Linear Algebra

Dr. A. N. Bhavale

Head, Department of Mathematics, Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune-5.

5th January , 2021

a mills.

 $2Q$

后

A non-empty set V is said to be a vector space over $\mathbb R$ (the set of real numbers) if there exist maps $+ : V \times V \rightarrow V$, defined by $(x, y) \mapsto x + y$, called addition, and

 $\cdot : \mathbb{R} \times V \to V$, defined by $(\alpha, y) \mapsto \alpha \cdot y$, called scalar multiplication, satisfying the following **eight** properties :

•
$$
x + y = y + x, \forall x, y \in V
$$

(commutativity of addition).

Definition : Vector Space (continued...)

•
$$
(x + y) + z = x + (y + z), \forall x, y, z \in V
$$

(associativity of addition).

- There exists $0 \in V$ such that $x + 0 = x = 0 + x$, $\forall x \in V$ (existence of additive identity).
- For every $x \in V$ there exists $y \in V$ such that $x + y = 0 = y + x$, $\forall x, y \in V$. This y is denoted by $-x$. (existence of additive inverse).

Definition : Vector Space (continued...)

\n- $$
\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y, \forall \alpha \in \mathbb{R}
$$
 and $x, y \in V$.
\n- $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x, \forall \alpha, \beta \in \mathbb{R}$ and $x \in V$.
\n

\n- \n
$$
(\alpha\beta) \cdot x = \alpha \cdot (\beta \cdot x)
$$
, $\forall \alpha, \beta \in \mathbb{R}$ and $x \in V$.\n
\n- \n \bullet For $1 \in \mathbb{R}$, $1 \cdot x = x$, $\forall x \in V$.\n
\n

For example, $\mathbb{R}, \, \mathbb{R}^2, \, \mathbb{R}^3$ and \mathbb{C} are all vector spaces over $\mathbb R$. Note that $\mathbb O$ is not a vector space over $\mathbb R$.

へのへ

- **0** Substraction : $x y = x + (-y)$, $\forall x, y \in V$.
- **2** Scalar multiplication : $\alpha x = \alpha \cdot x$, $\forall \alpha \in \mathbb{R}$ and $x \in V$.
- $\bullet \mathbb{R}$ can be replaced by any Field (F) like \mathbb{Q}, \mathbb{C} , etc. In that case V is called vector space over F .
- \bullet Elements of a vector space V are called vectors of V, and 0 is called the zero vector.
- \bullet Sometimes, a vector space V can also be represented as a structure $\langle V, +, \cdot \rangle$

Show that

 $\mathbb{R}^n = \{ (x_1, x_2, \ldots, x_n) \mid x_i \in \mathbb{R}, \ \forall \ i, \ 1 \le i \le n \}$ is a vector space under the addition and the scalar multiplication defined as follows.

For $x = (x_1, x_2, \ldots, x_n), y = (y_1, y_2, \ldots, y_n) \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$. $x + y = (x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n)$ and $\alpha x = (\alpha x_1, \alpha x_2, \ldots, \alpha x_n).$

Note that, the zero vector is $\mathbf{0} = (0, 0, \ldots, 0)$.

Show that $M_{m\times n}(\mathbb{R})$ is a vector space under the addition and the scalar multiplication defined as follows.

For
$$
A = [a_{ij}], B = [b_{ij}] \in M_{m \times n}(\mathbb{R})
$$
 and $\alpha \in \mathbb{R}$,
\n $A + B = [a_{ij} + b_{ij}]$ and $\alpha A = [\alpha a_{ij}]$.

If $m = n$ then the set $M_{m \times n}(\mathbb{R})$ is denoted by $M(n,\mathbb{R})$ or $M_n(\mathbb{R})$. Let S_n and A_n denotes the set of symmetric matrices and skew symmetric matrices respectively. Note that $M(n,\mathbb{R})$, S_n and A_n are also vector spaces.

Let $S = \{(x_n)|x_n \in \mathbb{R}\}\$ be the set of all real sequences.

Show that S is a vector space under the addition and the scalar multiplication defined as follows. For $(x_n), (y_n) \in S$ and $\alpha \in \mathbb{R}$, $(x_n) + (y_n) := (x_n + y_n)$ and $\alpha(x_n) := (\alpha x_n)$.

Let C be the set of all convergent sequences. Let $C_0 = \{(x_n) | \lim_{n \to \infty} x_n = 0\}.$ Note that C and C_0 are also vector spaces, and $C_0 \subset C \subset S$.

Example 4 : $\mathcal{F}(X,\mathbb{R}) = \{f | f : X \to \mathbb{R}\}$ is a vector space.

Let X be a non-empty set.

Let $V = \mathcal{F}(X,\mathbb{R}) = \{f | f : X \to \mathbb{R}\}$ be the set of all real valued functions on the set X.

Show that V is a vector space under the addition and the scalar multiplication defined as follows.

For
$$
f, g \in V
$$
 and $\alpha \in \mathbb{R}$,
\n $(f+g)(x) = f(x) + g(x), \forall x \in X$, and
\n $(\alpha f)(x) = \alpha f(x), \forall x \in X$.

Let $\mathcal{C}([a, b]), \mathcal{D}([a, b])$ and $\mathcal{R}([a, b])$ be the set of all continuous,

differentiable and Riemann integrable (real valued) functions defined on

[a, b]. Then these are subsets of $\mathcal{F}([a, b], \mathbb{R})$ and are also vector spaces.

Note that, the above Example 4 is a generalized form of Ex. 1, Ex. 2 and Ex. 3 above, as it can easily be seen respectively as follows.

\n- **①** In Ex.1, take
$$
X = \{1, 2, \ldots, n\}
$$
 and define $f : X \to \mathbb{R}$ by $f(i) = x_i, \forall i, 1 \leq i \leq n$. Then the map $T : f \to (f(1), f(2), \ldots, f(n))$ is a bijection of $\mathcal{F}(X, \mathbb{R})$ and \mathbb{R}^n .
\n

- **2** In Ex.2, take $X = \{1, 2, ..., m\} \times \{1, 2, ..., n\}$ and define $f: X \to \mathbb{R}$ by $f((i, j)) = a_{ii}, \forall i, j, 1 \le i \le m, 1 \le j \le n$. Then the map $T: f \to [a_{ii}]$ is a bijection of $\mathcal{F}(X,\mathbb{R})$ and $M_{m \times n}(\mathbb{R})$.
- **3** In Ex.3, take $X = \mathbb{N}$ and define $f : X \to \mathbb{R}$ by $f(i) = x_i, \forall i \in \mathbb{N}$. Then the map $T: f \to (x_i)$ is a bijection of $\mathcal{F}(X,\mathbb{R})$ and $S = \{(x_n)|x_n \in \mathbb{R}\}.$

つくい

$$
\mathbf{\Phi} \ \mathcal{D}([a,b]) \subset \mathcal{C}([a,b]) \subset \mathcal{R}([a,b]).
$$

Let $\mathcal{P} = \{\sum^n a_i \mathsf{x}^i | a_i \in \mathbb{R}, n \in \mathbb{N}\}$ be the set of all polynomials in terms

 $i=0$
of variable x with real coefficients.

Show that P is a vector space under the addition and the scalar multiplication defined as follows.

For
$$
p(x) = \sum_{i=0}^{m} a_i x^i
$$
, $q(x) = \sum_{i=0}^{n} b_i x^i \in V$ and $\alpha \in \mathbb{R}$,
\n
$$
p(x) + q(x) = \sum_{i=0}^{r} (a_i + b_i) x^i
$$
, $r = \max\{m, n\}$, and $\alpha p(x) = \sum_{i=0}^{m} (\alpha a_i) x^i$.
\nLet $\mathcal{P}_n = \{\sum_{i=0}^{n} a_i x^i | a_i \in \mathbb{R}\}$ be the set of all polynomials of degree $\leq n$.
\nThen \mathcal{P}_n is a vector space. Note that the set of all polynomials exactly of degree *n* is not a vector space, since there does not exist a zero vector.

へのへ

Let V and W be vector spaces.

Define an addition and a scalar multiplication on the cartesian product $V \times W$ as follows.

For $(v_1, w_1), (v_2, w_2) \in V \times W$ and $\alpha \in \mathbb{R}$, $(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$ and $\alpha(v_1, w_1) = (\alpha v_1, \alpha w_1).$ Then $V \times W$ is a vector space, called **direct sum** of V and W, denoted by $V \oplus W$. Note that $\mathbb{R}^2 = \mathbb{R} \oplus \mathbb{R}$.

Theorem 1 : In a vector space V , we have

$$
0 \cdot x = 0 \text{ for all } x \in V.
$$

- **2** There is a **unique** additive identity.
- **3** The additive inverse is **unique**.

$$
\bullet (-1) \cdot x = -x \text{ for all } x \in V.
$$

- $\bullet \ \alpha \cdot \mathbf{0} = \mathbf{0}$ for all $\alpha \in \mathbb{R}$ and $\mathbf{0} \in \mathbf{V}$.
- **•** If $\alpha \cdot x = 0$ for $\alpha \in \mathbb{R}$ and $x \in V$, then either $\alpha = 0$ or $x = 0$.

Proof of Theorem 1 :

1. Claim : $0 \cdot x = 0$ for all $x \in V$. Note that $0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x$. Now $\mathbf{0} = 0 \cdot x + (-0 \cdot x) = (0 \cdot x + 0 \cdot x) + (-0 \cdot x) =$ $0 \cdot x + (0 \cdot x + (-0 \cdot x)) = 0 \cdot x + 0 = 0 \cdot x.$

2. Let $\mathbf 0$ and $\mathbf 0'$ be two additive identities of V . Claim : $0 = 0'$. As $x + 0 = x = 0 + x$, $\forall x \in V$ and also $x + 0' = x = 0' + x$, $\forall x \in V$, we have in particular, $0' + 0 = 0' = 0 + 0'$ and $0 + 0' = 0 = 0' + 0$. Thus $\mathbf{0} = \mathbf{0}'$.

3. Let y and y' be two additive inverses of x in V. Claim : $y = y'$. We have $x + y = 0 = y + x$ and also $x + y' = 0 = y' + x$. Consider $y = y + 0 = y + (x + y') = (y + x) + y' = 0 + y' = y'.$ Thus $y = y'$. 4. Consider $(-1)\cdot x+x = (-1)\cdot x+1\cdot x = ((-1)+1)\cdot x = 0\cdot x = 0.$ Similarly $x + (-1) \cdot x = 0$. Thus $(-1) \cdot x = -x$.

5. Claim : $\alpha \cdot \mathbf{0} = \mathbf{0}$ for all $\alpha \in \mathbb{R}$ and $\mathbf{0} \in \mathbf{V}$. Note that $\alpha \cdot \mathbf{0} = \alpha \cdot (\mathbf{0} + \mathbf{0}) = \alpha \cdot \mathbf{0} + \alpha \cdot \mathbf{0}$. Now $\mathbf{0} = \alpha \cdot \mathbf{0} + (-\alpha \cdot \mathbf{0}) = (\alpha \cdot \mathbf{0} + \alpha \cdot \mathbf{0}) + (-\alpha \cdot \mathbf{0}) =$ $\alpha \cdot \mathbf{0} + (\alpha \cdot \mathbf{0} + (-\alpha \cdot \mathbf{0})) = \alpha \cdot \mathbf{0} + \mathbf{0} = \alpha \cdot \mathbf{0}$

6. Claim : If $\alpha \cdot x = 0$ for $\alpha \in \mathbb{R}$ and $x \in V$, then either $\alpha = 0$ or $x = 0$ If $\alpha = 0$ then we are done. So suppose $\alpha \neq 0$. Consider $\alpha \cdot x = \mathbf{0}$: $\alpha^{-1} \cdot (\alpha \cdot x) = \alpha^{-1} \cdot \mathbf{0}$ $\therefore (\alpha^{-1}\alpha) \cdot x = \mathbf{0}$ \therefore 1 $\cdot x = \mathbf{0}$ Thus $x = \mathbf{0}$.

Let W be a non-empty subset of a vector space V . Then W is said to be a vector subspace (or simply a subspace) of V if W itself is a vector space under the operations induced from V. That is,

 \bullet 0 \in W.

- **2** If $w_1, w_2 \in W$, then $w_1 + w_2 \in W$.
- **3** If $\alpha \in \mathbb{R}$ and $w \in W$, then $\alpha w \in W$.

Theorem 2: A subset W of V is a subspace of V if and only if

- 1. W is non-empty.
- 2. For $v, w \in W$ and for $\alpha, \beta \in \mathbb{R}$, $\alpha v + \beta w \in W$.

 000

- 1. $\mathbb R$ is a subspace of $\mathbb C$.
- 2. $\mathcal{D}([0,1])$ is a subspace of $\mathcal{C}([0,1])$.
- 3. $W = \{ (a, b, 0) | a, b \in \mathbb{R} \}$ is a subspace of \mathbb{R}^3 .
- 4. \mathcal{P}_n is a subspace of \mathcal{P}_n .
- 5. S_n is a subspace of $M_n(\mathbb{R})$.
- 6. C is a subspace of S.

7. The set of bounded real valued functions is a subspace of $\mathcal{F}(X,\mathbb{R})$.

8. The set of all solutions of a homogeneous system $AX = O$ of linear equations in terms of *n* variables is a subspace of \mathbb{R}^n .

Note that, the set of all solutions of a non-homogeneous system $AX = B$ of linear equations in terms of *n* variables is **not** a subspace of \mathbb{R}^n due to absence of a zero vector. State two more reasons.

Theorem 3: If U and W are subspaces of V then $U \cap W$ is also a subspace of V.

What about $U \cup W$? Note that, the union of X-axis and Y-axis is **not** a subspace of \mathbb{R}^3 , since $(1, 0, 0) + (0, 1, 0) = (1, 1, 0) \notin U \cup W$.

Let U and W be two subspaces of a vector space V. Then sum of U and W, denoted by $U + W$, is defined as $U + W = \{u + w | u \in U, w \in W\}.$

Theorem 4 : The sum $U + W$ of the subspaces U and W of V is also a subspace of V .

For example, let
$$
U = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} | a, b \in \mathbb{R} \right\}
$$
 and
\n $W = \left\{ \begin{bmatrix} c & 0 \\ d & 0 \end{bmatrix} | c, d \in \mathbb{R} \right\}$. Then $U + W = \left\{ \begin{bmatrix} x & y \\ z & 0 \end{bmatrix} | x, y, z \in \mathbb{R} \right\}$ is a subspace of $V = M_2(\mathbb{R})$.

The vector space V is said to be the direct sum of its subspaces U and W, denoted by $U \oplus W$, if every vector v of V can be written in **unique** way as $v = u + w$, where $u \in U$ and $w \in W$.

Theorem 5 : The vector space V is the direct sum of its subspaces U and W if and only if $V = U + W$ and $U \cap W = \{0\}$.

Ex. : \mathbb{R}^3 is the direct sum of XY-plane and Z-axis. Note that, \mathbb{R}^3 is not the direct sum of XY-plane and YZ-plane,

since $(3, 5, 7) = (3, 1, 0) + (0, 4, 7) = (3, -4, 0) + (0, 9, 7)$.

Note also that, $M_n(\mathbb{R}) = S_n \oplus A_n$, since any $X \in M_n(\mathbb{R})$ can be written as $X = Y + Z$, where $Y = (X + X^t)/2 \in S_n$ and $Z = (X - X^t)/2 \in A_n$.

Solve the following:

1. Show that $W = \{(a, b, c) | a + b + c = 0, a, b, c \in \mathbb{R}\}\$ is a subspace of \mathbb{R}^3 . 2. Show that $W = \{(a, b, c) | a \ge 0, a, b, c \in \mathbb{R}\}\$ is not a subspace of \mathbb{R}^3 . 3. Show that $W = \{(a, b, c) | a^2 + b^2 + c^2 \le 1, a, b, c \in \mathbb{R}\}\$ is not a subspace of \mathbb{R}^3 .

Let V be a vector space over \mathbb{R} . Let $S = \{v_1, v_2, \ldots, v_k\}$ be a subset of V. Then any vector $v \in V$ of the form $\alpha_1v_1 + \alpha_2v_2 + \cdots + \alpha_kv_k$ is called a linear combination of v_1, v_2, \ldots, v_k , where for each $i, \alpha_i \in \mathbb{R}$.

The set of all linear combinations of the vectors in S, denoted by $L(S)$, is the smallest subspace of V containing S , called the **linear span** of the set S .

In other words, $L(S)$ is the subspace spanned or generated by S, notationally, $L(S) = Span(S) = \langle S \rangle$. We define $L(\emptyset) = \{0\}$.

Example : Let $S = \{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\}\$. Then

つくい

 $\mathbb{R}^3 = \mathcal{L}(S)$, since for any $(a, b, c) \in \mathbb{R}^3$, $(a, b, c) = a e_1 + b e_2 + c e_3$.

Consider $A = [a_{ii}]_{m \times n}$.

Let $R_i = (a_{i1}, a_{i2}, \ldots, a_{in})$, where $1 \le i \le m$. Clearly $R_i \in \mathbb{R}^n$. Let $S = \{R_1, R_2, \ldots, R_m\}$. Then $L(S)$ is subspace of \mathbb{R}^n , called the row space of A.

Similarly, one can define the **column space** of A, as the subspace of \mathbb{R}^m .

Note that, row equivalent matrices have the same row space.

Linear dependence and independence of vectors :

Let V be a vector space over \mathbb{R} .

A vector $v \in V$ is said to be dependent on the vectors $v_1, v_2, \ldots, v_k \in V$

if there exist $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R}$ such that $v = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k$.

The vectors $v_1, v_2, \ldots, v_k \in V$ are said to be **linearly dependent** over \mathbb{R} , or simply dependent, if there exist scalars $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R}$, not all of them 0, such that $\alpha_1v_1 + \alpha_2v_2 + \cdots + \alpha_kv_k = 0$. Otherwise, the vectors are said to be linearly **independent** over \mathbb{R} , or simply independent.

Thus, if $\alpha_1v_1 + \alpha_2v_2 + \cdots + \alpha_kv_k = 0$ implies that $\alpha_i = 0$, for each i,

 $1 \leq i \leq k$, then the vectors $v_1, v_2, \ldots, v_k \in V$ are linearly independent.

 $2Q$

- **1** The set $S = \{v_1, v_2, \ldots, v_k\}$ is said to be linearly independent, if the vectors v_1, v_2, \ldots, v_k are linearly independent. The empty set \emptyset is defined to be independent.
- 2 If subset of a set is dependent then the set is also dependent. Hence any subset of an independent set is independent.
- **3** A non-zero vector is independent.
- **4** If any one of the vectors is zero or any two are same then the vectors are dependent.
- **3** Two vectors are dependent if and only if one of them is a scalar multiple of the other.

へのへ

Show that the set $S = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}\$ is linearly independent. What is $L(S)$? Solution : Consider $k_1(1, 1, 1) + k_2(1, 1, 0) + k_3(1, 0, 0) = (0, 0, 0).$ That is, $(k_1 + k_2 + k_3, k_1 + k_2, k_1) = (0, 0, 0)$. Therefore $k_1 + k_2 + k_3 = 0$, $k_1 + k_2 = 0$, $k_1 = 0$. Thus $k_1 = 0, k_2 = 0, k_3 = 0$. $L(S) = \mathbb{R}^3$, since for any $(a, b, c) \in \mathbb{R}^3$, there exist scalars $k_1 = c, k_2 = b - c, k_3 = a - b \in \mathbb{R}$ such that $(a, b, c) = k_1(1, 1, 1) + k_2(1, 1, 0) + k_3(1, 0, 0).$

Let V be a vector space over $\mathbb R$. Then

V is said to be a vector space of **dimension** n , denoted by $dim(V) = n$, if there exists a set B of linearly independent vectors v_1, v_2, \ldots, v_k which span V . The set B is called a **basis** of V .

In other words, B is a basis of V if any $v \in V$ can be expressed uniquely as the linear combination of v_1, v_2, \ldots, v_k . From above Example 1, S is a basis of \mathbb{R}^3 , and so \mathbb{R}^3 is of dimension 3. Note that, as \emptyset is independent, the vector space $L(\emptyset) = \{0\}$ is defined to have dimension 0. Also, when vector space is not of finite dimension, it is said to be of infinite dimension, for example, P .

Let $B = \{e_1, e_2, \ldots, e_n\}$ be a basis of an n-dimensional vector space V over \mathbb{R} . Let $v \in V$. As B is a basis, v can be written *uniquely* as $v = \alpha_1 e_1 + \alpha_2 e_2 + \cdots + \alpha_n e_n$ where for each i, $1 \le i \le n$, $\alpha_i \in \mathbb{R}$.

The vector $(\alpha_1, \alpha_2, \ldots, \alpha_n)$ is called **coordinate vector** of v with respect to the basis B . It is denoted by $[v]_B$ or simply by $[v]$.

In general $[v]$ depends not only on the basis (and the order of the elements in the basis) but also the field F over which V is defined.

Consider the basis set $S = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ of \mathbb{R}^3 . Let $v = (1, 2, 3) \in V = \mathbb{R}^3$. Then $[v]_S = (3, -1, -1).$

. Now consider the standard basis set $B = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ of \mathbb{R}^3 . Let $v = (1, 2, 3) \in \mathbb{R}^3$. Then $[v]_B = (1, 2, 3)$.

• Also, if we consider the set $B' = \{(1, 2, -3), (1, -3, 2), (2, -1, 5)\}.$ Then B' is a basis of \mathbb{R}^3 , and for $v = (1, 2, 3) \in \mathbb{R}^3$, $[v]_{B'} = (0, -1, 1).$

∽≏ດ

The set of all solutions of a homogeneous system $AX = O$ of m linear equations in terms of n variables is a vector subspace of \mathbb{R}^n , called the null (or solution) space of A. The dimension of null space of A is called **nullity** of A, denoted by $\eta(A)$.

The set of all vectors $Y \neq O$ such that $AX = Y$ for some $X \in \mathbb{R}^n$ is a vector subspace of \mathbb{R}^m , called the **range space** of A. The dimension of range space of A is called **rank** of A, denoted by $\rho(A)$.

Remark : By definition of the range space of ^A, that is, using $AX = Y$, it can be concluded that each Y can be written as the linear combination of the columns of A with scalars, precisely entries of X . Therefore the range space of A is spanned by the column vectors of A. Hence the rank of A is nothing but the number of linearly independent column vectors of A.

Thus, the set of these linearly independent vectors forms the basis of the range space of A.

.

Theorem : If *A* is an
$$
m \times n
$$
 matrix then $\rho(A) + \eta(A) = n$.

Verify above Theorem for
$$
A = \begin{bmatrix} 1 & 2 & 2 \\ 0 & -1 & 1 \end{bmatrix}
$$

Remark :

- \bullet Let S be a set with two or more vectors in a vector space V. Then S is linearly dependent if and only if at least one of the vectors in S is expressible as a linear combination of the rest of the vectors in S.
- A set with exactly two vectors is linearly independent if and only if neither vector is a scalar multiple of the other.
- Geometrically, a set of two vectors in \mathbb{R}^2 or \mathbb{R}^3 is linearly independent if and only if the vectors do not lie on the same line when they are placed with their initial points at the origin. Also, a set of three vectors in \mathbb{R}^3 is linearly independent if and only if the vectors do not lie on the same plane when they are placed with their initial points at the origin.

へのへ

 \bullet If U, W are subspaces of a vector space V then $dim(U + W) = dim(U) + dim(W) - dim(U \cap W)$.

- If $B = \{v_1, v_2, \ldots, v_n\}$ is a basis of a vector space V, then every set with more than n vectors of V is linearly dependent.
- \bullet If V is a finite dimensional vector space, then any two basis sets of V have the same number of vectors.
- \bullet If V is an *n* dimensional vector space then (1) Any set with *n* linearly independent vectors in V is a basis of V . (2) Any set with *n* vectors which spans V is a basis of V. (3) If S is a linearly independent subset of V with $|S| < n$, then S can be enlarged to a basis set of V. (4) If W is a subspace of V then $dim W \leq dim V$. Moreover, $dimW = dimV$ if and only if $W = V$.

へのへ

The standard basis of \mathcal{P}_n is the set $B = \{1, x, x^2, x^3, \dots, x^n\}.$

Maximal linearly independent and minimal generating sets :

Let V be a finite dimensional vector space. A linearly independent subset S of V is said to be maximal linearly independent set of V , if $S \cup \{v\}$ is dependent, for any vector $v \in V$. A generating subset S of V is said to be **minimal generating set** of V, if $S \setminus \{u\}$ is not a generating set, for any vector $u \in S$.

Theorem: Let V be a finite dimensional vector space. Let $B = \{v_1, v_2, \ldots, v_n\}$ be a subset of V. Then the following statements are equivalent. 1. B is a basis of V . 2. *B* is a maximal linearly independent set. 3. B is a minimal generating set.

 Ω

Exercise :

- Let $V = \mathbb{R}^+$. For $x, y \in V$ and for $\alpha \in \mathbb{R}$, define $x + y = x \cdot y$ and $\alpha x = x^{\alpha}$. Show that V is a vector space over \mathbb{R} .
- Show that $W = \{f | f(1) = 0\}$ is a subspace of the vector space V of all real valued functions.
- Check whether the matrices

$$
\begin{bmatrix} 4 & 0 \\ -2 & -2 \end{bmatrix},
$$

 $\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$ and $\begin{bmatrix} 0 & 2 \\ 1 & 4 \end{bmatrix}$ are linearly independent.

- Show that e^x , sin x and cos x are linearly independent in the vector space V of all real valued functions.
- Show that the polynomials $1-x, 1+3x-x^2$ and $5 + 3x - 2x^2$ are linearly dependent in \mathcal{P}_2 .
- Show that $\{x, 3x^2, x+5\}$ forms a basis of \mathcal{P}_2 .
- Let $W = \{(x, y, z, w)|y + z = 0, x = 2w\}.$ Prove that W is a subspace of \mathbb{R}^4 . Also, find a basis and the dimension of W .

• Find the rank and the nullity of the matrix

$$
A=\begin{bmatrix}1&3&2\\1&5&1\\3&5&8\end{bmatrix}
$$

- Find a basis and the dimension of the solution space of the following system of linear equations. $x+2y+7z = 0, -2x+y-4z = 0, x-y+z = 0.$
- \bullet Let S and T be subsets of the vector space V. Then prove that (1) If $S \subset T$ then $L(S) \subset L(T)$. (2) $L(S) = S$ if and only if S is a subspace of V. (3) $L(L(S)) = L(S)$.

Thank you

K ロ ▶ K 伊 ▶ K 글

重す È 299