Differential Geometry

By Krishna Shinde

Department of Mathematics

Modern College of Arts, Science and Commerce(Autonomous) Shivajinagar, Pune - 5

CHAPTER 1 GRAPHS AND LEVEL SETS

Definition. Given a function $f: U \to \mathbb{R}$, where $U \subset \mathbb{R}^{n+1}$, it's level sets are the sets $f^{-1}(c)$ defined, for each real number c, by

 $f^{-1}(c) = \{(x_1, x_2, ..., x_{n+1}) \in U : f(x_1, x_2, ..., x_{n+1}) = c\}.$

The number c is called the height of the level set, and $f^{-1}(c)$ is called level set at height c.

Note:

1. $f^{-1}(c)$ may contain one point if f is one-one.

2. $f^{-1}(c) = U$ if f is constant function.

3. $f^{-1}(c) = \phi$ if c is not the point in range set of f.

Example 1. Find the level set at height 0 where $f : \mathbb{R} \to [-1, 1]$ defined by $f(x) = \sin x$. **Solution.** Let $c = 0$.

$$
f^{-1}(0) = \{x \in \mathbb{R} : f(x) = 0\}
$$

= $\{x \in \mathbb{R} : \sin x = 0\}$
= $\{\dots, -2\pi, -\pi, 0, \pi, 2\pi, \dots\}$
= $\{n\pi : n \in \mathbb{Z}\}$

which is level set at height 0.

Definition. The graph of function $f: U \to \mathbb{R}$ is a subset of \mathbb{R}^{n+2} defined by

 $graph(f) = \{(x_1, x_2, ..., x_{n+2}) \in \mathbb{R}^{n+2} : (x_1, x_2, ..., x_{n+1}) \in U \text{ and } x_{n+2} = f(x_1, x_2, ..., x_{n+1})\}$

Example 2. Find the graph of function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sin x$. Solution.

$$
\begin{aligned}\n\text{graph}(f) &= \{ (x_1, x_2) \in \mathbb{R}^2 : x_1 \in \mathbb{R} \text{ and } x_2 = f(x_1) \} \\
&= \{ (x_1, x_2) \in \mathbb{R}^2 : x_1 \in \mathbb{R} \text{ and } x_2 = \sin x_1 \} \\
&= \{ (x_1, \sin x_1) \in \mathbb{R}^2 \}\n\end{aligned}
$$

Example 3. Find the level set $f^{-1}(c)$ for $n = 0, 1, 2$ at $c = 0, 1, 2, 3$ and $c = 4$, where $f: \mathbb{R}^{n+1} \to \mathbb{R}$ defined by $f(x_1, x_2, ..., x_{n+1}) = x_1^2 + x_2^2 + ... + x_{n+1}^2$. **Solution.** For $n = 0, f : \mathbb{R} \to \mathbb{R}$ defined by $f(x_1) = x_1^2$. For $c = 0$

$$
f^{-1}(0) = \{x \in \mathbb{R} : f(x) = 0\} = \{x \in \mathbb{R} : x^2 = 0\} = \{x \in \mathbb{R} : x = 0\} = \{0\}
$$

For
$$
c = 1
$$

\n
$$
f^{-1}(1) = \{x \in \mathbb{R} : f(x) = 1\}
$$
\n
$$
= \{x \in \mathbb{R} : x^2 = 1\}
$$
\n
$$
= \{x \in \mathbb{R} : x = -1, 1\}
$$
\n
$$
= \{-1, 1\}
$$

$$
f^{-1}(2) = \{x \in \mathbb{R} : f(x) = 2\}
$$

= $\{x \in \mathbb{R} : x^2 = 2\}$
= $\{x \in \mathbb{R} : x = -\sqrt{2}, \sqrt{2}\}$
= $\{-\sqrt{2}, \sqrt{2}\}$

For $c=3$

For $c = 2$

$$
f^{-1}(3) = \{x \in \mathbb{R} : f(x) = 3\}
$$

= $\{x \in \mathbb{R} : x^2 = 3\}$
= $\{x \in \mathbb{R} : x = -\sqrt{3}, \sqrt{3}\}$
= $\{-\sqrt{3}, \sqrt{3}\}$

For $c = 4$

$$
f^{-1}(4) = \{x \in \mathbb{R} : f(x) = 4\}
$$

=
$$
\{x \in \mathbb{R} : x^2 = 4\}
$$

=
$$
\{x \in \mathbb{R} : x = -2, 2\}
$$

=
$$
\{-2, 2\}
$$

For $n = 1, f : \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = x_1^2 + x_2^2$. For $c = 0$,

$$
f^{-1}(0) = \{(x_1, x_2) \in \mathbb{R}^2 : f(x_1, x_2) = 0\}
$$

=
$$
\{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 0\}
$$

=
$$
\{(0, 0)\}
$$

For
$$
c = 1
$$
,

$$
f^{-1}(1) = \{(x_1, x_2) \in \mathbb{R}^2 : f(x_1, x_2) = 1\}
$$

=
$$
\{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\}
$$

For $c = 2$, $f^{-1}(2) = \{(x_1, x_2) \in \mathbb{R}^2 : f(x_1, x_2) = 2\}$ = $\{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 2\}$ For $c = 3$,

$$
f^{-1}(3) = \{(x_1, x_2) \in \mathbb{R}^2 : f(x_1, x_2) = 3\}
$$

=
$$
\{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 3\}
$$

For $c = 4$,

$$
f^{-1}(4) = \{(x_1, x_2) \in \mathbb{R}^2 : f(x_1, x_2) = 4\}
$$

=
$$
\{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 4\}
$$

For $n = 2$, $f : \mathbb{R}^3 \to \mathbb{R}$ defined by $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$.

For $c = 0$,

$$
f^{-1}(0) = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : f(x_1, x_2, x_3) = 0\}
$$

=
$$
\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 0\}
$$

=
$$
\{(0, 0, 0)\}
$$

For $c = 1$,

$$
f^{-1}(1) = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : f(x_1, x_2, x_3) = 1\}
$$

=
$$
\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\}
$$

For $c = 4$,

$$
f^{-1}(4) = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : f(x_1, x_2, x_3) = 4\}
$$

=
$$
\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 4\}
$$

Example 4. Find the typical level curves and the graph of $f : \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = -x_1^2 + x_2^2.$ Solution. Level set:

Level set at height c = 0, -1, 1

Graph:

Graph of $f(x_1, x_2) = -x_1^2 + x_2^2$

Example 5. Show that the graph of any function $f : \mathbb{R}^n \to \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$. PROOF. Let $f : \mathbb{R}^n \to \mathbb{R}$. Then

 $graph(f) = \{(x_1, x_2, ..., x_{n+1}) \in \mathbb{R}^{n+1} : (x_1, x_2, ..., x_n) \in \mathbb{R}^n \text{ and } x_{n+1} = f(x_1, x_2, ..., x_n)\}\$

Now we define $F: \mathbb{R}^{n+1} \to \mathbb{R}$ as $F(x_1, x_2, ..., x_{n+1}) = f(x_1, x_2, ..., x_n) - x_{n+1}$. Then

$$
F^{-1}(0) = \{(x_1, x_2, ..., x_{n+1}) \in \mathbb{R}^{n+1} : F(x_1, x_2, ..., x_{n+1}) = 0\}
$$

= $\{(x_1, x_2, ..., x_{n+1}) \in \mathbb{R}^{n+1} : f(x_1, x_2, ..., x_n) - x_{n+1} = 0\}$
= $\{(x_1, x_2, ..., x_{n+1}) \in \mathbb{R}^{n+1} : x_{n+1} = f(x_1, x_2, ..., x_n)\}$
= graph (f)

CHAPTER 2 VECTOR FIELDS

Definition. A vector at a point $p \in \mathbb{R}^{n+1}$ is a pair (p, v) where $v \in \mathbb{R}^{n+1}$. Geometrically, think of v as the vector v translated so that its tail is at p rather than at origin.

The vectors at p form a vector field \mathbb{R}_p^{n+1} of dimension $n+1$, with addition defined by $(p, v) + (p, w) = (p, v + w)$ and scalar multiplication by $c(p, v) = (p, cv)$.

If $\{v_1, v_2, ..., v_{n+1}\}\$ is any basis for \mathbb{R}^{n+1} then $\{(p, v_1), (p, v_2), ..., (p, v_{n+1})\}\$ forms a basis for \mathbb{R}_p^{n+1} . DEFINITIONS:

Dot product. Given two vectors (p, v) and (p, w) at p, then their dot product is defined using standard dot product on \mathbb{R}^{n+1} , by $(p, v) \cdot (p, w) = v \cdot w$.

Cross product. Given two vectors (p, v) and $(p, w) \in \mathbb{R}^3_p$, where $p \in \mathbb{R}^3$, then their cross product is also defined, using the standard cross product on \mathbb{R}^3 , by $(p, v) \times (p, w) =$ $(p, v \times w)$.

Length of vector. The length of a vector $v = (p, v)$ at p is

$$
||v||
$$
 = $(v \cdot v)^{1/2}$
 = $((p, v) \cdot (p, v))^{1/2}$.

Angle between two vectors. The angle between two vectors $v = (p, v)$ and $w = (p, w)$ is

$$
\cos \theta = \frac{v \cdot w}{\|v\| \|w\|}
$$
, where $0 \le \theta < \pi$.

Vector field. A vector field X on $U \subset \mathbb{R}^{n+1}$ is a function which assigns to each vector of U a vector at that point. Thus

$$
X(p) = (p, X(p)).
$$

Example 1. The sketch of some vector fields $X : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $X(x_1, x_2) =$ $(x_2, -x_1)$ and $X(x_1, x_2) = (0, 1)$ are given below:

Open set. A set $U \subset \mathbb{R}^{n+1}$ is open if for each point $p \in U$ there is an $\epsilon > 0$ such that $q \in U$ whenever $||q - p|| < \epsilon$.

Smooth function. A function $f: U \to \mathbb{R}$, where U is open subset of \mathbb{R}^{n+1} is called smooth function if all it's partial derivatives of all orders are exists and continuous. A function $f: U \to \mathbb{R}^k$ where U is open subset of \mathbb{R}^{n+1} is called smooth function if each component function $f_i: U \to \mathbb{R}(f(p) = (f_1(p), f_2(p), ..., f_{n+1}(p))$ for $p \in U$) is smooth. A vector field X on U is smooth if the associated function $X: U \to \mathbb{R}^{n+1}$ is smooth. **Gradient of a function.** Associated with each smooth function $f: U \to \mathbb{R}(U)$ open in \mathbb{R}^{n+1}) is a smooth vector field on U called gradient of f defined by

$$
(\nabla f)(p) = \left(p, \frac{\partial f}{\partial x_1}(p), \frac{\partial f}{\partial x_2}(p), ..., \frac{\partial f}{\partial x_{n+1}}(p)\right).
$$

Parametric curve. A parametric curve in \mathbb{R}^{n+1} is a smooth function $\alpha: I \to \mathbb{R}^{n+1}$, where I is some open interval in R. It has the form $\alpha(t) = (x_1(t), x_2(t), ..., x_{n+1}(t))$ where each x_i is a smooth real valued function on I .

Velocity vector. The velocity vector at time $t \in I$ of parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$ is the vector at $\alpha(t)$ defined by

$$
\dot{\alpha}(t) = \left(\alpha(t), \frac{dx_1}{dt}(t), \frac{dx_2}{dt}(t), ..., \frac{dx_{n+1}}{dt}(t)\right).
$$

This vector is tangent to the curve α at $\alpha(t)$.

Velocity vector of a parametrized curve in \mathbb{R}^2 .

Integral curve. A parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$ is said to be integral curve of the vector field X on the open set U in \mathbb{R}^{n+1} if $\alpha(t) \in U$ and $\dot{\alpha}(t) = X(\alpha(t))$ for all $t \in I$.

An integral curve of a vector field.

Theorem. Let X be a smooth vector field on an open set $U \subset \mathbb{R}^{n+1}$ and let $p \in U$. Then there exists an open interval I containing 0 and an integral curve $\alpha : I \to U$ of X such that

(i) $\alpha(0) = p$.

(ii) If $\beta : \tilde{I} \to U$ is any another integral curve of X with $\beta(0) = p$, then $\tilde{I} \subset I$ and $\beta(t) = \alpha(t)$ for all \tilde{I} .

PROOF. Since X is a smooth vector field on U hence it has the form

$$
X(p) = (p, X_1(p), X_2(p), ..., X_{n+1}(p))
$$

where, each $X_i: U \to \mathbb{R}$ is smooth functions on U. A parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$ has the form .

$$
\alpha(t) = (x_1(t), x_2(t), ..., x_{n+1}(t))
$$

where, each $x_i: I \to \mathbb{R}$ is smooth function on I. The velocity of α is

$$
\dot{\alpha}(t) = \left(\alpha(t), \frac{dx_1}{dt}(t), \frac{dx_2}{dt}(t), ..., \frac{dx_{n+1}}{dt}(t)\right)
$$

Suppose $\alpha: I \to \mathcal{P}$ be an integral curve of a vector field X

$$
\implies \alpha(t) = X(\alpha(t))
$$

\n
$$
\implies \left(\alpha(t), \frac{dx_1}{dt}(t), \frac{dx_2}{dt}(t), ..., \frac{dx_{n+1}}{dt}(t)\right) = (\alpha(t), X_1(\alpha(t)), X_2(\alpha(t)), ..., X_{n+1}(\alpha(t)))
$$

Equating components from both sides we get,

$$
\frac{dx_1}{dt}(t) = X_1(\alpha(t))
$$
\n
$$
\frac{dx_2}{dt}(t) = X_2(\alpha(t))
$$
\n
$$
\vdots
$$
\n
$$
\frac{dx_{n+1}}{dt}(t) = X_{n+1}(\alpha(t))
$$

This is the system of $n+1$ first order ordinary differential equations in $n+1$ unknowns. Therefore, by existence theorem for solutions of such equations there exists and open interval I containing 0 and set $x_i: I_1 \to \mathbb{R}$ of smooth functions satisfying this system subject to initial conditions $x_i(0) = p$ for $i \in \{1, 2, ..., n+1\}$, where $p = (p_1, p_2, ..., p_{n+1})$. Setting $\beta_1(t) = (x_1(t), x_2(t), ..., x_{n+1}(t))$ for this choice of functions we get an integral curve $\beta_1 : I_1 \to U$ of X with $\beta_1(0) = p$.

Also, by uniqueness theorem for the solutions of first order ordinary differential equations, if $\tilde{x}_i : I_2 \to \mathbb{R}$ is another set of functions satisfying the given system together with the initial conditions $\tilde{x}_i(0) = p_i$ then $\tilde{x}_i(t) = x_i(t)$ for all $t \in I_1 \cap I_2$.

In other words, if $\beta_2 : I_2 \to U$ is another integral curve of X with $\beta(0) = p$ then $\beta_1(t) = \beta_2(t)$ for all $t \in I_1 \cap I_2$.

It follows from this that there is unique maximal integral curve α of X with $\alpha(0) = p$ and if $\beta : \tilde{I} \to U$ is any another integral curve of X with $\beta(0) = p$ then β is simply restriction of α to the smaller interval \tilde{I} .

Example. Find the integral curve of vector field X, where $X(x_1, x_2) = (-x_2, x_1)$ through the point (a, b) .

Solution. Suppose a parametric curve $\alpha(t) = (x_1(t), x_2(t))$ is an integral curve of X.

$$
\implies \dot{\alpha}(t) = X(\alpha(t))
$$

$$
\implies \left(\frac{dx_1}{dt}(t), \frac{dx_2}{dt}(t)\right) = X(x_1(t), x_2(t))
$$

$$
\implies \left(\frac{dx_1}{dt}(t), \frac{dx_2}{dt}(t)\right) = (-x_2(t), x_1(t))
$$

Equating components from both sides we get,

$$
\frac{dx_1}{dt}(t) = -x_2(t) \tag{1}
$$

$$
\frac{dx_2}{dt}(t) = x_1(t) \tag{2}
$$

Differentiating both the equations with respect to t we get,

$$
\frac{d^2x_1}{dt^2} = -\frac{dx_2}{dt} \tag{3}
$$

$$
\frac{d^2x_2}{dt^2} = \frac{dx_1}{dt} \tag{4}
$$

From equation (1) and (3) we get,

$$
\frac{d^2x_1}{dt^2} = -x_1
$$

$$
\implies \frac{d^2x_1}{dt^2} + x_1 = 0 \tag{5}
$$

The auxiliary equation of differential equation (5) is,

$$
m^2 + 1 = 0
$$

$$
\implies m = \pm i
$$

Therefore, the solution of differential equation (5) is $x_1(t) = c_1 \cos t + c_2 \sin t$.

 $x_2(t) = -\frac{dx_1}{dt} = -(-c_1\sin t + c_2\cos t).$ $\implies x_2(t) = c_1 \sin t - c_2 \cos t.$

Since the given integral curve passes through the point (a, b) .

 $\implies x_1(0) = a$ and $x_2(0) = b$.

Using these initial conditions we get $c_1 = a$ and $c_2 = -b$.

Therefore, the required integral curve is $\alpha(x_1, x_2) = (a \cos t - b \sin t, a \sin t + b \cos t)$.

Integral curves of the vector field $X(x_1, x_2) = (-x_2, x_1)$

Definition. The divergence of a smooth vector field X on $U \subset R^{n+1}$, $X(p) = (p, X_1(p), X_2(p), ..., X_{n+1}(p))$ for $p \in U$, is the function div $X: U \to R$ defined by div $X = \sum_{n=1}^{n+1} \frac{\partial X_n}{\partial X_n}$ $i=1$ ∂x_i . **Example 1.** Find divergence of a vector field defined by $X(p) = (1, 0)$. **Solution.** div $X = \frac{\partial X_1}{\partial X_2}$ ∂x_1 $+\frac{\partial X_2}{\partial x}$ ∂x_2 $= 0.$ **Example 2.** Find the divergence of a vector field defined by $X(p) = p$. **Solution.** We have $X(x_1, x_2) = (x_1, x_2)$. Therefore, div $X = \frac{\partial X_1}{\partial X_2}$ ∂x_1 $+\frac{\partial X_2}{\partial}$ ∂x_2 $= 1 + 1 = 2.$ Example 3. Find and sketch the gradient field of each of the following functions: (a) $f(x_1, x_2) = x_1 + x_2$ **Solution.** $\nabla f(x_1, x_2) = \left(\frac{\partial f}{\partial x_1}\right)$ ∂x_1 , ∂f ∂x_2 \setminus $= (1, 1).$ The sketch of this gradient vector field is given below:

(b) $f(x_1, x_2) = x_1 - x_2^2$
Solution. $\nabla f(x_1, x_2) = \left(\frac{\partial f}{\partial x_1}\right)$ ∂x_1 , ∂f ∂x_2 \setminus $=(1, -2x_2).$ The sketch of this gradient vector field is given below:

Example 4. Explain why an integral curve of a vector field cannot cross itself as does the parametrized curve.

Solution. Let X be a smooth vector field on $U \subset R^{n+1}$. On contrary assume that the integral curve crosses itself. $\implies \alpha(t_1) = \alpha(t_2)$, for some $t_1, t_2 \in I$ and $t_1 \neq t_2$. Since α is integral curve of a vector field X. $\Rightarrow \dot{\alpha}(t_1) = X(\alpha(t_1))$ and $\dot{\alpha}(t_2) = X(\alpha(t_2)).$ But then, $\dot{\alpha}(t_1) = X(\alpha(t_1)) = X(\alpha(t_2)) = \dot{\alpha}(t_2)$. $\Rightarrow \dot{\alpha}(t_1) = \dot{\alpha}(t_2).$ Which is not possible. Therefore, Integral curve of a smooth vector field X does not cross

itself.

Definition. A smooth vector field X on an open set $U \subset R^{n+1}$ is said to be complete if for each $p \in U$ the maximal integral curve of X through p has domain equal to R.

Example 5. Determine which of the following vector fields are complete.

(a) $X(x_1, x_2) = (x_1, x_2, 1, 0), U = \mathbb{R}^2$.

Solution. Here vector field X is defined on an open set $U = \mathbb{R}^2$. We define maximal integral curve $\alpha(t) = (x_1(t), x_2(t))$ of given vector field passing through (a, b) .

$$
\implies \dot{\alpha}(t) = X(\alpha(t))
$$

$$
\implies \left(\frac{dx_1}{dt}, \frac{dx_2}{dt}\right) = (1, 0)
$$

$$
\implies \frac{dx_1}{dt} = 1
$$

$$
\frac{dx_2}{dt} = 0
$$

$$
x_1(t) = t + c_1
$$

$$
x_2(t) = c_2
$$

Since the integral curve passes through (a, b) . Therefore, $x_1(0) = a$ and $x_2(0) = b$. $\implies c_1 = a$ and $c_2 = b$. Therefore, the integral curve is $\alpha(t) = (t + a, b)$. For any $t \in \mathbb{R}, \alpha(t) = (a + t, b) \in \mathbb{R}^2$. Therefore, domain of maximal integral curve is R. Therefore, the given vector field is complete. (b) $X(x_1, x_2) = (x_1, x_2, 1, 0), U = \mathbb{R}^2 - \{(0, 0)\}.$ **Solution.** We have maximal integral curve of given vector field is $\alpha(t) = (t+a, b)$, where $U = \mathbb{R}^2 - \{(0,0)\}.$ Now, for $t = 0, \alpha(0) = (a, b)$. At the point $(a, b) = (0, 0), \alpha(0) = (0, 0).$ But $\alpha(0) = (0,0) \notin U \Longrightarrow 0 \notin \mathbb{R}$.

 \implies Domain of α not equal to R.

Therefore, the given vector field is not complete.

Example 6. Show that $\alpha(t) = \left(\cos^2 t - \frac{1}{2}\right)$ 2 , $\sin t \cos t$, $\sin t$ \setminus is parametrization of the intersection of circular cylinder of radius $\frac{1}{2}$ 2 and axis the z-axis with the sphere of radius 1 and centre is $\left(-\frac{1}{2}\right)$ 2 , 0, 0 \setminus .

Solution. The equation of sphere whose centre at $\left(-\frac{1}{2}\right)$ 2 , 0, 0 \setminus and radius 1 is,

$$
\left(x + \frac{1}{2}\right)^2 + y^2 + z^2 = 1 \tag{1}
$$

The equation of circular cylinder of radius 1/2 is,

$$
x^2 + y^2 = \frac{1}{4} \tag{2}
$$

From equation (1) we have $z^2 \leq 1$. $\implies -1 \leq z \leq 1.$ Substitute $z = \sin t$. Subtracting equation (2) from equation (1) we get,

$$
\left(x + \frac{1}{2}\right)^2 - x^2 + z^2 = 1 - \frac{1}{4}
$$

\n
$$
x + \frac{1}{4} + z^2 = \frac{3}{4}
$$

\n
$$
x + z^2 = \frac{1}{2}
$$

\n
$$
x = \frac{1}{2} - z^2
$$

\n
$$
x = \frac{1}{2} - \sin^2 t \qquad \therefore z = \sin t
$$

\n
$$
x = \frac{1}{2} - (1 - \cos^2 t)
$$

\n
$$
x = \cos^2 t - \frac{1}{2}
$$

Substituting this value of x in equation (2) we get,

$$
\left(\cos^2 t - \frac{1}{2}\right)^2 + y^2 = \frac{1}{4}
$$

$$
\cos^4 t - \cos^2 t + \frac{1}{4} + y^2 = \frac{1}{4}
$$

$$
y^2 = \cos^2 t - \cos^4 t
$$

$$
y^2 = \cos^2 t (1 - \cos^2 t)
$$

$$
y^2 = \cos^2 t \sin^2 t
$$

$$
y = \cos t \sin t
$$

Therefore, $\alpha(t) = \left(\cos^2 t - \frac{1}{2}\right)$ 2 , sin t cos t, sin t \setminus is parametrization of the intersection circular cylinder of radius $\frac{1}{2}$ 2 and axis the z-axis with the sphere of radius 1 and centre is

 $\sqrt{ }$ $-\frac{1}{2}$ 2 , 0, 0 \setminus .

Example 6. Explain why an integral curve of a vector field does not cross itself as does the parametrized curve.

Solution. Let X be a smooth vector field on U is subset of \mathbb{R}^{n+1} and $\alpha: I \to U$ be an integral curve of X.

On contrary assume that the integral curve α cross with itself. That is, there exists $t_1 \neq t_2 \in I$ such that $\alpha(t_1) = \alpha(t_2)$. Since α is integral curve of X

> $\Rightarrow \dot{\alpha}(t_1) = X(\alpha(t_1))$ and $\dot{\alpha}(t_2) = X(\alpha(t_2))$

But then

$$
\dot{\alpha}(t_1) = X(\alpha(t_1)) = X(\alpha(t_2)) = \dot{\alpha}(t_2)
$$

$$
\Longrightarrow \dot{\alpha}(t_1) = \dot{\alpha}(t_2)
$$

Which is not possible.

Therefore, integral curve does not cross itself.

♣♣♣

CHAPTER 3 THE TANGENT SPACES AND SURFACE

Definition. Let $f: U \to \mathbb{R}$ be a smooth function, where $U \subset \mathbb{R}^{n+1}$ is an open set, let $c \in \mathbb{R}$ be such that $f^{-1}(c)$ is non-empty, and let $p \in f^{-1}(c)$. A vector at p is said to be tangent to the level set $f^{-1}(c)$ if it is velocity vector of a parametrized curve whose image is contained in $f^{-1}(c)$ (see figure below).

Tangent vectors to level set

Therefore, the tangent vector to $f^{-1}(c)$ is of the form $\dot{\alpha}(t_0)$ for some parametrized curve $\alpha: U \to \mathbb{R}^{n+1}$ with $\alpha(t_0) = p$ and $\text{Im}(\alpha) \subset f^{-1}(c)$.

Lemma. The gradient of f at $p \in f^{-1}(c)$ is orthogonal to all vectors tangent to $f^{-1}(c)$ at p.

PROOF. Each vector tangent to $f^{-1}(c)$ is of the form $\dot{\alpha}(t_0)$ for some parametrized curve $\alpha: U \to \mathbb{R}^{n+1}$ with $\alpha(t_0) = p$ and $\text{Im}(\alpha) \subset f^{-1}(c)$.

But $\text{Im}(\alpha) \subset f^{-1}(c) \Longrightarrow f(\alpha(t)) = c, \forall t \in I.$ By chain rule of derivative we have,

$$
\frac{d}{dt}(f \circ \alpha)(t_0) = \nabla f(\alpha(t_0)) \cdot \dot{\alpha}(t_0)
$$
\n
$$
\implies \frac{d}{dt}(c) = \nabla f(p) \cdot \dot{\alpha}(t_0)
$$
\n
$$
\implies \nabla f(p) \cdot \dot{\alpha}(t_0) = 0
$$

∴ Gradient of f at $p \in f^{-1}(c)$ is orthogonal to all vectors tangent to $f^{-1}(c)$ at p. \blacksquare **Remark.** If $\nabla f(p) = 0$ then lemma says nothing. But if $\nabla f(p) \neq 0$, it says that the set of all vectors tangent to $f^{-1}(c)$ at p is contained in the n-dimensional vector subspace $[\nabla f(p)]^{\perp}$ of \mathbb{R}_p^{n+1} consisting of all vectors orthogonal to $\nabla f(p)$.

Definition. A point $p \in \mathbb{R}^{n+1}$ such that $\nabla f(p) \neq 0$ is called regular point of f. **Theorem.** Let U be an open set in \mathbb{R}^{n+1} and let $f: U \to \mathbb{R}$ be smooth. Let p be a regular point of f, and let $c = f(p)$. Then the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$.

PROOF. From the previous lemma we have that, every vector tangent to $f^{-1}(c)$ at p is contained in $[\nabla f(p)]^{\perp}$. Thus it suffices to show that, if $v = (p, v) \in [\nabla f(p)]^{\perp}$, then $v = \dot{\alpha}(0)$ for some parametrized curve α with $\text{Im}(\alpha) \subset f^{-1}(c)$. To construct α , consider the constant vector field X on U defined by $X(q) = (q, v)$. From X we can construct another vector field Y by subtracting from X the components of X along α .

$$
Y(q) = X(q) - \frac{X(q) \cdot \nabla f(q)}{\|\nabla f(q)\|^2} \nabla f(q)
$$

The vector field Y has domain U where $\nabla f \neq 0$. Since p is regular point of f, hence it is in domain of Y. Moreover, since $X(p) = v \in [\nabla f(p)]^{\perp}$. Therefore, $X(p) = Y(p)$. Here we have obtained smooth vector field Y such that $Y(q) \perp \nabla f(q)$, $\forall q \in \text{domain}(Y)$, and $Y(p) = v.$

Now let α be an integral curve of Y through p. Then $\alpha(0) = p, \dot{\alpha}(0) = Y(\alpha(0)) = Y(p) = X(p) = v$ and

$$
\frac{d}{dt}f(\alpha(t)) = \nabla f(\alpha(t)) \cdot \dot{\alpha}(t)
$$
\n
$$
= \nabla f(\alpha(t)) \cdot Y(\alpha(t))
$$
\n
$$
= 0
$$

for all $t \in \text{domain}(\alpha)$, so that $f(\alpha(t)) = \text{constant}$. Since $f(\alpha(0)) = f(p) = c$, this means that Image(α) $\subset f^{-1}$ (c).

Definition. A surface of dimension n or n-surface, in \mathbb{R}^{n+1} is a non-empty subset S of \mathbb{R}^{n+1} of the form $S = f^{-1}(c)$ where $f: U \to \mathbb{R}, U$ is open in \mathbb{R}^{n+1} , is a smooth function with the property that $\nabla f(p) \neq 0, \forall p \in S$.

A 1-surface in \mathbb{R}^2 is called a plane curve. A 2-surface in \mathbb{R}^3 is called simply a surface. An n -surface in \mathbb{R}^{n+1} is called a hypersurface.

By theorem in previous chapter each n-surface S in \mathbb{R}^{n+1} , at each point $p \in S$ has tangent space which is n-dimensional vector surface of the space \mathbb{R}_p^{n+1} . This tangent space is denoted by S_p .

If f is smooth function and $S = f^{-1}(c)$ for some $c \in \mathbb{R}$ and $\nabla f(p) \neq 0, \forall p \in S$, then S_p may also be described as $[\nabla f(p)]^{\perp}$.

Example 1. Show that the unit n–sphere is a n–surface in \mathbb{R}^{n+1} . **Solution.** The unit n–sphere $x_1^2 + x_2^2 + ... + x_{n+1}^2 = 1$ represent the set $S = \left\{ (x_1, x_2, ..., x_{n+1}) \in \mathbb{R}^{n+1} : x_1^2 + x_2^2 + ... + x_{n+1}^2 = 1 \right\}.$ Here $S = f^{-1}(1)$, where $f : \mathbb{R}^{n+1} \to \mathbb{R}$ defined by

$$
f(x_1, x_2, ..., x_{n+1}) = x_1^2 + x_2^2 + ... + x_{n+1}^2
$$

Since $(1,0,0,...,0) \in S$, hence S is non-empty subset of \mathbb{R}^{n+1} . Now for any $p = (x_1, x_2, ..., x_{n+1}) \in S$

$$
\nabla f(p) = (p, 2x_1, 2x_2, ..., 2x_{n+1})
$$

Therefore, $\nabla f(p) = 0 \Longleftrightarrow (2x_1, 2x_2, ..., 2x_{n+1}) = 0 \Longleftrightarrow p = (0, 0, ..., 0).$ But $(0, 0, ..., 0) \notin S \Longrightarrow \nabla f(p) \neq 0, \quad \forall p \in S.$ Therefore, S is *n*-surface in \mathbb{R}^{n+1} .

For $n = 1$, S is unit circle which is 1-surface in \mathbb{R}^2 , for $n = 2$, S is sphere which is 2-surface in \mathbb{R}^3 .

Example 2. Show that for $0 \neq (a_1, a_2, ..., a_{n+1}) \in \mathbb{R}^{n+1}$ and $b \in \mathbb{R}$, the n-plane $a_1x_1 + a_2x_2 + \ldots + a_{n+1}x_{n+1} = b$ is a n-surface in \mathbb{R}^{n+1} .

Solution. The n-plane $a_1x_1 + a_2x_2 + ... + a_{n+1}x_{n+1} = b$ represent the set $S = \{(x_1, x_2, ..., x_{n+1}) \in \mathbb{R}^{n+1} : a_1x_1 + a_2x_2 + ... + a_{n+1}x_{n+1} = b\}.$ Here, $S = f^{-1}(b)$ where $f : \mathbb{R}^{n+1} \to \mathbb{R}$ defined by

$$
f(x_1, x_2, ..., x_{n+1}) = a_1 x_1 + a_2 x_2 + ... + a_{n+1} x_{n+1}
$$

Since, $(b/a_1, 0, ..., 0) \in S$ hence S is non-empty subset of \mathbb{R}^{n+1} . Now for any $p = (x_1, x_2, ..., x_{n+1}) \in S$.

$$
\nabla f(p) = (p, a_1, a_2, ..., a_{n+1})
$$

Therefore, $\nabla f(p) = 0 \Longleftrightarrow (a_1, a_2, ..., a_{n+1}) = 0.$ But $(a_1, a_2, ..., a_{n+1}) \neq 0 \Longrightarrow \nabla f(p) \neq 0, \quad \forall p \in S.$ Therefore, S is n-surface in \mathbb{R}^{n+1} .

1-plane is usually called line in \mathbb{R}^2 , 2-plane is called simply plane in \mathbb{R}^3 and an n-plane for $n > 2$ is called a hyperplane in \mathbb{R}^{n+1} . Two different values of b with the same value of $(a_1, a_2, ..., a_{n+1})$ defines parallel n-planes.

Example 3. Show that the graph of function $f: U \to \mathbb{R}$, where U is open subset of R^{n+1} is an n-surface in \mathbb{R}^{n+1} .

Solution. Let $S = \text{graph} f = \{(x_1, x_2, ..., x_{n+1}) \in \mathbb{R}^{n+1} : x_{n+1} = f(x_1, x_2, ..., x_n)\}.$ Since graph $(f) = F^{-1}(0)$, for some $F : \mathbb{R}^{n+1} \to \mathbb{R}$ defined by

$$
F(x_1, x_2, ..., x_n) = x_{n+1} - f(x_1, x_2, ..., x_n)
$$

Now for any $p = (x_1, x_2, ..., x_{n+1}) \in S$,

$$
\nabla F(p) = \left(p, -\frac{\partial f}{\partial x_1}, -\frac{\partial f}{\partial x_2}, ..., -\frac{\partial f}{\partial x_n}, 1\right)
$$

 $\therefore \nabla F(p) \neq 0, \forall p \in S.$

Therefore, $gr(f)$ is a n-surface in \mathbb{R}^{n+1} .

Theorem. Let S be an n-surface in \mathbb{R}^{n+1} , $S = f^{-1}(c)$ where $f: U \to \mathbb{R}$ is such that $\nabla f(q) \neq 0$ for all $q \in S$. Suppose $q : U \to \mathbb{R}$ is a smooth function and $p \in S$ is an extreme point of q on S; i.e. either $q(q) \leq q(p)$ for all $q \in S$ or $q(q) \geq q(p)$ for all $q \in S$. Then there exists a real number λ such that $\nabla g(p) = \lambda \nabla f(p)$. (The number λ is called a Lagrange multiplier.)

PROOF. Let S be an n-surface in \mathbb{R}^{n+1} .

Therefore, $S = f^{-1}(c)$, for some smooth function $f: U \to \mathbb{R}$ such that $\nabla f(p) \neq 0$, $\forall p \in \mathbb{R}$ S.

The tangent space to S at p is $S_p = [\nabla f(p)]^{\perp}$. Hence $S_p^{\perp} = [\nabla f(p)]$ is one dimensional

vector subspace of \mathbb{R}_p^{n+1} spanned by $\nabla f(p)$. To prove: $\nabla g(p) = \lambda \nabla f(p)$. That is, to prove $\nabla g(p) \in S_p^{\perp}$. That is, to prove $\nabla g(p) \cdot v = 0$, $\forall v \in S_p$. But each $v \in S_p$ is of the form $v = \dot{\alpha}(t_0)$ for some parametrized curve $\alpha : I \to S$ and $t_0 \in I$ with $\alpha(t_0) = p$. Since $p = \alpha(t_0)$ is extreme point of g on S. $\implies q(q) \leq q(p) \quad \forall q \in S \text{ or } q(q) > q(p) \quad \forall q \in S.$ \Rightarrow g(q) \leq g($\alpha(t_0)$) $\forall q \in S$ or g(q) \geq g($\alpha(t_0)$) $\forall q \in S$. Since, $\alpha: I \to S \Longrightarrow \alpha(t) \in S$, $\forall t \in I$. $\Rightarrow g(\alpha(t)) \leq g(\alpha(t_0)) \quad \forall t \in I \text{ or } g(\alpha(t)) \geq g(\alpha(t_0)) \quad \forall t \in I.$ \Rightarrow $(g \circ \alpha)(t) \leq (g \circ \alpha)(t_0) \quad \forall t \in I$ or $(g \circ \alpha)(t) \geq (g \circ \alpha)(t_0) \quad \forall t \in I$. $\implies t_0$ is an extreme point of $g \circ \alpha$ on I. Therefore, $\frac{d}{dt}\left[(g \circ \alpha)(t_0) \right] = 0$ $\Rightarrow \nabla g(\alpha(t_0)) \cdot \dot{\alpha}(t_0) = 0$ $\implies \nabla g(p) \cdot v = 0, \quad \forall v \in S_n$ $\implies \nabla g(p) \in S_p^{\perp}$ = $[\nabla f(p)]^{\perp}$

 \implies $\nabla q(p) = \lambda \nabla f(p)$

Example 4. Show that the maximum and minimum values of the function $g(x_1, x_2)$ $ax_1^2 + 2bx_1x_2 + cx_2^2$, where $a, b, c \in \mathbb{R}$ on the unit circle $x_1^2 + x_2^2 = 1$ are eigenvalues of the matrix $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$.

Solution. Here we have given $S = f^{-1}(1)$, where $f : \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) =$ $x_1^2 + x_2^2$. Then

$$
\nabla f(x_1, x_2) = (x_1, x_2, 2x_1, 2x_2)
$$

and

$$
\nabla g(x_1, x_2) = (x_1, x_2, 2ax_1 + 2bx_2, 2bx_1 + 2cx_2)
$$

Let $p = (x_1, x_2) \in S$ be extreme point of g. Therefore by Lagrange multiplier theorem,

$$
\nabla g(p) = \lambda \nabla f(p)
$$

⇐⇒

$$
2ax_1 + 2bx_2 = 2\lambda x_1
$$

$$
2bx_1 + 2cx_2 = 2\lambda x_2
$$

$$
\begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
$$

or

 \blacksquare

Thus the extreme points of g on S are eigenvectors of the symmetric matrix $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$. If

$$
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \text{ is an eigenvector of a matrix } \begin{bmatrix} a & b \\ b & c \end{bmatrix} \text{ then}
$$

$$
ax_1^2 + 2bx_1x_2 + cx_2^2 = [x_1 \ x_2] \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
$$

$$
= [x_1 \ x_2] \lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
$$

$$
= \lambda (x_1^1 + x_2^2)
$$

$$
= \lambda
$$

Therefore, $g(p) = \lambda$, where $p = (x_1, x_2)$. Since a 2×2 matrix has only two eigenvalues, these eigenvalues are the maximum and minimum values of g on the compact set S .

Example 5. If \mathbb{R}^4 can be viewed as the set of all 2×2 matrices with real entries by identifying the 4-tuple (x_1, x_2, x_3, x_4) with matrix $\begin{bmatrix} x_1 & x_2 \\ x & x_3 \end{bmatrix}$ x_3 x_4 1 . The subset consisting of those matrices with determinant equal to 1 forms a group under matrix multiplication, called the special linear group SL(2). Show that SL(2) is 3-space in \mathbb{R}^4 .

Solution. Here
$$
SL(2) = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} : (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \text{ and } \begin{vmatrix} x_1 & x_2 \\ x_3 & x_4 \end{vmatrix} = 1 \right\}
$$
. Since $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in SL(2)$ hence $SL(2) \neq \phi$. Also, $S = f^{-1}(1)$, where $f : \mathbb{R}^4 \to \mathbb{R}$ defined by $f(x_1, x_2, x_3, x_4) = x_1 x_4 - x_2 x_3$ and

 $\nabla f(p) = (p, x_4, -x_3, -x_2, x_1),$ where $p = (x_1, x_2, x_3, x_4).$

$$
\nabla f(p) = 0 \Longleftrightarrow (x_1, x_2, x_3, x_4) = 0
$$

But $0 \notin SL(2)$ because determinant of zero-matrix is 0. Therefore, $SL(2)$ is 3-surface in \mathbb{R}^4 .

Example 6. Let S be an $(n-1)$ -surface in \mathbb{R}^n , given by $f^{-1}(c)$, where $f: U \rightarrow$ $\mathbb{R}(U \text{ open in } \mathbb{R}^n)$ is such that $\nabla f(p) \neq 0$ for all $p \in f^{-1}(c)$. Let $g: U_1 \to \mathbb{R}$, where $U_1 = U \times \mathbb{R} = \{(x_1, x_2, ..., x_{n+1}) \in \mathbb{R}^{n+1} : (x_1, x_2, ..., x_n) \in U\}$ be defined by

$$
g(x_1, x_2, ..., x_{n+1}) = f(x_1, x_2, ..., x_n).
$$

Then $g^{-1}(c)$ is an *n*-surface in R^{n+1} . Solution. Since

$$
\nabla g(x_1, x_2, ..., x_{n+1}) = \left(x_1, x_2, ..., x_{n+1}, \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n}, 0\right)
$$

and $\frac{\partial f}{\partial x}$ ∂x_1 , ∂f ∂x_2 ,, ∂f ∂x_n cannot be simultaneously zero when $g(x_1, x_2, ..., x_{n+1}) = f(x_1, x_2, ..., x_n) =$ c because $\nabla f(x_1, x_2, ..., x_n) \neq 0$, whenever $(x_1, x_2, ..., x_n) \in f^{-1}(c)$. The n-surface $g^{-1}(c)$

The cylinder $g^{-1}(1)$ over the *n*-sphere: $g(x_1, ..., x_{n+1}) = x_1^2 + ... + x_n^2$.

is called cylinder over S.

Example 7. The Surface of Revolution:

Let C be a curve in \mathbb{R}^2 which lies above x_1 -axis. Thus $C = f^{-1}(c)$ for some $f: U \to \mathbb{R}$ with $\nabla f(p) \neq 0$ for all $p \in C$, where U is contained in the upper half plane $x_2 > 0$. Define $S = g^{-1}(c)$ where $g: U \times \mathbb{R} \to \mathbb{R}$ by $g(x_1, x_2, x_3) = f(x_1, (x_2^2 + x_3^2)^{1/2})$. Then S is 2-surface. Each point $(a, b) \in C$ generates a circle of point of S, namely circle in the plane $x_1 = a$ consisting of those points $(x_1, x_2, x_3) \in \mathbb{R}^3$ such that $x_1 = a, x_2^2 + x_3^2 = b^2$. S is called surface of revolution obtained by rotating the curve C about the x_1 -axis.

The surface of revolution S obtained by rotating the curve C about the x_1 -axis.

♣♣♣