ X∗ such that f(y) = 1 and f(x) = 0.
=⇒M ⊆ ker f and y /∈ ker f, ∀x ∈M .
∴ y /∈ N =⇒ N ⊆ cl(M).
Therefore, N = cl(M).
=⇒ clM = ∩{ker f : f ∈ X∗ and M ⊆ ker f}. �
Corollary If X is normed space and M is a linear manifold in X, then M is dense in X
if and only if the only bounded linear functional on X that annihilates M is zero function.
PROOF. Let M is dense in X.
=⇒ cl(M) = X.
=⇒ f ∈ X∗ and M ⊆ ker f gives as ker f = X.
=⇒ f = 0 and f(M) = 0.
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Only zero function annihilates M .
Conversely, suppose only bounded linear functional that annihilates M is zero function.
That is, f ∈ X∗ and M ⊆ ker f .
=⇒ f = 0 =⇒ ker f = X.
∴ By definition of cl(M).
∴ cl(M) = X =⇒M is dense in X. �
THE OPEN MAPPING THEOREM AND CLOSED GRAPH THEOREM
The Open Mapping Theorem: IF X, Y are Banach spaces and A : X → Y is a
continuous linear surjection, A(G) is open in Y whenever G is open in X.
PROOF. �
The Inverse Mapping Theorem: If X and Y are Banach spaces and A : X → Y is
a bounded linear transformation that is bijective, then A−1 is bounded.
PROOF. Suppose A is bounded linear transformation.
=⇒ A is continuous.
∴ By open mapping theorem A is open mapping.
To show: A−1 is bounded.
That is to show: A−1 is bounded.
Here A−1 : Y → X is linear map and for U open in X.
(A−1)−1(U) = A(U) is open in Y . ∵ A is open map.
=⇒ A−1 is continuous and hence bounded. �
The Closed Graph Theorem: If X and Y are Banach spaces and A : X → Y is a
linear transformation such that graph of A,

graA = {x⊕ Ax ∈ X ⊕1 Y : x ∈ X} .

is closed, then A is continuous.
PROOF. Since X and Y are Banach spaces.
=⇒ X ⊕1 Y is Banach space.
Also, graA is closed subset of X ⊕1 Y .
∴ graA is Banach space.
Let G = graA. Define a mapping P : G→ X by P (x⊕ Ax) = x.
Claim 1: P is linear mapping.
For any x1 ⊕ Ax1, x2 ⊕ Ax2 ∈ G.

P (x1 ⊕ Ax1 + x2 ⊕ Ax2) = P ((x1 + x2)⊕ A(x1 + x2))
= x1 + x2
= P (x1 ⊕ Ax1) + P (x2 ⊕ Ax2)

Also, For x⊕ Ax ∈ G and any scalar α ∈ F.

P (α(x⊕ Ax)) = P (αx⊕ Aαx)
= αx
= αP (x⊕ Ax)

Therefore, P is linear.
Claim 2: P is bijective.
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kerP = {x⊕ Ax ∈ G : P (x⊕ Ax) = 0}
= {x⊕ Ax ∈ G : x = 0}
= {0⊕ A(0) ∈ G}
= {0}

∴ P is injective.
Clearly, for any x ∈ X, ∃x⊕ Ax ∈ G such that P (x⊕ Ax) = x.
∴ P is surjective.
=⇒ P is bijective.
Claim 3: P is continuous.

‖P (x⊕ Ax)‖ = ‖x‖
≤ ‖x‖+ ‖Ax‖ ∵ ‖x1 ⊕ x2‖ = ‖x1‖+ ‖x2‖.
≤ ‖x⊕ Ax‖

∴ ‖P (x⊕ Ax)‖ ≤ ‖x⊕ Ax‖ =⇒ P is continuous.
∴ By claim 1, 2, 3, P is linear, bijective and continuous(bounded) function.
So P : G→ X is a bounded linear and bijective map and G and X are Banach spaces.
By Inverse mapping theorem,
P−1 : X → G is bounded.
Define a mapping T : G→ Y by T (x⊕ Ax) = Ax.
Similarly, we can show T is linear, bijective and continuous(bounded).
Now, T ◦P−1 : X → Y is linear and continuous mapping which is same as given mapping
A.
∴ A is continuous. �
Principle of Uniform Boundedness: Let X be a Banach space and Y a normed
space. If A ⊆ B(X, Y ) such that for each x in X, sup {‖Ax‖ : A ∈ A} < ∞, then
sup {‖A‖ : A ∈ A} <∞.
PROOF. Let M(x) = sup {‖Ax‖ : A ∈ A} <∞.
=⇒ ‖Ax‖ ≤M(x), ∀x ∈ X.
If possible, Let sup {‖A‖ : A ∈ A} is infinite.
Then, there exists a sequence {An} ⊆ A such that ‖An‖ → ∞ as n→∞.
That is, ∃ {xn} ⊆ X such that ‖xn‖ = 1 and ‖Axn‖ > 4n.
Let yn = 2−nxn.
∴ ‖yn‖ = ‖2−nxn‖ = 2−n‖xn‖ = 2−n.
‖Anyn‖ = ‖An2−nxn‖ = 2−n‖Anxn‖ > 2−n4n = 2n.
∴ ‖Anyn‖ > 2n.
Claim: There exists subsequence {ynk

} of {yn} such that

(a) ‖Ank+1
ynk+1

‖ > 1 + k +
k∑
j=1

M(ynj
).

(b) ‖ynk+1
‖ < 2−k−1 sup

{
‖Anj

‖ : 1 ≤ j ≤ k
}

.

Consider,
∑
k

‖ynk+1
‖ =

∑
k

2−nk <∞.

=⇒
∑
k

ynk+1
converges. ∵ X is Banach space.
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Let y =
∑
k

ynk
.

Consider,

‖Ank+1
y‖ = ‖Ank+1

∑
k

ynk
‖

= ‖
k∑
j=1

Ank+1
ynj

+ Ank+1
ynk+1

+
∞∑

j=k+2

Ank+1
ynj
‖

= ‖Ank+1
ynk+1

− (−
k∑
j=1

Ank+1
ynj
−

∞∑
j=k+2

Ank+1
ynj

)‖

≥ ‖Ank+1
ynk+1

‖ − ‖
k∑
j=1

Ank+1
ynj

+
∞∑

j=k+2

Ank+1
ynj
‖

≥ ‖Ank+1
ynk+1

‖ − ‖
k∑
j=1

Ank+1
ynj
‖ − ‖

∞∑
j=k+2

Ank+1
ynj
‖

≥ ‖Ank+1
ynk+1

‖ −
k∑
j=1

‖Ank+1
ynj
‖ −

∞∑
j=k+2

‖Ank+1
ynj
‖

≥ ‖Ank+1
ynk+1

‖ −
k∑
j=1

‖Ank+1
ynj
‖ −

∞∑
j=k+2

‖Ank+1
‖‖ynj

‖ (1)

Claim 1: −
k∑
j=1

‖Ank+1
ynj
‖ ≥ −

k∑
j=1

M(ynj
).

We know, M(x) = sup {‖Ax‖ : A ∈ A}.
∴ ‖Ank+1

ynj
‖ ≤M(ynj

).
−M(ynj

) ≤ −‖Ank+1
ynj
‖.

=⇒ −
k∑
j=1

M(ynj
) ≤ −

k∑
j=1

‖Ank+1
ynj
‖.

Hence claim 1.

Claim 2: −
∞∑

j=k+2

‖Ank+1
‖‖ynj

‖ ≥ −
∞∑

j=k+2

2−j.

From the part (b) we have,
‖ynk+1

‖ < 2−k−1[sup
{
‖Anj

‖ : 1 ≤ j ≤ k
}

]−1.
Replace k by k + 1.
‖ynk+2

‖ < 2−k−2[sup
{
‖Anj

‖ : 1 ≤ j ≤ k + 1
}

]−1.
In particular, for j = k + 1.
‖ynk+2

‖ < 2−k−2‖Ank+1
‖−1.

=⇒ −‖ynk+2
‖ > −2−k−2‖Ank+1

‖−1.
=⇒ −‖Ank+1

‖‖ynk+2
‖ > −2−k−2.

Similarly, Replace k by k + 2.
‖ynk+3

‖ < 2−k−3[sup
{
‖Anj

‖ : 1 ≤ j ≤ k + 1
}

]−1.
=⇒ −‖Ank+1

‖‖ynk+3
‖ > −2−k−3.
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Similarly, =⇒ −‖Ank+1
‖‖ynk+4

‖ > −2−k−4.
∴ −‖Ank+1

‖‖ynj
‖ > −2−j, ∀j = k + 2, k + 3, ....

∴ −
∞∑

j=k+2

‖Ank+1
‖‖ynj

‖ > −
∞∑

j=k+2

2−j.

Hence claim 2.
From inequality (1)

‖Ank+1
y‖ ≥ ‖Ank+1

ynk+1
‖ −

k∑
j=1

‖Ank+1
ynj
‖ −

∞∑
j=k+2

‖Ank+1
‖‖ynj

‖

> 1 + k +
k∑
j=1

M(ynj
)−

k∑
j=1

M(ynj
)−

∞∑
j=k+2

2−j

> 1 + k −
∞∑

j=k+2

2−j

> 1 + k − 1
2k+1

> k + (1− 1
2k+1 )

> k

∴ ‖Ank+1
y‖ > k, ∀k. (2)

→← Because, M(y) = sup {‖Ay‖ : A ∈ A} <∞.
From inequality (2) as k →∞.
‖Ank+1

y‖ → ∞.
But by our given condition,
‖Ank+1

y‖ <∞, ∀k.
∴ Our assumption was wrong.
Therefore we must have {‖A‖ : A ∈ A} <∞. �

♣♣♣
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